

Parameter synthesis for probabilistic real-time systems

Marta Kwiatkowska

Department of Computer Science, University of Oxford

SynCoP 2015, London

Quantitative (probabilistic) verification

Historical perspective

- First algorithms proposed in 1980s
 - [Vardi, Courcoubetis, Yannakakis, ...]
 - algorithms [Hansson, Jonsson, de Alfaro] & first implementations
- 2000: tools ETMCC (MRMC) & PRISM released
 - PRISM: efficient extensions of symbolic model checking [Kwiatkowska, Norman, Parker, ...]
 - ETMCC (now MRMC): model checking for continuous-time Markov chains [Baier, Hermanns, Haverkort, Katoen, ...]
- Now mature area, of industrial relevance
 - successfully used by non-experts for many application domains,
 but full automation and good tool support essential
 - distributed algorithms, communication protocols, security protocols, biological systems, quantum cryptography, planning...
 - genuine flaws found and corrected in real-world systems

Quantitative probabilistic verification

What's involved

- specifying, extracting and building of quantitative models
- graph-based analysis: reachability + qualitative verification
- numerical solution, e.g. linear equations/linear programming
- simulation-based statistical model checking
- typically computationally more expensive than the nonquantitative case

The state of the art

- efficient techniques for a range of probabilistic real-time models
- feasible for models of up to 10^7 states (10^{10} with symbolic)
- abstraction refinement (CEGAR) methods
- multi-objective verification
- assume-guarantee compositional verification
- tool support exists and is widely used, e.g. PRISM, MRMC

Tool support: PRISM

- PRISM: Probabilistic symbolic model checker
 - developed at Birmingham/Oxford University, since 1999
 - free, open source software (GPL), runs on all major OSs
- Support for:
 - models: DTMCs, CTMCs, MDPs, PTAs, SMGs, ...
 - properties: PCTL/PCTL*, CSL, LTL, rPATL, costs/rewards, ...
- Features:
 - simple but flexible high-level modelling language
 - user interface: editors, simulator, experiments, graph plotting
 - multiple efficient model checking engines (e.g. symbolic)
- Many import/export options, tool connections
 - MRMC, INFAMY, DSD, Petri nets, Matlab, ...
- See: http://www.prismmodelchecker.org/

Quantitative verification in action

Bluetooth device discovery protocol

- frequency hopping, randomised delays
- low-level model in PRISM, based on detailed Bluetooth reference documentation
- numerical solution of 32 Markov chains,
 each approximately 3 billion states
- identified worst-case time to hear one message

FireWire root contention

- wired protocol, uses randomisation
- model checking using PRISM
- optimum probability of leader election by time T for various coin biases

Quantitative verification in action

- DNA transducer gate [Lakin et al, 2012]
 - DNA computing with a restricted class of DNA strand displacement structures
 - transducer design due to Cardelli
 - automatically found and fixed design error, using Microsoft's DSD and PRISM

- Microgrid demand management protocol [TACAS12,FMSD13]
 - designed for households to actively manage demand while accessing a variety of energy sources
 - found and fixed a flaw in the protocol, due to lack of punishment for selfish behaviour
 - implemented in PRISM-games

From verification to synthesis...

- Majority of research to date has focused on verification
 - scalability and performance of algorithms
 - extending expressiveness of models and logics
 - real-world case studies
- Automated verification aims to establish if a property holds for a given model
- What to do if quantitative verification fails?
 - counterexamples difficult to represent compactly
- Can we synthesise a model so that a property is satisfied?
 - difficult...
- Simpler variants of synthesis:
 - parameter synthesis
 - controller/strategy synthesis

Quantitative parameter synthesis

Parametric model checking in PRISM

- Parametric Markov chain models in PRISM
 - probabilistic parameters expressed as unevaluated constants
 - e.g. const double x;
 - transition probabilities are expressions over parameters,
 e.g. 0.4 + x
- Properties are given in PCTL, with parameter constants
 - new construct constfilter (min, x1*x2, phi)
 - filters over parameter values, rather than states
- Implemented in 'explicit' engine
 - returns mapping from parameter regions (e.g. [0.2,0.3],[-2,0])
 to rational functions over the parameters
 - filter properties used to find parameter values that optimise the function
 - reimplementation of PARAM 2.0 [Hahn et al]

This lecture...

