## Trust Management for Cyber-Physical Systems

#### Insup Lee PRECISE Center School of Engineering and Applied Science University of Pennsylvania

RSS 2016 Workshop – Social Trust in Autonomous Robots June 19, 2016





## Outline

Introduction

The problem of trust in cyber-physical systems

- Previous related projects
  - Quantitative trust in federated networked systems
  - Diabetic patients' trust in insulin pumps

• Vision and open questions





## Cyber-Physical Systems (CPS)







### **Characteristics of CPS**

- Pervasive computation, sensing and control
- Networked at multi- and extreme scales
- Dynamically reorganizing / reconfiguring
- Increasing degree of automation
- Dependable operation with potential requirements for high assurance of reliability, safety, security, and usability
- Human in/on the loop





## The problem of trust in CPS?



# Would You Trust a Robot Surgeon to Operate on You?

Precise and dexterous surgical robots may take over the operating room

-- IEEE Spectrum (June 2016)



# Three-Quarters of Americans "Afraid" to Ride in a Self-Driving Vehicle

-- AAA Survey (March 2016)





#### Trust

- Dictionary: TRUST, -noun:
  - belief that someone or something is reliable, good, honest, effective, etc. [Merriam-Webster]
  - belief that somebody/something is good, sincere, honest, etc. and will not try to harm or trick you. [Oxford]
- Our Definition:
  - Trust is the expectation of an entity with respect to certain properties or actions of another entity under a specified context and time, considering the risks, incentives, and historical information.





### Needs: trust management for CPS

- Increasing autonomy
  - How to assure trustworthy and reliable operation?
- Distributed, networked complex systems
  - Decentralized policies, dynamic environment
- Interacting with human operators
  - How does the system express its capability/intention to human operators?
- Social implications
  - Decision-making based on social rules, customs, laws, values, and ethics





### **Principal Questions**

- Who/what to trust?
- How much to trust?
- How to interact accordingly?





## Challenges

- What is the basis of trust?
- What is the appropriate notion of trust?
- How to establish trust?
- How to maintain/update trust?
- How to use (the level of) trust?





#### **Research Issues: trust management for CPS**

- Who is trusting whom
  - Human to human
  - Human to machine/automation
  - Machine to human
  - Machine to machine
- How to express trust?
- How to establish/evaluate trust?
- How to maintain trust?
- Multi facets (multiple factors contributing to trustworthiness)





### Quantitative Trust for Federated Networked Systems

- The problem of TRUST
  - Decentralized policies
  - Dynamic environment, partial trust
  - Complex "trust" models (logic + reputation), in reality
- Applications
  - E-commerce systems
  - Service compositions
  - Reusing components/subsystem in complex DoD systems
  - Crowd-sourced development
  - Social Networks
  - Medical systems
  - Cloud computing

#### [QTM Project, 2007-2012]

PRECISE



## **Motivation**

#### Trust in a single Trust in shared system / network Trust in social networks information / services (system of systems) • DoD GIG (Global Trusted Computing • Facebook, Twitter Information Grid) • Safe on-line shopping, Use social networking • Wikipedia / Wikitrust e-Commerce safely • Trusting google result If trust break... • GiG and possibility of Malware , virus, worm • Social engineering attack attackers modifying data • Router's error crashed • Revoking trust in Search engine poisoning the Internet companies



**MURI** Review Meeting



## Goal and Scientific Challenges

#### Goal

• Develop the fundamental understanding of "trust" and its application to large complex federated systems

#### Scientific Challenges

- Establishing trust under conditions of uncertainty
  - What is trust, when assumptions can change?
  - Trust metrics not tied to identify and resilient to attacks
  - Compositional Semantics of trust
    - Trust in anonymous communication networks
    - Trust in system of systems
  - Revocation of trust
- Making decisions based on trust
  - Understanding attack models
  - Bayesian techniques are needed to account for partial-trust



13

PRECISE

## **Our Approach**

Given multiple trust management policies over different networks, determine a unified enterprise level framework and its ability to withstand disruptions.

> Partia Trust

Independent sources of authority

Other Trust

**Extended Enterprise** 

Workflow

Google





**MURI** Review Meeting



**Reputation Trust Management** 

### **Trust Management**







#### Quantitative Trust Management (QTM)

- Quantitative Trust Management (QTM) provides a dynamic interpretation of authorization policies for access control decisions based on upon evolving reputations of the entities involved
- QuanTM is a QTM system that combines elements from RTM and PTM to create a novel method for trust evaluation
  - Describes the Trust Dependency Graph (TDG), a tree-encoding of policy-based trust relationships apt for reputation application
  - Reputations of not just PRINCIPALS, but also DELEGATIONS and CREDENTIALS are aggregated to arrive at a final value



