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This work investigates a model-based approach to understand-
ing how user trust evolves in systems consisting of a super-
vising user and an autonomous agent. This model consists of
a multivariate model for user trust, and a feedback connection
between user and agent. Feedback information is termed
assurance, which is also shown to consist of multiple aspects
concerning the state of the autonomous agent. It is argued that
the closed loop interactions between user and agent can and
should be designed to calibrate user trust. In order to develop
design principles, it is first necessary to define the terms
and salient components of these models to provide a logical
framework for their interconnection. Although elements such
as trust and assurance are essential in a usable autonomous
system, they are also nebulous concepts with multiple mean-
ings [1]. We provide definitions and structure that enables a
systematic study of the problem. Our user trust model implies
that better assurances can be designed by providing users
with better insight into the ‘competency boundaries’ for key
decision-making components of the autonomy. One potentially
important assurance is a report of the self-confidence (i.e. self-
trust) the autonomy has in its own process. We are currently
developing formal computational mechanisms for assessing
machine self-confidence as an assurance in the context of a
probabilistic autonomous route planning.

MODEL OVERVIEW

Trust is an important topic that is of interest to many
different communities. An overview of literature on the subject
reveals work that spans fields such as psychology [2, 3], sociol-
ogy [3, 4], business [1, 5], and engineering [6, 7, 8, 9, 10, 11].
A key point is that trust is not one dimensional— trust models
that will be used for design must be developed to capture many
intricate aspects of human trust. The focus of trust research
in the business and engineering worlds are most similar. It
is driven by not only understanding the user trust (as in
psychology) or relationships with autonomous systems (as in
sociology), but how feedback can be carefully chosen to ensure
proper development of trust when human agents are replaced
by autonomous machine agents. An important question in e-
commerce, for instance, is whether people are willing to trust
legal advice from a website if another human is not also
speaking with them in person [1]. Trust in engineering design
has been well-studied for automation systems [6, 7, 8], and
has formed much of the basis for understanding autonomous
systems, which present new challenges that are non-existent

with automation [9, 12, 10, 11]. Certification processes are
also an embodiment of the idea of developing an appropriate
level of trust in a system. Acknowledging the feedback of
assurances to influence user trust in autonomy is, however,
a fairly new idea. The central theme of this work is that
an autonomous system can and should be designed to help
properly calibrate user trust. To develop design principles, it
is necessary to define the parameters of the design space and
provide a rigorous framework for analysis and synthesis. Our
basic model of the user trust relationship is seen in Figure 1.
Key definitions are:

• Autonomous System: an agent or system comprised of
a machine being driven or controlled by some form of
autonomy. An autonomous system always interacts with
a human user.

• Autonomy: the ability to perform complex mission-
related tasks with substantially less human intervention
for more extended periods of time, sometimes at remote
distances, than current systems [13].

• Machine: the physical system and supporting low-level
electronics and/or software in an autonomous system
commanded by the autonomy.

• Trust: a user’s willingness to depend on the autonomous
system [1]. Trust depends on a particular system or
situation, as well as a user’s background dispositions and
beliefs. Trust always leads to an action.

• Assurance: the autonomous system’s ability to affect the
user’s trust. As used here, the term is not intended to
have a positive or negative connotation - assurances can
decrease trust.

This model provides a structured framework for understand-
ing how an individual’s trust will be used for interaction and
how trust can develop over time. Looking first at the ‘User
Trust’ block, there are several different inputs. Past experi-
ences assist in the initial development of trust with a system.
Similar to the idea of a Markov Chain, past experiences are
what help initialize the new state of trust about a particular
autonomous system. Another input, ”Environmental Factors”,
describes how outside variables can affect the user’s trust in a
system. These variables relate to how the autonomous system
might perform in the given scenario, but are independent from
the autonomous system’s properties. For example, bad weather
might influence the user’s trust in a self-driving car.