- Parameter synthesis for probabilistic real-time systems
- The parameter synthesis problem we consider
 - given a parametric model and property φ
 - find the optimal parameter values, with respect to an objective function O, such that the property φ is satisfied, if such values exist
- Parameters: timing delays, rates
- Objectives: optimise probability, reward/volume

Overview

- 1. Timed automata: find optimal timing delays [EMSOFT2014]
 - solution: constraint solving, discretisation + sampling
- 2. Probabilistic timed automata: find delays to optimise probability [RP2014]
 - solution: parametric symbolic abstraction-refinement
- 3. Continuous-time Markov chains: find optimal rates [CMSB2014]
 - solution: constraint solving, uniformisation + sampling
- Focus on practical implementation and real-world applications

1. Optimal timing delays

- Models: networks of timed I/O automata
 - dense real-time
 - extend with parameters on guards
 - synchronise on matching input-output
 - no nondeterminism (add priority and urgency of output)
- Properties: Counting Metric Temporal Logic (CMTL)
 - linear-time, real-valued time bounds
 - event counting in an interval of time, reward weighting

$$\square^{[0,\tau]}(\#_0^\tau \mathtt{Vget} \geqslant B_1 \wedge \#_0^\tau \mathtt{Vget} \leqslant B_2)$$

$$1 \cdot \#_0^{\tau} AP + 2 \cdot \#_0^{\tau} VP \leqslant E$$

Implantable pacemaker

- How it works
 - reads electrical (action potential) signals through sensors placed in the right atrium and right ventricle
 - monitors the timing of heart beats and local electrical activity
 - generates artificial pacing signal as necessary
- Real-time system!
- Core specification by Boston Scientific
- Basic pacemaker can be modelled as a network of timed automata [Ziang et al]

Pacemaker timing cycle

Atrial and ventricular events

Quantitative verification for pacemakers

- Model the pacemaker and the heart as timed I/O automata
- Compose and verify

Quantitative verification for pacemakers

- Model the pacemaker and the heart as timed I/O automata
- Compose and verify

• Can we synthesise (controllable) timing delays to minimise energy, without compromising safety?

Property patterns: Counting MTL

$$\square^{[0,\tau]}(\#_0^\tau \mathsf{Vget} \geqslant B_1 \land \#_0^\tau \mathsf{Vget} \leqslant B_2)$$

Safety "for any 1 minute window, heart rate is in the interval [60,100]"

$$\rho = \overline{(q,z)} \xrightarrow{t_0} (q',z) \xrightarrow{t_1} (q,z)$$

$$\rho = (q, z) \xrightarrow{t_0} (q', z) \xrightarrow{t_1} (q, z)$$

$$\rho = (q, z) \xrightarrow{t_0} (q', z) \xrightarrow{t_1} (q, z)$$

$$\rho = (q, z) \xrightarrow{t_0} (q', z) \xrightarrow{t_1} (q, z)$$

Optimal timing delays problem

- The parameter synthesis problem solved is
 - given a parametric network of timed I/O automata, set of controllable and uncontrollable parameters, CMTL property φ and length of path n
 - find the optimal controllable parameter values, for any uncontrollable parameter values, with respect to an objective function O, such that the property φ is satisfied on paths of length n, if such values exist
- Consider family of objective functions
 - maximise volume, minimise energy
- Discretise parameters, assume bounded integer parameter space and path length
 - decidable but high complexity (high time constants)

Parameter synthesis

Parameter synthesis

safety

$$\square^{[0,\tau]}(\#_0^\tau \mathtt{Vget} \geqslant B_1 \wedge \#_0^\tau \mathtt{Vget} \leqslant B_2),$$

Our approach

- Constraints generation: all valuations that satisfy property
- Parameter optimisation: select best parameter values
- Sample the domain of the model parameter in order to generate a discrete path

Parameter sampling

Our approach

- Constraints generation: all valuations that satisfy property
- Parameter optimisation: select best parameter values
- Sample the domain of the model parameter in order to generate a discrete path
- For each sampled parameter:
 - generate the untimed path
 - generate all inequalities which satisfy the CMTL property
- Advantage: more behaviours can be covered
 - need high coverage, but also need to consider robustness

Constraints generation

Parameter synthesis algorithm

```
Require: Network \mathcal{N}, formula \varphi and path length n
Ensure: Formula \mathcal{S}
 1: Function Sat(\mathcal{N}, \varphi, n)
 2: \Gamma := \mathsf{Sample}(\Gamma)
 3: for \vartheta \in \overline{\Gamma} do
 4: if \vartheta \notin \mathcal{S} then
 5: \rho := \mathsf{Gen\_path}(\mathcal{N}, n, \vartheta)
 6: (S_{\rho}, \mathcal{T}) := Path\_Constr\_Gen(\mathcal{N}, \rho)
 7: S_{\varphi} := \mathsf{Constr\_Gen}(\rho, 0, \varphi, \mathcal{T})
 8: S := S \bigvee (S_{\rho} \bigwedge S_{\varphi})
 9: end if
10: end for
11: return S
```

Back to example...

