
A Formal Task-based Approach
for Ensuring Trustworthy
Human-Automation Interaction

Matthew L. Bolton, Assistant Professor

1

Human Task Analytic Behavior Models

• Product of a task analysis

• Describe how humans achieve goals when
interacting with a system

• Hierarchy (network) of goal-directed activities
and actions

2

Activity1

Action1

Activity3

Action2 Action3 Action4

Activity2

ord

xor and

Precondition CompletionCondition

Precondition CompletionCondition

RepeatCondition

Trust in Automation / Autonomy

• A system can be trusted if it facilitates the
human operators’ tasks

• This is important because:

– Systems that do not facilitate tasks produce
unexpected interactions

– Humans will change their task to adapt to system
behavior, producing unexpected interactions

– Unexpected interactions are dangerous

3

 Unexpected Human Interactions:

 A major contributor to failures in
safety critical systems

4

Medicine

44,000 and 98,000 deaths and
1,000,000 injuries a year

Aviation

75.5% accidents in general aviation and
~ 50% in commercial aviation

Highway Safety

90% of all roadway crashes

 Human factors analysis techniques
can miss human-system interactions
that could lead to system failures

5

 Formal Methods:

 Tools and techniques for proving that a
system will always perform as intended

6

“You want proof? I’ll give you proof!”

 Model checking:

 An automatic means of performing
formal verification

7

System
Model

Model
Checker

Verification
Report

Specification

System
Model

Model
Checker

Verification
Report

Specification

 Including human behavior:

 Human task behavior is incorporated into a formal

system model and the entire model is checked.

Human Task
Behavior Translator

8

System
Model

Model
Checker

Verification
Report

Specification

 Including human behavior:

 Human task behavior is incorporated into a formal

system model and the entire model is checked.

Human Task
Behavior Translator

9

Focus: Generating specifications to check that

humans will always be able to accomplish
their goals without unanticipated human-
automation interaction issues

Enhanced Operator Function Model (EOFM)

A generic task analytic modeling formalism
─ Input/output model

─ Hierarchical

─ Platform-independent

─ XML notation

─ Visual notation

─ Formal semantics

• Poor support for
coordination and
communication

Activity1

Action1

Activity3

Action2 Action3 Action4

Activity2

ord

xor and

Precondition CompletionCondition

Precondition CompletionCondition

RepeatCondition

10

EOFM Formal Semantics

Each activity’s and
action’s execution
state is represented
as a finite state machine

11

System
Model

Human Task
Behavior Translator

Done

Executing Ready

EOFM

Specification Generation

Use computation
concepts to
automatically generate
properties asserting desirable
human-automation interaction
conditions

12

Specifications

Human Task
Behavior Translator

EOFM

Done

Executing Ready

… so what can we check for?

Every element of the task should be applicable at some
time in the use of the system

State Coverage: Every execution
state of every activity and action
should be reachable

Done

Executing Ready

13

… so what can we check for?

Every element of the task should be applicable at some
time in the use of the system

State Coverage: Every execution
state of every activity and action
should be reachable

Ready is always reachable,
so no checking is necessary

 Done

Executing Ready

14

… so what can we check for?

Every element of the task should be applicable at some
time in the use of the system

State Coverage: Every execution
state of every activity and action
should be reachable

Act Executability:

Done

Executing Ready

15

… so what can we check for?

Every element of the task should be applicable at some
time in the use of the system

State Coverage: Every execution
state of every activity and action
should be reachable

Act Completability:

Executing Ready

Done

16

… so what can we check for?

Every task that a human operator attempts should
always be finishable

Starvation: No part of a task should ever be unable to
obtain the resources it needs to finish

17

… so what can we check for?

Every task that a human operator attempts should
always be finishable

Starvation: No part of a task should ever be unable to
obtain the resources it needs to finish

Act Inevitable Completability:

Done

Executing Ready

18

G
𝐴𝑐𝑡 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔

 F 𝐴𝑐𝑡 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔

… so what can we check for?

There should never be a situation where the human
operator can never perform any task

Liveness: The human operator should always
eventually be able to perform a task

19

… so what can we check for?

