Model Repair for Markov Decision Processes

Marta Kwiatkowska
Department of Computer Science, University of Oxford

TASE 2013, Birmingham

Joint work with: T. Chen, E.M. Hahn, T. Han, H. Qu and L. Zhang
Software everywhere

• Electronic devices, ever smaller
 – Laptops, phones, sensors...

• Networking
 – Wireless & Internet everywhere

• Intelligent spaces
 – Buildings, vehicles...

• Systems
 – Adaptive
 – Context-aware
 – Self-*

• From hardware and software, to everyware
 – Household objects do information processing
 – Software is central
Software quality assurance

- **Software is a critical component of embedded systems**
 - software failure costly and life endangering
- **Need quality assurance methodologies**
 - model-based development
 - rigorous software engineering
 - software product lines
- **Use formal techniques to produce guarantees for:**
 - safety, reliability, performance, resource usage, trust, ...
 - (safety) “probability of failure to raise alarm is tolerably low”
 - (reliability) “the smartphone will never execute the financial transaction twice”
- **Focus on automated, tool-supported methodologies**
 - automated verification via model checking
 - quantitative verification
Rigorous software engineering

- **Verification and validation**
 - Derive model, or extract from software artefacts
 - Verify correctness, validate if fit for purpose
Quantitative (probabilistic) verification

Automatic verification (aka model checking) of quantitative properties of probabilistic system models

System

Probabilistic model
e.g. Markov chain

Result

Quantitative results

Counter-example
Why quantitative verification?

- **Real software/systems are quantitative:**
 - **Resource constraints**
 - energy, buffer size, number of unsuccessful transmissions, etc
 - **Randomisation**, e.g. in distributed coordination algorithms
 - random delays/back-off in Bluetooth, Zigbee
 - **Uncertainty**, e.g. communication failures/delays
 - prevalence of wireless communication

- **Analysis “quantitative” & “exhaustive”**
 - strength of mathematical proof
 - best/worst-case scenarios, **not** possible with simulation
 - identifying trends and anomalies
Quantitative properties

• Simple properties
 – $P_{\leq 0.01}$ ['fail'] – “the probability of a failure is at most 0.01”

• Analysing best and worst case scenarios
 – $P_{\text{max}=?}$ ['\leq 10 “outage”'] – “worst-case probability of an outage occurring within 10 seconds, for any possible scheduling of system components”
 – $P_{=?}$ ['\leq 0.02 !“deploy” “crash”{max}'] – “the maximum probability of an airbag failing to deploy within 0.02s, from any possible crash scenario”

• Reward/cost–based properties
 – $R_{\text{“time”}=?}$ ['end'] – “expected algorithm execution time”
 – $R_{\text{“energy”}\text{max}=?}$ ['\leq 7200'] – “worst-case expected energy consumption during the first 2 hours”
Historical perspective

- First algorithms proposed in 1980s
 - [Vardi, Courcoubetis, Yannakakis, …]
 - algorithms [Hansson, Jonsson, de Alfaro] & first implementations

- 2000: tools ETMCC (MRMC) & PRISM released
 - PRISM: efficient extensions of symbolic model checking
 [Kwiatkowska, Norman, Parker, …]
 - ETMCC (now MRMC): model checking for continuous–time Markov chains
 [Baier, Hermanns, Haverkort, Katoen, …]

- Now mature area, of industrial relevance
 - successfully used by non–experts for many application domains,
 but full automation and good tool support essential
 - distributed algorithms, communication protocols, security protocols,
 biological systems, quantum cryptography, planning…
 - genuine flaws found and corrected in real–world systems
Quantitative probabilistic verification

• What’s involved
 – specifying, extracting and building of quantitative models
 – graph-based analysis: reachability + qualitative verification
 – numerical solution, e.g. linear equations/linear programming
 – typically computationally more expensive than the non-quantitative case

• The state of the art
 – fast/efficient techniques for a range of probabilistic models
 – feasible for models of up to 10^7 states (10^{10} with symbolic)
 – extension to probabilistic real-time systems
 – abstraction refinement (CEGAR) methods
 – probabilistic counterexample generation
 – assume-guarantee compositional verification
 – tool support exists and is widely used, e.g. PRISM, MRMC
Tool support: PRISM