PRFCISE



#### **QTM Architecture**



Penn Engineering

17 PRE EISE ISE

## **QTM Challenges**

- What is the proper way to mathematically **combine reputations**?
  - Involves integration of logical/quantitative/probabilistic reasoning
  - Is there a means to agreeably synthesize distributed observations?
- How does a designer counter malicious attacks using game-theory strategies?
  - Attackers will try to exploit all features of a trust system
  - Are there techniques to provide *PROVABLE* resilience to attack?
- What decision-theoretic approach is appropriate for trust situations?
  - Huge parameter space a complicating factor
  - Bayesian techniques are needed to account for partial-trust
  - Can this integration provide a means for credential revocation?
- How does one integrate policy-based and reputation-based TM?
  - What are the relationships between latencies for authorization decisions and the number of nodes in a QTM-managed system?
  - What is the duration of inconsistent authorization information in a system as policy decisions are updated?
  - How stable and predictable are the behaviors of a large-scale QTM system in the face of rapid changes in factors such as policies, environment and reputations?



## AS# Reputation (MURI)

Engineering

- Potential unifying application of PTM, RTM, and QTM concepts
- Autonomous Systems (AS) are core Internet routing entities. AS act as hops (and ultimately hosts) in IP routing tables.
  - PTM: AS#'s (unique IDs) are delegated hierarchically, similarly with IP blocks. Attempts to secure BGP rely heavily on PTM-approaches, to ensure an AS actually owns the IP they are attempting to broadcast
  - RTM: An AS originates (hosts) some portion of IP space. Thus, we can use our 'IP Block Reputation' approach to associate reputation values with Autonomous Systems.



PRECISE

### **QTM-based Networked Control System**

 Redundant communication channels are useful for networked control system as they provide the ability to tolerate faults and malicious behaviors occurred in networks.



- Observation:
  - With both faulty and lossy channels, a simple triple-modular redundancy scheme with majority voting may not be sufficient to maintain stability of a controlled plant
- Our Approach
  - Integrate a reputation manager with the networked control system to improve the decision making process and to enhance the overall stability of a plant being controlled.





## **Risk Control**

#### • Key ideas:

- Relies on majority voting result, if it succeeds.
- 2 Relies on channel's behavior model to select control input in other cases.
- ③ Applies bounded control inputs to control risk.

**Require:** Controller injects  $-\mathbf{Kx}[k]$  and  $\mathbf{u}^{b}[k]$  into each of the three channels. Both of these signals travel together in one packet. Let  $R_{k}$  denote the number of packets received by the manager M at time-step k.

#### 1: begin

- 2: if  $R_k = 3$  then
- 3: M applies the value  $-\mathbf{Kx}[k]$  specified by the majority of the packets, and updates the behavior model of all three channels accordingly
- 4: else if  $R_k = 2$  and they both match then
- 5: M applies  $-\mathbf{Kx}[k]$  and updates the behavior model of the two channels.
- 6: else if  $R_k = 2$  and they do not match then
- 7: if  $T_i \ge \Theta$  and  $0 \le T_j < \Theta$  then
- 8: M applies the value  $-\mathbf{K}\mathbf{x}[k]$  specified by channel  $c_i$ .
- 9: else if  $T_i \ge \Theta$  and  $T_j \ge \Theta$  then
- 10: M randomly chooses one of the two channels and applies the input  $\mathbf{u}^{b}[k]$  specified by it.

PRECISE

- 11: else if  $T_i \ge \Theta$  and  $T_j = \phi$  then
- 12: M applies  $\mathbf{u}^{b}[k]$  specified by channel  $c_{i}$ .
- 13: else if  $(T_i = \phi \text{ and } T_j = \phi)$  or  $(T_i < \Theta \text{ and } T_j < \Theta)$  then
- 14: M applies  $\mathbf{u}[k] = \mathbf{0}$
- 15: end if
- 16: else if  $R_k = 1$  then
- 17: if  $T_i \ge \Theta$  then
- 18: M applies  $\mathbf{u}^{b}[k]$  specified by channel  $c_{i}$ .

19: else if  $T_i = \phi$  or  $T_i < \Theta$  then

- 20: M applies  $\mathbf{u}[k] = \mathbf{0}$
- 21: end if
- 22: else if  $R_k = 0$  then
- 23: RM applies  $\mathbf{u}[k] = \mathbf{0}$
- 24: end if
- 25: end



## STiki: Wikipedia vandalism detection

- Based on revision meta-data
  - Fast and efficient
- Spatio-temporal reputation
  - Use past event history
  - In the absence of history, use reputation of similar entities
- Editor reputation is based on "undo" history

