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This poster highlights our recent work [6], in which we
present a method of designing multiple controllers for a set
of systems that interact with one another. We design the
controllers such that the composition of the systems has
guaranteed safe behavior. Rather than considering the behavior
of the systems as a group during our analysis, which can
be cumbersome when the number of systems becomes very
large, we opt for a modular design technique in which we
consider each system individually. For every system, we select
a specification (referred to as a contract) for that system to
satisfy, and then design a controller accordingly, under the
assumption that all the other systems also fulfill their own
contracts. With this assumption, the effects that the other
systems have on the system in consideration are restricted
to an allowable range. We then quantify this bounded system
interdependence and use the result during the controller design
process. The resulting controllers are able to ensure that all
system contracts are met, as well as other objectives.

The advantage in such an approach is that it can solve
issues that arise when systems are integrated into a final
product. Often times, products which require massive system
integration suffer recalls due to inherent difficulties in their
design process [3, 5], which is part of the motivation for this
research. In order for engineers to trust that these systems will
work properly when integrated, our techniques can be applied.
We can think of the system contracts as a form of mutual

trust between the separate systems. In the case where these
systems are designed by different companies, the contracts
are comparable to how companies place trust in each other in
the form of coordinated design specifications. One company
promises that it will fulfill certain criteria, while the other
company trusts that said criteria will be met, and vice versa.
In our paper, we apply this technique to two autonomous
driving functions, and these system contracts come in the
form of controlled invariant sets. Ultimately, these sets allow
us to provide safety guarantees regarding the behavior of the
vehicle, which is crucial in order to show the public that these
vehicles are reliable and can pass federal regulations.

Proving to the public that autonomous systems are reliable
is a vital first step towards a society which trusts autonomous
systems. We believe that in order for society to place its trust
in autonomy, it must be fully assured that any automated
systems in question will operate as expected. Provable safety
guarantees are a convenient and accurate method of providing
these assurances. In products where safety is critical, such
as autonomous vehicles, these guarantees may help provide

a measure of whether or not a vehicle passes certain vehicle
regulations. This is becoming increasingly important as more
states are starting to pass legislation regarding the safety
standards of autonomous vehicles. Furthermore, in light of
rapid increases in the complexity of such automated systems,
we suggest the contract-based design approach so that this
technique will also scale well.

We apply our methods to two autonomous driving functions:
adaptive cruise control (ACC) and lane keeping (LK). The
ACC system ensures that the vehicle either remains a safe
distance from cars ahead or maintains a desired velocity when
it is safe to do so. The LK system keeps the vehicle centered
in its lane. These systems exhibit interdependence on each
other in that the steering dynamics of the vehicle are affected
by its forward speed, and vice versa [7, 4, 1]. Therefore, we
model the systems as being linear parameter varying, where
the parameter of each system is the state of the other system.
This implies that our system contracts are in the form of state
constraints for individual systems. Thus, we seek controlled
invariant sets for the systems, described as polyhedra [2],
such that each system’s state can remain inside its controlled
invariant set as long as the other system does the same.
For example, we assume that the ACC controller keeps the
vehicle’s velocity within a certain range and then design a LK
controller while adhering to this assumption.

To approach this problem, we first choose safe sets cor-
responding to some initial state constraints for each system
and then tighten these constraints as necessary in order to
obtain controlled invariant sets. This allows us to use the
safe sets as system contracts (since the state of each system
will remain in its controlled invariant set) which restrict the
interdependence between the two systems. That is, the safe sets
are state constraints, and therefore impose constraints on the
systems’ linear parameter varying models, since each uses the
state of the other system as its parameter. We seek to quantify
this interdependence in a way that is useful during the process
of finding controlled invariant sets. This quantification is as
follows: for each system, we seek a family of systems such
that its convex hull covers the range of the linear parameter
varying model, given that the domain of the model is the safe
set of the other system. We reduce this problem to that of
finding a covering for the range of a properly defined function.
Given this new formulation, we suggest a few methods for its
solution based on whether or not the resulting function has
certain properties - specifically, convexity and monotonicity.
This quantification is then used during the process of shrinking
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Fig. 1. Simultaneous simulation of the ACC and LK systems on a curvy road. The ACC system has states h and u, which are headway
and velocity, respectively. The LK system has states y, ⌫, 4 , and r, which are lateral displacement from the center of the lane, lateral
velocity, yaw angle, and yaw rate, respectively. The input to the ACC system is the applied longitudinal force Fw and the input to the LK
system is the steering angle �f . The dashed green lines indicate the initial safe sets which are guaranteed to bound the states at all times.

the initial safe sets down to controlled invariant sets. We also
prove that this approach does not introduce any conservatism
into our computation of controlled invariant sets.

To keep the ACC and LK states in their respective controlled
invariant sets, we enforce the corresponding state constraints
with two model-predictive controllers with quadratic costs. At
every time step, the controllers find an input to each subsystem
that minimizes the cost of its predicted next state, while also
keeping it within its controlled invariant set. By keeping the
predicted state of both systems in their controlled invariant
sets, the composition is guaranteed to be safe. Furthermore,
the ACC and LK controllers take into account the state of
both systems so that their interdependencies can be accounted
for (see Figure 2). In short, finding control inputs amounts to
enforcing certain linear constraints which by construction are
feasible.

Our synthesized controllers are tested in Simulink (also in
Carsim, not shown), where we add disturbances to the systems
corresponding to a curvy road. We also add a slower lead car,
forcing the ACC controller to decrease the vehicle’s speed
halfway through the simulation. Our results show that the
states of both systems remain within their initial safe sets as
expected. The state constraints corresponding to these initial
safe sets are shown in Figure 1 alongside the state of each
subsystem during the simulation (note that the signals are
color coded the same in each figure for clarity). These results
show that our method allows us to make safety guarantees for
complex integrated systems as the theory suggests. Providing
these safety guarantees is a necessary step towards a society
that fully trusts autonomous systems.
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