- **PRISM: Probabilistic symbolic model checker**
 - developed at Birmingham/Oxford University, since 1999
 - free, open source software (GPL), runs on all major OSs
- **Support for:**
 - models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …
 - properties: PCTL/PCTL*, CSL, LTL, rPATL, costs/rewards, …
- **Features:**
 - simple but flexible high-level modelling language
 - user interface: editors, simulator, experiments, graph plotting
 - multiple efficient model checking engines (e.g. symbolic)
- **Many import/export options, tool connections**
 - MRMC, INFAMY, DSD, Petri nets, Matlab, …
- **See:** http://www.prismmodelchecker.org/
Quantitative verification in action

- **Bluetooth device discovery protocol**
 - frequency hopping, randomised delays
 - low-level model in PRISM, based on detailed Bluetooth reference documentation
 - numerical solution of 32 Markov chains, each approximately 3 billion states
 - identified worst-case time to hear one message

- **FireWire root contention**
 - wired protocol, uses randomisation
 - model checking using PRISM
 - optimum probability of leader election by time T for various coin biases
 - demonstrated that a biased coin can improve performance
• What to do if quantitative verification fails?

• Majority of research to date has focused on verification
 – scalability and performance of algorithms
 – extending expressiveness of models and logics
 – real-world case studies

• Some work to date on counterexamples [Han&Katoen 2009, Aljazzar&Leue 2009]
 – need to capture two types of branching
 – but difficult to represent them compactly

• In this lecture, we focus on model repair
 – can we fix the model to guarantee that a quantitative property is satisfied?
 – adjust parameters, potentially for use at runtime
Quantitative (probabilistic) verification

Automatic verification (aka model checking) of quantitative properties of probabilistic system models

Input probabilistic model

- e.g. Markov chain

Probabilistic model checker

- e.g. PRISM

Result

- √
- ×

Quantitative results

Probabilistic temporal logic specification

- e.g. PCTL, CSL, LTL

Repaired model

System requirements

0.5
0.4
0.1
0.3
0.5
0.4

P_{<0.01} [F \leq \text{fail}]
Overview

• Model repair
 – problem statement
 – parametric probabilistic models
 – property specifications: probability/expectation

• Region-based method
 – constraint-based approximate solution

• Sampling-based methods
 – randomised search through the parameter space
 – Markov chain Monte Carlo, Cross-Entropy and Particle Swarm

• Case study: network virus
Probabilistic models

- **Discrete–time Markov chains (DTMCs)**
 - discrete states + probability
 - for: randomisation, component failures, unreliable media

- **Markov decision processes (MDPs)**
 - discrete states + probability + nondeterminism
 - for: concurrency, control, under-specification, abstraction

- Stochastic multi-player games
- Continuous–time Markov chains (CTMCs)
- Probabilistic timed automata (PTAs)
- Labelled Markov processes (LMPs)
 - and many other variants…

this talk
Markov decision processes (MDPs)

- Useful for modelling e.g. distributed protocols with failure or randomisation

- An MDP is a tuple $M = (S, s_0, Act, P, L, r)$:
 - S is the state space
 - $s_0 \in S$ is the initial state
 - Act is finite set of actions
 - $P: S \times Act \times S \rightarrow [0,1]$ is the probability matrix
 - L is labelling with atomic propositions
 - $R: S \times Act \rightarrow \text{Real}_{\geq 0}$ is a reward structure

- such that
 - each row of P sums up to 0 or 1
 - for every state s, at least one a is enabled in s
Probabilistic model checking for MDPs

• To reason formally about MDPs, we use adversaries
 – an adversary σ resolves nondeterminism in a MDP M
 – also called “scheduler”, “strategy”, “policy”, ...
 – makes a (possibly randomised) choice, based on history
 – induces probability measure \Pr_M^σ over (infinite) paths

• Property specifications: probabilistic and expected reward
 – specify probabilistic property $P_{\geq p}[\phi]$ in PCTL, ϕ path property
 – $\Pr_M^\sigma(\phi)$ gives probability of ϕ under adversary σ
 – best-/worst-case analysis: quantify over all adversaries
 – e.g. $M \models P_{\geq p}[G \text{ “ok”}] \iff \Pr_M^\sigma(G \text{ “ok”}) \geq p$ for all σ
 – or just compute e.g. $\Pr_M^{\min}(\phi) = \inf \{ \Pr_M^\sigma(G \text{ “ok”}) \mid \sigma \in \text{Adv}_M \}$
 – efficient algorithms and tools exist
 – Reward properties involve computing expectations
Model repair: problem statement

- Assume we have an MDP...