| STIME A Valuation Detection Tool for V  | мікіреція                                                                                                                                                                                                                                                                                                                        |                                                                                                               |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Revision Eilters Appearance             | STiki Help About STiki                                                                                                                                                                                                                                                                                                           |                                                                                                               |
| LOGIN PANEL                             | DIFF-BROWSER                                                                                                                                                                                                                                                                                                                     |                                                                                                               |
| Anonymous?                              |                                                                                                                                                                                                                                                                                                                                  | <b>^</b>                                                                                                      |
| Username:                               | King Cobra                                                                                                                                                                                                                                                                                                                       |                                                                                                               |
| west.andrew.g                           |                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |
| Password:                               | Line 23: Line 23:                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| ••••••                                  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |
| Log-in Log-out                          | == Profile == == Profile ==                                                                                                                                                                                                                                                                                                      |                                                                                                               |
| Classification                          | The King Cobra is a large and powerful<br>snake, averaging 3.6-4 m (12-13&,h0sp,feet<br>in length and typically weighing about 6&hbsp,<br>kg (13.2&hbsp,lib). A particularly large<br>snerginen wes kent antike at the III notion                                                                                                | id head jerk<br>werful snake,<br>sp;feet) in<br>bout 6 kg<br>arge specimen                                    |
| V_andalism (Revert)<br>Pass<br>Innocent | Zool] and grew to 5.78nbspm (18.88nbspt)<br>before being [[Euthanasia]euthanized] upon<br>the outbreak of [[World War III], reref-Wood, The<br>Guinness Book of Animal Facts and Feats.<br>Sterling Pub Co Inc (1983), ISBN 978-085112<br>2339-rifer Despite their large size, King<br>2339-rifer Despite their large size, King | In Zoo]] and<br>sp;ft) before<br>]] upon the<br>/>Wood, The<br>is and Feats.<br>3N 978-085112<br>size, King — |
| REVERT COMMENT                          | Cobras are fast and agile. Cobras are fast and agile.                                                                                                                                                                                                                                                                            |                                                                                                               |
| ✓ Warn Offending Editor?                |                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |
| Reverted edit by #user#identified as    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |
| vandalism using STiki.                  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|                                         | REVISION-ID: 351649816 (Wiki-DIFF)                                                                                                                                                                                                                                                                                               |                                                                                                               |
|                                         | ARTICLE: King Cobra (Current-Page) (Page-Hist)                                                                                                                                                                                                                                                                                   |                                                                                                               |
| Default                                 | EDITING-USER: 204.210.179.78 (User-Contribs) (User-Talk)                                                                                                                                                                                                                                                                         |                                                                                                               |

- Fully automatic feedback collection from trusted users
- Does not require vandalism definition
- 300+ users, 800,000+ edits reviewed
  290,000+ vandalisms undone [2013]





## Outline

Introduction

The problem of trust in cyber-physical systems

- Previous related projects
  - (Machine to machine) Quantitative trust in federated networked systems
  - (Human to machine) Diabetic patients' trust in insulin pumps
- Vision, challenges, and future work





## Type 1 Diabetes (T1D) on Insulin Pumps

- Sensor-augmented subcutaneous insulin therapy
  - 30% 40% T1D patients in the US use insulin pumps
  - Requires user supervision
  - Critical needs for understanding the impact of insulin pumps on diabetic users, as highlighted in a American Association of Clinical Endocrinologists report



PRECISE



#### **Clinical Dataset**

- The dataset involves 55 T1D patients
  - Age 45.7 ± 15.3, body weight 79.2 ± 21.9 kg
  - Average time duration 31 days
- Sensor-augmented insulin pump data
  - CGM readings, mealtimes & carb counts, pump suggested boluses, user-selected boluses







#### "Eat-Trust-Correct" Modeling Framework



- <u>Eat</u>: how often the patient eats throughout a day, and how much carbohydrate he/ she eats
- <u>Trust</u>: whether the patient follows the BWZ recommended bolus doses, and if not, how much dosage he/she adjusts
- <u>Correct</u>: how often the patient takes correction boluses and how much dosage he/ she takes





#### Clustering of Patient Behavior Patterns: Trust



(c) Trust T3: moderate probability of increasing BWZ-recommended doses

(d) Trust T4: high probability of decreasing BWZ-recommended doses





## Outline

Introduction

The problem of trust in cyber-physical systems

- Previous related projects
  - Quantitative trust in federated networked systems
  - Diabetic patients' trust in insulin pumps

• Vision and open questions





## Vision

- Decision Support based on Trust Management
  - State of Nature: Are the (other) CPS systems trustworthy?
  - Observations:
    - Prior behaviors of these systems;
    - Certifications by (partially-trusted) authorities
  - Loss Function: To be suitable defined
  - Decision Actions: to (or not to) depend on services provided by CPS systems





### **Desirable Properties**

• Need composable, dynamically computable notion of trust.

 Trust should be quantitative, learned from history, and sensitive to context ... not absolute.

Policy and Credentials should be formally specified and revocable.





### **Research Questions**

- How to accumulate reputation/feedback? Locally or... should there be trusted authorities?
- How can (central/distributed) authorities monitor transactions to compute current trust levels without violating privacy?
- How do we compose trust values computed over time and from different components of a CPS system?
- What are appropriate Loss values? How sensitive is our decision procedure to the exact values.





### **Research questions**

- How to build a unified framework for expressing, establishing and evaluating different types of trust among humans and machines in CPS?
- What is the right granularity for trust model?
- What data are the best indicators of trustworthiness?
- How do we continually monitor and modify the way we compute trust?





Thank You! Questions?