Trust actions are the only output of the ‘User Trust’ block.
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Fig. 1. Closed loop model of a user trust and an autonomous system

These actions are labeled as such because they demonstrate the
user’s trust or lack thereof. The actions of the user influence
the behavior and performance of the autonomous system. The
resulting properties of the autonomous system to this trust
action input are then fed back to the user trust block as
assurances. Assurances affect the user trust states, causing a
dynamic change in the user’s trust and therefore the user’s trust
actions. This model has several important implications. First,
the model makes clear that trust is only relevant in so far as it
leads to a trust action — therefore the autonomous system
should include an interface with affordances that are rich
enough to allow the user to make various decisions to reflect
her trust intentions. Second, this model emphasizes that trust is
a property of the user, whereas the assurances determines the
characteristics of the autonomous system. Third, the model
provides insights into how to certify autonomous systems.
Certification attempts to quantify the necessary levels of trust
that must be prevalent in the system before using it in a way
that might harm others or cause failure. The model suggests
that we can develop trust in an autonomous system and then
license it through the same process used to license trusted
human pilots, drivers, etc. Finally, the model implies that better
assurances can be designed by providing better insight into
the Understanding and Decision components of the Autonomy.
One interesting and potentially important assurance is a report
of the self-confidence (i.e. self-trust) that the autonomy has in
its own process.

MACHINE SELF-CONFIDENCE AS AN ASSURANCE

Reporting self-confidence would mimic the way in which
human drivers and pilots are assessed for the purposes of
obtaining a driver’s or pilot’s license: an evaluator puts the
person through a series of tasks and evaluates outcomes
together with the process/rationale of the person. By providing
a report of self-confidence, the user is able to change their
trust based on comparison between the actual outcome and
the system’s (predictive) confidence that the outcome would be
achieved. Given the growing complexity and sophistication of
autonomous systems and tasks to which they are assigned, the

essential idea behind machine self-confidence is to generate a
computable ‘shorthand’ metric that easily allows users to gain
insight into the actual capabilities/limitations of autonomous
systems, thus enabling proper calibration of trust.

Machine self-confidence can be formally defined as an
autonomous agent’s perceived ability to achieve assigned
goals (within a defined region of autonomous behavior) after
accounting for: (1) uncertainties in its knowledge of the world,
(2) uncertainties of its own state, and (3) uncertainties about
its reasoning process and execution abilities. Self-confidence,
while certainly strongly coupled to uncertainty, goes beyond
simple assessment of probabilities of whether assigned tasks
can be successfully accomplished. As discussed in [14], the
concept of self-confidence is closely tied to an autonomous
agent’s self-awareness of its ‘competency boundaries’.

Several recent works have attempted to translate this defi-
nition into algorithms for computing and reporting machine
self-confidence [15, 16]. In our ongoing work, we are de-
veloping mechanisms to evaluate machine self-confidence for
sophisticated policy-based decision-making algorithms based
on partially observable Markov decision processes (POMDPs).
POMDPs are powerful and popular tools for solving complex
optimal control and planning problems under uncertainty, but
require sophisticated approximations in real-world systems.
For a robot to understand the ‘competency boundaries’ of its
POMDP planner, it must somehow recognize when and where
such approximations may break down. This directly leads to
consideration of ‘self-confidence factors’. These factors can
then be combined into a single ‘self-confidence score’, which
can serve as a simple assurance that cues users on when to
adjust their trust in the system (e.g. on a scale of -1 to 1,
where -1 indicates complete lack of confidence in ability to
complete a task and 1 indicates complete confidence).

We are currently considering quantitative metrics for scoring
5 factors that can be applied to self-confidence assessment
in POMDP planning (as well as possibly other planning ap-
proaches): (1) model validity: is the model used for decision-
making a reasonable representation of the real world?); (2)
expected outcome assessment: does the distribution of ex-
pected rewards under a given policy indicate robustness and
desirable interim behavior during task execution?; (3) solver
quality: is the approximation being used to find a solution
(policy) appropriate for the given problem and model?; (4)
interpretation of user commands: did the autonomy understand
the user’s intentions and translate these into appropriate tasks?;
(5) past performance: how well did the autonomy do on
previous instances of the same problem or similar problems?

To connect these ideas with the user trust model in practice,
we are developing a ROS simulation testbed involving user
interaction with an autonomous unmanned ground vehicle,
which must navigate in a highly uncertain environment using
very limited information and very limited high-level interac-
tion with a human. We are designing this testbed with human
user studies in mind to deploy and study the impact of self-
confidence as a possible assurance for properly calibrating
trust in autonomy.
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