- which does not satisfy a given property, e.g.
 \[M \not\models P_{\geq0.99}[G \text{ "ok"}] \]

- We wish to repair this model so that it does

- Solved for discrete-time Markov chains wrt reachability or expected accumulated rewards in [Bartocci et al 2011]
Main idea

- **Transform to a parametric MDP**
 - by adding parameters to each transition that we can modify

\[M_{\text{param}}(x, y) = \]

- **Find instantiations \(v \) of parameters such that**
 - \(M_{\text{param}}(v) \) satisfies property, ie \(M_{\text{param}}(v) \models P_{\geq 0.99}[G \text{ "ok"}] \), and
 - some objective function \(f(v) \) is minimal (repaired model is nearest wrt to some cost/distance measure)
 - e.g. \(f(x, y) = x^2 + y^2 \) (sum of squares)
Our contribution

- Unfortunately the methods developed for DTMCs do not transfer to MDPs
 - cannot guarantee existence of single rational function over parameters
- We extend model repair to general MDPs by approximating the solution
- Consider both probabilistic and reward properties
- Two complementary approaches implemented in PRISM
- Region–based approach
 - based on computing functions describing property depending on parameters using constraint programming
- Sampling–based optimisation
 - stochastic search through the parameter space
 - may yield a suboptimal solution but faster
Formally...

- **Given**
 - V set of variables, $\text{span}(V)$ set of linear expressions over V
 - PCTL formula ϕ
 - MDP $M = (S, s_0, \text{Act}, P, L, r)$ s.t. $M \models \phi$
 - $Z: S \times \text{Act} \times S \rightarrow \text{span}(V)$ transition repair matrix
 - $z: S \times \text{Act} \rightarrow \text{span}(V)$ reward repair matrix

- **Define parametric MDP** $M' = (S, s_0, \text{Act}, P+Z, L, r+z)$

- **The model repair problem** for MDP M, formula ϕ and polynomial g over variables V is to find evaluation $v: V \rightarrow \text{Real}$ satisfying
 - $v \in \text{arg min } g<v>$ (minimise cost)
 - v is a valid evaluation (yielding a valid MDP)
 - $M'<v> \models \phi$
Fast model repair

• Many practical situations demand fast parameter adaptation, typically at runtime, to guarantee some performance property, e.g.
 – self-adaptive systems
 – replacement of failed component in multiprocessor systems

• Fast model repair is defined, for b a real-valued bound, Q a penalty function, as finding an evaluation satisfying
 – $g(v) + Q(v) \leq b$ and
 – running time should be fast, trading off optimality

• The value of b is typically small to keep cost of repair sufficiently low though suboptimal
 – $b=0.0$ allowed but may result in slower repair
Region-based approach

• Building upon method developed earlier for parametric Markov processes in [Hahn, Han and Zhang 2011]
 – finding parameter values to guarantee satisfaction of a PCTL formula
 – assume parameter range, ie interval of values \([l, u]\)
 – allows working with hyper-rectangles

• Does not apply to model repair...
 – need to ensure probabilities are nonnegative
 – problem if repair matrix increases two transitions while decreasing another by the same amount
 – i.e. constraints are triangles

• Obtain approximate solution...
More on region-based approach

- Encode the validity of parameter valuations into the formula, ϕ_{valid}, and derive PMDP M' as before
- Repeatedly subdivide regions into those for which the property is valid, invalid and undecided
 - point $x_1=x_2=0$ is the original (unrepaired) model
- Use constraint solving to compute approximate ϵ-solution (fraction of the parameter space left undecided)
- Can evaluate repair cost g at vertices, then take minimum of those values to obtain lower bound
Sampling–based approach

- Three methods based on randomised search
- Work with the formulation, for bound b:
 - $g<v>+Q<v> \leq b$
- where
 - Q is a penalty function defined by
 - $Q<v>=0$ if $M'<v> \models \phi$ and otherwise some value δ
 - used to guide the search towards good valuations
- **Challenge**: we draw samples according to an unknown probability distribution
 - $pd(v) = e^{-\beta O(v)}$
 - where O is the objective function, β weighting factor
 - so need to adapt the three methods to this scenario
 - use threshold for maximum number of samples, terminate the procedure when good sample reached
Markov chain Monte Carlo

- Use the Metropolis–Hastings algorithm
- Generates a series of samples
 - linked in a Markov chain
 - each sample correlated only with the directly preceding sample
 - in the long run, the distribution matches the desired probability distribution pd
- Performs random walk about the sample space, sometimes accepting and sometimes not
Cross-Entropy method