There should never be a situation where the human
operator can never perform any task

Liveness: The human operator should always
eventually be able to perform a task

Task Liveness:

20

A pilot performing the before landing
checklist of an aircraft

Application

21

GS Indicator

A pilot performing the before landing
checklist of an aircraft

Application

22

GS Indicator

Application

A pilot performing the before landing
checklist of an aircraft

23

Human Task Behavior

aPrepare

ForLanding

aSet
Flaps25

aDeploy
LandingGear

aOverride

Ignition

aSet
Flaps40

aSet
Spoilers

FlipIgnition
Switch

PullGear
Lever

Set
Flaps25

Arm
Spoiler

Set
Flaps40

ord

ord ord ord ord ord

GSIndicator ≤ Inactive

GSIndicator ≤ Inactive

˄ IgnitionLight = Off

GSIndicator ≤ Alive

˄ ThreeGearLights = Off

GSIndicator ≤ OneDot

˄ FlapsGauge ≠ 25

GearDoorLight = Off

˄ SpoilerIndicator = Off

GSIndicator ≤ Capture

˄ FlapsGauge ≠ Flaps40

IgnitionLight = On ThreeGearLights = On FlapsGauge ≥ 25 SpoilerIndicator = On FlapsGauge = Flaps40

24

0 s 5 s 10 s 15 s 18 s

Capture Alive One Dot Two Dots

Environment

25

Automation

Unarmed

Armed

ArmSpoiler

Up

Down

PullGearLever

Flaps0

SetFlaps25 SetFlaps40

SetFlaps40

SetFlaps25

Flaps25 Flaps40

Closed Open

Opening

1 2 …

9 …

10 17

LandingGear Spoilers Flaps

LandingGearDoors

26

SetFlaps0 SetFlaps0

Pull
GearLever

Human Interface

GS
Indicator

Ignition
Switch

Gear
Lever

Spoiler
Lever

Flaps
Selector

Flaps
Indicator

Ignition
Light

Three Gear
Lights

Gear Door
Light

Spoiler
Indicator

27

Verification Results

31 of the 34 properties generated the
desirable result (total execution time = 14.6 seconds)

Inevitable Completability failed for three activities:
aPrepareForLanding aSetFlaps40 aSetSpoilers

28

Verification Results

aPrepare

ForLanding

aSet
Flaps25

aDeploy
LandingGear

aOverride

Ignition

aSet
Flaps40

aSet
Spoilers

FlipIgnition
Switch

PullGear
Lever

Set
Flaps25

Arm
Spoiler

Set
Flaps40

ord

ord ord ord ord ord

GSIndicator ≤ Inactive

GSIndicator ≤ Inactive

˄ IgnitionLight = Off

GSIndicator ≤ Alive

˄ ThreeGearLights = Off

GSIndicator ≤ OneDot

˄ FlapsGauge ≠ 25

GearDoorLight = Off

˄ SpoilerIndicator = Off

GSIndicator ≤ Capture

˄ FlapsGauge ≠ Flaps40

IgnitionLight = On ThreeGearLights = On FlapsGauge ≥ 25 SpoilerIndicator = On FlapsGauge = Flaps40

All three of these
specifications must wait
for the landing gear
doors to fully open

29

This situation is dangerous…

• A failure to arm spoilers could result in an aircraft
not staying on the runway

• Due to flaps settings, the airplane may be going
to fast and overrun the runway

• The pilot may go off task
– Attempt to deploy spoilers

manually

– Attempt to arm
spoilers earlier

30

Contributions

• A novel method for discovering
human-automation interaction
issues that need not be anticipated
by analysts

• Helps analysts ensure humans will trust the
system because it will always support
their task goals

31

Part of a Larger Infrastructure

Accounting for human cognitive and
sensory limitations

Generating erroneous human behavior

Modeling human team behavior
with communication and coordination

Generating miscommunications

Automatically creating functional interface
designs from task models

32

D’oh!

Questions?

33

References
1. Ait-Ameur, Y., Baron, M., and Girard, P. (2003). Formal validation of HCI user tasks. In

Proceedings of the International Conference on Software Engineering Research and
Practice, pages 732–738, Las Vegas. CSREA Press.

2. Bolton, M. L. (ND). Automatic validation and failure diagnosis of human-device
interfaces using task analytic models and model checking. Computational and
Mathematical Organization Theory. DOI 10.1007/s10588-012-9138-6.

3. Bolton, M. L. and Bass, E. J. (2009). A method for the formal verification of human
interactive systems. In Proceedings of the 53rd Annual Meeting of the Human Factors
and Ergonomics Society, pages 764–768, Santa Monica. HFES.

4. Bolton, M. L. and Bass, E. J. (2010a). Formally verifying human-automation interaction
as part of a system model: Limitations and tradeoffs. Innovations in Systems and
Software Engineering: A NASA Journal, 6(3):219–231.

