What is Trust and How Can My Robot Get Some?

Benjamin Kuipers Computer Science & Engineering University of Michigan

AIs as Members of Society

- We are likely to have more AIs (including robots) acting as members of our society.
 - Autonomous cars on our roads.
 - Self-driving trucks on our highways.
 - Intelligent wheelchairs for the elderly.
 - Companions and helpers for the elderly.
 - Teachers and care-takers for children.
 - Managers for complex distributed systems.
- How can we trust them?

Lessons
Deploying SkyNet was rational.

"perfect operational record"

SkyNet was a learning system.

"learned at a geometric rate"

SkyNet fights back.

As a critical defense system, it was undoubtedly programmed to protect itself.

SkyNet finds an unexpected solution.

Creative, unconstrained problem-solving.
No commonsense or moral critic of plans.

Trust is Important to Society

- Many aspects of society depend on trust.
 - I can trust most people not to try to kill me or steal from me. Saves on overhead for defending myself.
 - I trust most drivers to drive safely and courteously. *Allows me to drive more safely and efficiently.*
 - I can trust most people to keep their promises most of the time. *Enables cooperative enterprises*.
 - I can trust most companies to replace or repair defective products. *Makes it easier to shop and buy.*
 - ... (many others)
- We want to be able to trust robots, as they make decisions and act in our society.

Trust and Trustworthiness

- What is trust?
 - "Trust is a psychological state comprising the intention to accept vulnerability based upon positive expectations of the intentions or behavior of another."
- What is trustworthiness?
 - Deserving of trust or confidence; dependable; reliable.
- Trust is the rational response to trustworthiness.
 - Trust from others has tangible value.
 - Rewards get better if you can trust the other players.

Complex World / Simple Models

- The actual world is infinitely complex.
 - To make decisions, we need simple models.
 - To build simple abstract models, we must decide
 - what to leave in,
 - what to leave out.
- Game theory provides simple models of the complex world, and procedures for deciding what to do.
 - Some models are plausible and helpful.
 - Other models are unrealistic and unhelpful.

How Should a Robot Decide?

• The standard approach to decision making in AI [Russell & Norvig, 3e, 2010] defines **Rationality** as choosing actions to *maximize expected utility*.

 $action = \arg\max_{a} EU(a|\mathbf{e})$

- where

$$EU(a|\mathbf{e}) = \sum_{s'} P(\text{RESULT}(a) = s'|a, \mathbf{e})U(s')$$

- Utility *U*(*s*) is the individual agent's preference over states of the world.
 - In principle, utility can reflect *everyone's* welfare, but that is typically too difficult to implement.

The Crux is Defining Utility

- Utility *U*(*s*) is the individual agent's preference over states of the world.
 - Utility need not be self-centered. In principle, the individual's utility can reflect *everyone's* welfare.
 - Unfortunately, that's often hard to implement.
- Utility is typically defined in terms of the agent's own reward.
 - Individual maximization of self-centered reward often leads to bad outcomes, individually and collectively.
 - Tragedy of the Commons, Prisoners' Dilemma, ...

The Tragedy of the Commons

- I can graze my sheep on the Commons, or on my own land.
 - Personally, I'm better off grazing as many of my sheep as I can on the Commons, saving my own land.
 - Likewise everyone else.
- So we overgraze the Commons until it dies.
 - Then we have only our own land, and no Commons.
 - We're all worse off!
- Modern, real-world Commons:
 - Clean air and water, fishing, climate change, ...
 - (Shows that the Prisoner's Dilemma scales up.)

What's the Problem?

- We have a *reductio ad absurdum*.
- The assumption was: Utility can be defined strictly in terms of individual reward.
 - This is reasonable for artificial games, played for entertainment.
 - This is **not** reasonable for "games" as simple models (abstractions) for decision problems in the real world.
- **Conclusion**: The definition of utility must be expanded to include other factors, beyond reward to the individual agent.

Claim: Trust Has Value

- The trust that others place in me has value.
 - Others will take actions that offer larger benefits, even though it makes them vulnerable.
 - They trust me not to violate their trust.
- Trust is a capital asset ("social capital").
 - It accumulates slowly.
 - It can be destroyed quickly. 🖊
 - There can be a culturally-specific prior.
- Utility must include the value of trust, as well as individual reward.

行

• In the	t in the Prisone original PD, Utility is i	individual reward.
- The wor	st case collectively.	or the marviduar, and
• With t	rust as part of utility,	
– The indi	Nash equilibrium is (Don ⁹ vidually and collectively.	't, Don't), the best case,
	Testify	Don't
Testify	Testify $(-3-2, -3-2) = (-5, -5)$	Don't $(0-2, -5+1) = (-2, -4)$
Testify Don't	Testify $(-3-2, -3-2) = (-5, -5)$ $(-5+1, 0-2) = (-4, -2)$	Don't (0-2, -5+1) = (-2, -4) (-1+1, -1+1) = (0, 0)

Including Trust in Utility

The additive combinations above, and the numerical values, are over-simplified, and purely for illustration.

