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Human Task Analytic Behavior Models 

• Product of a task analysis 

• Describe how humans achieve goals when  
interacting with a system 

• Hierarchy (network) of goal-directed activities 
and actions 
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Trust in Automation / Autonomy 

• A system can be trusted if it facilitates the 
human operators’ tasks 

• This is important because:  

– Systems that do not facilitate tasks produce 
unexpected interactions 

– Humans will change their task to adapt to system 
behavior, producing unexpected interactions 

– Unexpected interactions are dangerous 
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 Unexpected Human Interactions: 

 A major contributor to failures in  
safety critical systems 
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Medicine 

44,000 and 98,000 deaths and 
1,000,000 injuries a year 

Aviation 

75.5% accidents in general aviation and  
~ 50% in commercial aviation 

Highway Safety 

90% of all roadway crashes 



 Human factors analysis techniques 
can miss human-system interactions 
that could lead to system failures 
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 Formal Methods: 

 Tools and techniques for proving that a 
system will always perform as intended 
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“You want proof? I’ll give you proof!” 



 Model checking: 

 An automatic means of performing  
formal verification 
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 Including human behavior: 

 Human task behavior is incorporated into a formal 

system model and the entire model is checked.  
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Focus:  Generating specifications to check that 

humans will always be able to accomplish 
their goals without unanticipated human-
automation interaction issues 
 



Enhanced Operator Function Model (EOFM) 

A generic task analytic modeling formalism 
─ Input/output model 

─ Hierarchical 

─ Platform-independent  

─ XML notation 

─ Visual notation 

─ Formal semantics  

 

• Poor support for 
coordination and 
communication 
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EOFM Formal Semantics 

Each activity’s and  
action’s execution 
state is represented  
as a finite state machine 
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Specification Generation 

Use computation 
concepts to  
automatically generate 
properties asserting desirable 
human-automation interaction 
conditions 
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… so what can we check for? 

Every element of the task should be applicable at some 
time in the use of the system 
 

State Coverage:  Every execution  
state of every activity and action  
should be reachable 
 

Done 

Executing Ready 
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… so what can we check for? 

Every element of the task should be applicable at some 
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Ready is always reachable, 
so no checking is necessary 
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… so what can we check for? 

Every element of the task should be applicable at some 
time in the use of the system 
 

State Coverage:  Every execution  
state of every activity and action  
should be reachable 
 

Act Executability:  
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… so what can we check for? 

Every element of the task should be applicable at some 
time in the use of the system 
 

State Coverage:  Every execution  
state of every activity and action  
should be reachable 
 

Act Completability: 
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… so what can we check for? 

Every task that a human operator attempts should 
always be finishable 
 

Starvation:  No part of a task should ever be unable to 
obtain the  resources it needs to finish 
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… so what can we check for? 

Every task that a human operator attempts should 
always be finishable 
 

Starvation:  No part of a task should ever be unable to 
obtain the  resources it needs to finish 
 

Act Inevitable Completability: 
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G
𝐴𝑐𝑡 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔       

 F 𝐴𝑐𝑡 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔  



… so what can we check for? 

There should never be a situation where the human 
operator can never perform any task 
 

Liveness:  The human operator should always 
eventually be able to perform a task 
 

 

 

19 



… so what can we check for? 

There should never be a situation where the human 
operator can never perform any task 
 

Liveness:  The human operator should always 
eventually be able to perform a task 
 

Task Liveness: 
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A pilot performing the before landing 
checklist  of an aircraft 

Application 
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A pilot performing the before landing 
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Application 
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GS Indicator 



Application 

A pilot performing the before landing  
checklist  of an aircraft 
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Human Task Behavior 
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GSIndicator ≤ Inactive 

˄ IgnitionLight = Off 

GSIndicator ≤ Alive  

˄ ThreeGearLights = Off 

GSIndicator  ≤ OneDot  

˄ FlapsGauge ≠ 25 

GearDoorLight = Off  

˄ SpoilerIndicator = Off 

GSIndicator  ≤ Capture  

˄ FlapsGauge ≠ Flaps40 

IgnitionLight = On ThreeGearLights = On FlapsGauge ≥ 25 SpoilerIndicator = On FlapsGauge = Flaps40 
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Automation 
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Human Interface 
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Verification Results 

31 of the 34 properties generated the 
desirable result (total execution time = 14.6 seconds) 

 

Inevitable Completability failed for three activities: 
aPrepareForLanding         aSetFlaps40         aSetSpoilers 
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Verification Results 

aPrepare 

ForLanding 

aSet 
Flaps25 

aDeploy 
LandingGear 

aOverride 

Ignition 

aSet 
Flaps40 

aSet 
Spoilers 

FlipIgnition 
Switch 

PullGear 
Lever 

Set 
Flaps25 

Arm 
Spoiler 

Set 
Flaps40 

ord 

ord ord ord ord ord 

GSIndicator ≤ Inactive 

GSIndicator ≤ Inactive 

˄ IgnitionLight = Off 

GSIndicator ≤ Alive  

˄ ThreeGearLights = Off 

GSIndicator  ≤ OneDot  

˄ FlapsGauge ≠ 25 

GearDoorLight = Off  

˄ SpoilerIndicator = Off 

GSIndicator  ≤ Capture  

˄ FlapsGauge ≠ Flaps40 

IgnitionLight = On ThreeGearLights = On FlapsGauge ≥ 25 SpoilerIndicator = On FlapsGauge = Flaps40 

All three of these 
specifications must wait 
for the landing gear 
doors to fully open 
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This situation is dangerous… 

• A failure to arm spoilers could result in an aircraft 
not staying on the runway 

• Due to flaps settings, the airplane may be going 
to fast and overrun the runway 

 

• The pilot may go off task 
– Attempt to deploy spoilers  

manually 

– Attempt to arm  
spoilers earlier 
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Contributions 

• A novel method for discovering  
human-automation interaction  
issues that need not be anticipated  
by analysts 

• Helps analysts ensure humans will trust the 
system because it will always support  
their task goals 
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Part of a Larger Infrastructure 

Accounting for human cognitive and  
sensory limitations 
 
Generating erroneous human behavior 
 
Modeling human team behavior  
with communication and coordination 
 
Generating miscommunications  
 
Automatically creating functional interface 
designs from task models 
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D’oh! 



Questions? 
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