5. Bolton, M. L. and Bass, E. J. (2010b). Using task analytic models to visualize model
checker counterexamples. In Proceedings of the 2010 IEEE International Conference
on Systems, Man, and Cybernetics, pages 2069–2074, Piscataway. IEEE.

6. Bolton, M. L. and Bass, E. J. (2012). Using model checking to explore checklist-guided
pilot behavior. International Journal of Aviation Psychology, 22(4):343–366.

7. Bolton, M. L., Bass, E. J., and Siminiceanu, R. I. (2012). Using phenotypical erroneous
human behavior generation to evaluate human-automation interaction using model
checking. International Journal of Human-Computer Studies, 70(11):888–906.

8. Bolton, M. L., Bass, E. J., and Siminiceanu, R. I. (2013). Using formal verification to
evaluate humanautomation interaction in safety critical systems, a review. IEEE
Transactions on Systems, Man and Cybernetics: Systems, 43(3):488–503.

9. Bolton, M. L., Siminiceanu, R. I., and Bass, E. J. (2011). A systematic approach to model
checking human-automation interaction using task-analytic models. IEEE Transactions
on Systems, Man, and Cybernetics, Part A, 41(5):961–976.

10. Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model checking. MIT Press,
Cambridge.

11. De Moura, L., Owre, S., and Shankar, N. (2003). The SAL language manual. Technical
Report CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park.

12. Degani, A. (2004). Taming HAL: Designing interfaces beyond 2001. Macmillan, New
York.

13. Emerson, E. A. (1990). Temporal and modal logic. In van Leeuwen, J., Meyer, A. R.,
Nivat, M., Paterson, M., and Perrin, D., editors, Handbook of Theoretical Computer
Science, chapter 16, pages 995–1072. MIT Press, Cambridge.

14. Fields, R. E. (2001). Analysis of Erroneous Actions in the Design of Critical Systems.
PhD thesis, University of York, York.

15. Kebabjian, R. (2012). Accident statistics. http://www.planecrashinfo.com/cause.htm.
Accessed 3/25/2013.

16. Kenny, D. J. (2011). 22nd joseph t. nall report: General aviation accidents in 2010.
Technical report, AOPA Air Safety Institute.

17. Kirwan, B. and Ainsworth, L. K. (1992). A Guide to Task Analysis. Taylor and Francis,
London.

18. Maluf, D. A., Gawdiak, Y. O., and Bell, D. G. (2005). On space exploration and human
error: A paper on reliability and safety. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, pages 79–84, Piscataway. IEEE.

19. Mansouri-Samani, M., Pasareanu, C. S., Penix, J. J., Mehlitz, P. C., OMalley, O.,
Visser, W. C., Brat, G. P., Markosian, L. Z., and Pressburger, T. T. (2007). Program
model checking: A practitioners guide. Technical report, Intelligent Systems Division,
NASA Ames Research Center, Moffett Field.

20. Mitchell, C. M. and Miller, R. A. (1986). A discrete control model of operator
function: A methodology for information display design. IEEE Transactions on
Systems Man Cybernetics Part A: Systems and Humans, 16(3):343–357.

21. Palanque, P. A., Bastide, R., and Senges, V. (1996). Validating interactive system
design through the verification of formal task and system models. In Proceedings of
the IFIP TC2/WG2.7 Working Conference on Engineering for Human-Computer
Interaction, pages 189–212, London. Chapman and Hall, Ltd.

22. Paterno, F., Santoro, C., and Tahmassebi, S. (1998). Formal model for cooperative
tasks: Concepts and an application for en-route air traffic control. In Proceedings of
the 5th International Conference on the Design, Specification, and Verification of
Interactive Systems, pages 71–86, Vienna. Springer.

23. Reason, J. (1990). Human Error. Cambridge University Press, New York.

24. Sandler, C., Badgett, T., and Thomas, T. M. (2004). The Art of Software Testing. John
Wiley & Sons.

25. Schraagen, J. M., Chipman, S. F., and Shalin, V. L. (2000). Cognitive Task Analysis.
Lawrence Erlbaum Associates, Inc., Philadelphia.

26. Sheridan, T. B. and Parasuraman, R. (2005). Humanautomation interaction. Reviews
of human factors and ergonomics, 1(1):89–129.

27. Silberschatz, A., Galvin, P. B., and Gagne, G. (2009). Operating system concepts. J.
Wiley & Sons.

28. Wing, J. M. (1990). A specifier’s introduction to formal methods. Computer, 23(9):8,
10–22, 24. 34