$$\rho = (q, z)[2, 7](q', z)[4, -](q', z)$$

$$\varphi = \#_5^7 \mathsf{VP} \geqslant 1$$

false $(t_0 > 5)$

$$\rho = (q, z)[2, 7](q', z)[4, -](q', z)$$

$$\varphi = \#_5^7 \mathsf{VP} \geqslant 1$$

$(t_0 > 5)$	false
$(t_0 > 5) \land (t_0 + t_1 > 7 \land t_0 < 7)$	true

$$\rho = (q, z)[2, 7](q', z)[4, -](q', z)$$

$$\varphi = \#_5^7 \mathsf{VP} \geqslant 1$$

$(t_0 > 5)$	false
$(t_0 > 5) \land (t_0 + t_1 > 7 \land t_0 < 7)$	true
$(t_0 + t_1 > 5 \land t_0 < 5) \land (t_0 + t_1 > 7 \land t_0 < 7)$	false

$$\rho = (q, z)[2, 7](q', z)[4, -](q', z)$$
35

$$\varphi = \#_5^7 \mathsf{VP} \geqslant 1$$

$(t_0 > 5)$	false
$(t_0 > 5) \land (t_0 + t_1 > 7 \land t_0 < 7)$	true
$(t_0 + t_1 > 5 \land t_0 < 5) \land (t_0 + t_1 > 7 \land t_0 < 7)$	false

$$t_0 = \mathcal{T}[0,7] \text{ and } t_1 = \mathcal{T}[1,4]$$

$$\rho = (q, z)[2, 7](q', z)[4, -](q', z)$$
36

Parameter optimisation

$$\text{opt}_v := \underset{\vartheta_c \in \mathcal{V}(\Gamma_c)}{\operatorname{argsup}} \int \limits_{\vartheta_u \in \mathcal{V}(\Gamma_u), (\vartheta_c, \vartheta_u) \in \mathcal{S}} \mathit{Distr}_{\Gamma_u}(d\vartheta_u)$$

Robust objective function

$$B_{\epsilon}(\vartheta) = \{\vartheta' \in \mathcal{V}(\Gamma) \mid ||\vartheta' - \vartheta||_{\infty} \leqslant \epsilon\},\$$

$$\operatorname{opt}_r := \underset{\vartheta_c \in \mathcal{V}(\Gamma_c)}{\operatorname{argsup}} \left\{ \sup_{\epsilon} \left\{ \epsilon \mid \vartheta_u \in \mathcal{V}(\Gamma_u), B_{\epsilon}((\vartheta_c, \vartheta_u)) \subseteq \mathcal{S} \right\} \right\}$$

Robust objective function

- For each sample point (controllable and uncontrollable)
 - generate path, safety and energy constraints
 - take disjunction, conjuncted with parameter bounds

Pacemaker timed I/O automata model

Human heart timed I/O automata model

Results: maximal volume objective (PP)

Results: robust objective (PP)

2. Optimal probability timing delays

- Previously, no nondeterminism and no probability in the model considered
- Consider parametric probabilistic timed automata (PPTA),
 - e.g. guards of the form $x \le b$,
- can we synthesise optimal timing parameters to optimise the reachability probability?
- · Semi-algorithm
 - exploration of parametric symbolic states, i.e. location, time zone and parameter valuations
 - forward exploration only gives upper bounds on maximum probability (resp. lower for minimum)
 - but stochastic game abstraction yields the precise solution...
 - expected time challenging
- Implementation in progress

<u>Parameter Synthesis for Probabilistic Timed Automata Using Stochastic Games</u>. Jovanovic 43 and Kwiatkowska. In *Proc. 8th International Workshop on Reachability Problems (RP'14)*, 2014.

Example: parametric PTA

• Consider maximum probability of reaching I_2

-b = 0, 1: 0.957125

-b = 2, 3: 0:8775

-b = 4, 5: 0.65

-b > 6: 0

Example (MDP abstraction)

max probab of I_2

-b = 0, 1: 0.957125

-b = 2, 3: 0:8775

-b = 4, 5: 0.65

-b > 6: 0

3. Optimal rates

- Motivation: systems and synthetic biology
 - signalling pathways, gene regulation, epidemic models
 - DNA logic gates, DNA walker circuits
 - low molecular counts => stochastic dynamics
 - semantics given by continuous-time Markov chains (CTMCs)
- Uncertain kinetic parameters
 - limited knowledge of rate parameters
 - parameters affect behaviour and functionality of systems
 - NB safety-critical if used in biosensors...
- Can we find rate values so that a reliability property is satisfied?

<u>Precise Parameter Synthesis for Stochastic Biochemical Systems</u>. Ceska et al. In *Proc. 12th* ⁴⁶ *Conference on Computational Methods in Systems Biology (CMSB'14)*, 2014.

