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• Trust: willingness to depend on  autonomy
–Depends on situation and initial 

disposition/beliefs
–Affects the user’s actions

• Assurance: autonomy’s ability to affect  trust
–Positive or negative
–Ultimately affects user’s actions

• Perceived ability to execute assigned tasks (within defined scope of autonomy) 
despite uncertainties in:
– Its knowledge of world
– Its knowledge of own self/state
– Its reasoning and execution capabilities

• Unmanned ground vehicle (UGV) attempts 
to reach exit of a road network

• Pursuer attempts to capture the UGV
• UAV and unattended ground sensors (UGSs) 

gather data about pursuer’s location
• Human supervisor interacts with UGV

Fig. 1 – Trust Model

Fig. 3 – An example road network

• States 𝒔 = (𝒙, 𝒚): UGV and pursuer position
• Actions 𝒂: valid UGV step directions
• Observations 𝒐: 

• Reward: 

• Transition Probabilities: 
• Belief 𝒃: 𝑏 = 𝑥, Ԧ𝑝 𝑦 𝑂
• Bayes’ filter updates: 
𝑏′ = 𝜏 𝑏, 𝑎, 𝑂 ∝ σ𝑠 𝑝 𝑠′ 𝑠, 𝑎 𝑝(𝑂|𝑠′)

Fig. 5 – Simple Road Network Scenario

𝑺𝑪 = 𝒇𝒔𝒄 𝑿𝒔𝒄 , 𝑿𝒔𝒄 = [𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒, 𝒙𝟓, … ]
• 𝒙𝟏 Command Interpretation

–Are the autonomy and user ‘on the same page’?
• 𝒙𝟐 Model Validity

–How well does the autonomy’s model reflect the real world?
• 𝒙𝟑 Solver Quality

–How well can the solver use the model to generate policies? 
• 𝒙𝟒 Outcome Assessment

–How ‘good’ is the outcome distribution?
• 𝒙𝟓 Past Performance

–How well has the autonomy done in similar circumstances?

• Autonomy =  many layers of approximations

• Decisions based on incomplete/uncertain info
• Certification standards for autonomy: must account 

for non-determinism, complexity, adaptability, etc.

• Trust: integral part of certification for autonomy

Fig. 2 – Self-Confidence Diagram

• Goal: Maximize expected reward 𝑽: 

𝑉𝜋 𝑏0 =෍
𝑡=0

∞

𝛾𝑡 𝑟 𝑏𝑡, 𝑎𝑡 =෍
𝑡=0

∞

𝛾𝑡 𝐸[𝑅 𝑠𝑡, 𝑎𝑡 ]

• Find optimal policy :
𝜋∗ = argmax

𝜋
𝑉𝜋(𝑏0) − solution intractable

• Approximate using SARSOP and APPL software

Example Calculation: Outcome Assessment

Self-Confidence Formulation

Logistic UPM/LPM Metric
• Measure of ‘goodness’ of a reward distribution 𝑝 𝑟𝑒𝑤𝑎𝑟𝑑 𝜋

𝑥4 =
1

1 − 𝑒−𝑘(log
𝑈𝑃𝑀
𝐿𝑃𝑀 )

, 𝑈𝑃𝑀/𝐿𝑃𝑀 =
∗𝑟׬
∞(𝑟 − 𝑟∗) 𝑝 𝑟 𝑑𝑟

∞−׬
𝑟∗ (𝑟∗ − 𝑟) 𝑝 𝑟 𝑑𝑟

• 𝑟∗ is the minimal acceptable reward, 𝑥4 is a logistic function with steepness 
k applied to the log of the UPM/LPM ratio 

Scenario Overview

Human-on-the-Loop
• No low level/expert system knowledge
• Comfortable with the problem
• Decisions influenced by trust
• Interrogate the autonomy
• Modify decision making via stance selection 

(‘aggressive’, ‘defensive’, etc.)
• Provide information, advice (identify 

intruder behavior, update map, etc.) Fig. 4 – A UAS Operator

• ROS/Gazebo scenario simulation
• Implement self-confidence reporting
• Design GUI and user study

– First test: detect measurable 
difference in trust between users 
with and without self-confidence

• Run experimental user study
Fig. 8 – Husky from Clearpath Robotics

Mixed Observability Markov Decision Process

Policy Generation

Fig. 6 – SARSOP algorithm 
[Kurniawati, et al 2008]

Fig. 7 – Outcome Assessment Self-Confidence (𝑟∗ = 0, 𝑘 = 1)