- Starts from a family of distributions and attempts to find a distribution which is as close as possible to p_d
 - use Kullback–Leibler (KL) divergence measure

- Works as follows
 - partition the parameter space into cells, parameterised by probability that a point from cell is sampled
 - generate samples based on the candidate distribution
 - tilt the samples towards the new distribution, by minimising KL distance over samples
Particle swarm optimisation

- Based on movement of a bird flock
- Swarm of n particles
 - each with velocity, indicating where it is moving to
- Update the velocity vector by *randomised* combination of
 - direction to the best position of i-th particle, and
 - direction to best global particle position
- Terminate when norm of velocity smaller than ϵ
PRISM support

• Implemented both the region–based and sampling approaches in PRISM
 – ‘explicit’ engine, written in Java
 – region–based approach is a reimplementation of PARAM 2.0
 – sampling–based approaches are new implementation
 – to be included in a forthcoming release

• Input models specified as parametric PRISM models
 – parameters expressed as unevaluated constants
 – e.g. const double x;
 – repairable transition specified as 0.4 + x
 – general purpose, other types of usage

• Properties are given in PCTL, with parameter constants
 – new construct constfilter (min, x1*x2, prop)
 – filters over parameter values, rather than states
Case study: network virus

- **Parametric model of a network virus**
 - a grid of connected nodes
 - virus spawns/multiplies
 - once infected, virus repeatedly tries to spread to neighbouring nodes
 - there are ‘high’ and ‘low’ nodes, with barrier nodes from ‘high’ to ‘low’
 - choice of infection by virus probabilistic
 - choice of which node to infect nondeterministic

- **Property specification**
 - minimal expected number of attacks until infection of (1,1), starting from (N,N), is upper bounded by 20
 - probability of detection and of barrier nodes subject to repair by increasing p_{lhadd} and p_{baadd}
Case study: region–based methods

Plot of minimal expected number of attacks

Checking if minimal exp. number of attacks \(\geq 20 \)

Property \(\text{constfilter}(\min, \ldots, R\{\text{attacks}\} \geq 20 \ [F \text{ “inf–11”}] \)

Model has 809 states, \(\epsilon = 0.05 \)

Optimal value found in 2mins, showing repair values
Case study: sampling–based methods

- Need to work with the formulation $g<v> + Q<v> \leq b$
- Test two bounds, $b = 0.0$ and $b = 0.0225$
 - MCMC slower for bound $b = 0.0$, can be unstable for the larger bound
 - both CE and PSO are stable
 - PSO better performance
- Sampling methods have superior performance wrt region–based methods
 - all terminate within 20s, vs 2 mins for region–based
 - 200–500 samples
 - PSO mostly able to finish in 5s
- Hence, demonstrated practical applicability for online model repair
 - trading optimality for speed
Conclusions

• Formulated and proposed approximate solution to model repair for Markov decision processes
 – MDPs widely used to model network and security protocols, distributed systems with failure, etc
 – parametric models integrated within PRISM
 – full PCTL with the reward operator

• Demonstrated
 – sampling-based model repair feasible for runtime use
 – but scalability is still the biggest challenge

• Model repair for other probabilistic models
 – also adapted to Markov reward models, work in progress
 – incl. DTMCs and CTMCs (via discretisation)
Quantitative verification – Trends

• Being ‘younger’, generally lags behind conventional verification
 – much smaller model capacity
 – compositional reasoning in infancy
 – automation of model extraction/adaptation very limited

• Tool usage on the increase, in academic/industrial contexts
 – real-time verification/synthesis in embedded systems
 – probabilistic verification in security, reliability, performance

• Shift towards greater automation
 – specification mining, model extraction, synthesis, verification, ...

• But many challenges remain!
Future directions

• Many challenges remain
 – computational runtime steering, away from danger states, in addition to online model repair
 – effective model abstraction/reduction techniques
 – scalability of monolithic/runtime verification
 – approximate methods

• More challenges not covered in this lecture
 – correct–by–construction model synthesis from specifications
 – controller synthesis
 – more expressive models and logics
 – code generation
 – new application domains, …

• and more…
Acknowledgements

• My collaborators in this work
• Project funding
 – ERC, EPSRC LSCITS
 – Oxford Martin School, Institute for the Future of Computing
• See also
 – PRISM www.prismmodelchecker.org
 – VERIWARE www.veriware.org