- U(s) = f(reward, trust).
 - Reward and trust don't have the same units, and the numerical values are just for illustration.
- There are many hypotheses about the mechanism, and the function reflecting it:
 - Kindness reciprocity
 - Inequality aversion
 - Trust receptiveness
 - Altruism
 - ...

Trustworthiness and Character

- How is trustworthiness estimated?
 - Behavior is evidence of *character* (a hidden variable).
 - Character predicts future trustworthiness.
 - Reputation is an estimate of character.
- Reputation depends on good behavior, and on persistent identity.
 - When do you trust an eBay seller?
 - Many ratings comes from persistent identity.
 - **Positive ratings** come from good behavior.

What About One-Shot Games?

- Why should Bob care about the trust he gets if he will never see Alice again?
 - Behavior is evidence of *character* (a hidden variable).
 - Character predicts future trustworthiness.
- "The Tell-Tale Heart"
 - Bob can observe his own character.
 - He doesn't know how well others can observe this hidden variable from other evidence.
- If Bob cares about character, he will behave well.

Must a Self-Driving Car Make Moral Decisions? How?

- The car is driving down a narrow street with parked cars all around.
- Suddenly, an unseen pedestrian steps in front of the car.
- What should the car do?

What should the car do?

- Should the car take emergency action to avoid hitting the pedestrian?
- What if it shakes up the passengers, possibly injuring them, in order to save the pedestrian?
- What if saving the pedestrian causes a serious collision, endangering or killing the passengers?
- What if the pedestrian is a small child?

Can the designer avoid the problem?

- Must the car make the decision in real time? Can we design the car to avoid the problem?
 - Realistically, a car cannot drive slowly enough to make such a collision *impossible*.
- Human drivers make risk-benefit trade-offs.
 - To be acceptable, a self-driving car will necessarily make such trade-offs.
 - No absolute guarantee of a good outcome is possible.
- The problem is framed too narrowly.
 - It is wrong to treat this as a "trolley problem".

The Car Must Earn Our Trust

- The social capital of trust must be accumulated.
 Society must learn that the car is trustworthy.
- Every car must *show* that it cares for every life.
 - Not just for the lives of its own passengers.
 - People should learn to trust all self-driving cars.
- The car must always act prudently to minimize risk.
 - In tight surroundings, slow down and observe carefully.
 - Require its passengers to wear seatbelts.
- In case of disaster, well-earned trust will lead to understanding, and a chance for forgiveness.

Explanation

- Your actions speak for you.
 - They signal what sort of person you are.
 - They signal what you approve of.
- Your explanation clarifies those actions.
 - Which simple abstract model you used to decide.
 - Which parameter values you used in that model.
 - Demonstrate that you used the model correctly.
- Your explanation affects the trust others have in you, in a positive or negative way.
 - It can also influence the moral evolution of society.

Answering the Questions

- What is trust?
 - The response of others to your trustworthiness.
 - Their willingness to accept vulnerability, in confident expectation of your good behavior.
- How can my robot get some?
 - By signaling to others that it is trustworthy.
 - By demonstrating, repeatedly and consistently, that it will fulfill the trust placed in it, even when there are temptations to the contrary.

What do our robots need?

- The robot needs to recognize and use the simple game theory model appropriate to a situation.
- The robot needs to define utility in terms of both individual reward and the trust it receives.
- The robot needs to explain its choice of action, and understand critiques of its explanation.
- The robot needs to signal its *trustworthiness*, even its *character*, to those around it.
 - It also needs to recognize those signals from others.

Conclusions

- We want and need robots to be trustworthy.
- Game theory is a formal method for rationally selecting actions.
 - Utility defined only in terms of individual reward can lead to disaster.
 - Utility must include a component for trust.
- Trust can be gained slowly, and lost quickly.
 - Robots need to signal that they are trustworthy.
 - Explanations clarify the lessons from behavior.
- Robots should not be given power beyond the trust they have earned.

References

- Robert Axelrod. The Evolution of Cooperation. 1984.
- Bacharach, Guerra & Zizzo. The self-fulfilling property of trust: An experimental study. *Theory and Decision*, 2007.
- Johnson & Mislin. Trust games: A meta-analysis. J. Economic Psychology, 2011.
- Kuipers. Toward morality and ethics for robots. *AAAI Spring Symposium on Ethical and Moral Considerations in Non-Human Agents*, 2016.
- Leyton-Brown & Shoham. Essentials of Game Theory. 2008.
- Rousseau, Sitkin, Burt & Camerer. Not so different after all: a cross-discipline view of trust. *Academy of Management Review*, 1998.
- Russell & Norvig. Artificial Intelligence: A Modern Approach, 3e, 2010.