Optimal rates

- Models: continuous-time Markov chains
 - real-time, exponentially distributed delays
 - extend with rate parameters, bounded parameter space
 - no nondeterminism (add priority and urgency of output)
- CTMCs for biochemical reaction networks
 - state = vector of populations
 - transition rates given by rate parameters using rate functions
 - low degree polynomial functions (mass action kinetics, etc.)
- Properties: Continuous Stochastic Logic
 - time-bounded fragment, branching-time logic
 - probability and reward operators
 - example path formula $\phi = F^{[1000;1000]} 15 \le X \le 20$
 - Two variants: find rates so that the probability/reward of φ meets threshold (say 40%), or is optimised

Problem formulation

Parametric CTMC pCTMC

- transition rates depend on a set of variables K
- parametric rate matrix R^K (polynomials with variables in K)
- describes set of all instantiations C

Satisfaction function A

- let ϕ be a CSL path formula
- $-\Lambda(p)$ yields probability of φ being satisfied in states s of C
- analytical computation of Λ is intractable
- can be discontinuous due to nested probabilistic operators

Example: satisfaction function

$$\phi = F^{[1000,1000]}(X \ge 15 \land X \le 20)$$

$$k_1 \in [0.1, 0.3] \quad k_2 = 0.01 \quad s_0 = [X]_0 = 15$$

Satisfaction function

Max synthesis problem

For a given \mathcal{P} , ϕ and probability tolerance ϵ the problem is finding a partition $\{T, F\}$ of \mathcal{P} and probability bounds Λ^{\perp} , Λ^{\top} such that:

$$\mathbf{Q} \ \forall p \in T. \ \Lambda^{\perp} \leq \Lambda(p) \leq \Lambda^{\top}; \text{ and}$$

$$\exists p \in T. \ \forall p' \in F. \ \Lambda(p) > \Lambda(p').$$

Threshold synthesis

For a given \mathcal{P} , ϕ , probability threshold r and volume tolerance ε , the problem is finding a partition $\{T, U, F\}$ of \mathcal{P} such that

- \bullet $\forall p \in T$. $\Lambda(p) \geq r$; and
- ② $\forall p \in F$. $\Lambda(p) < r$; and
- vol $(U)/\text{vol}(\mathcal{P}) \le \varepsilon$ (vol(A) is the volume of A).

Solution approach

1. Method to compute safe approximations to min and max probabilities over a fixed parameter region

Iterative procedure, safe approximations computed for each subregion, same asymptotic complexity as transient analysis

Solution approach

- 1. Method to compute safe approximations to min and max probabilities over a fixed parameter region
- 2. Parameter space decomposition, improves accuracy

A is piecewise polynomial function, additional checks for jump discontinuities needed

Example: synthesis

- True if lower bound above *r*False if upper bound below *r*Undecided otherwise (to refine)
- False if upper bound below underapproximation of max prob M
- True otherwise (to refine)

Epidemic model: threshold synthesis

- probability of property ≥ 10%
- volume of undecided region ≤ 10% volume of the parameter space

$$S + I \xrightarrow{k_i} I + I$$
 Susceptible \rightarrow Infected $I \xrightarrow{k_r} R$ Infected \rightarrow Recovered

$$k_i k_r$$
 uncertain parameters

Epidemic model: max synthesis

$$S + I \xrightarrow{k_i} I + I$$
 Susceptible \rightarrow Infected $k_i k_r$ uncertain parameters $I \xrightarrow{k_r} R$ Infected \rightarrow Recovered

 $\begin{array}{ll} \textbf{Property:} & \varphi = (I>0)U^{[100,120]}(I=0) & \text{(infection lasts at least 100 time units and ends within 120 time units)} \end{array}$

Conclusions

- Formulated and proposed solutions to parameter synthesis problems for probabilistic real-time systems
 - parametric timing delays and rates
 - synthesise constraints or optimal parameters
 - variety of objectives

Techniques

- discretisation and integer parameters
- constraint solving, including parametric symbolic constraints
- iterative refinement to improve accuracy
- sampling to improve efficiency
- but scalability is still the biggest challenge

Implementation

using tool combination involving Z3, python, PRISM

Other work and future directions

- Many challenges remain
 - timed automata models with data
 - hybrid automata models
 - effective model combinations of techniques
 - parallelisation and approximate methods
 - model synthesis from specifications
- More work not covered in this lecture
 - controller synthesis from multiobjective specifications
 - compositional controller synthesis
 - controller synthesis using machine learning
 - code generation
 - new application domains, ...
- and more...

Acknowledgements

- My collaborators in this work
- Project funding
 - ERC, EPSRC LSCITS
 - Oxford Martin School, Institute for the Future of Computing
- See also
 - PRISM <u>www.prismmodelchecker.org</u>
 - **VERWARE** <u>www.veriware.org</u>