
Protocol analysis via probabilistic
model checking

Marta Kwiatkowska
School of Computer Science

www.cs.bham.ac.uk/~mzk
www.cs.bham.ac.uk/~dxp/prism

Stanford University, 15th Nov 2004

Overview
• Network protocols

– Probability - why needed, challenges

• Probabilistic model checking
– The models
– Specification languages
– What does it involve?
– The PRISM model checker

• Case studies
– Self-stabilising algorithms
– Bluetooth device discovery
– Contract signing

• Challenges for future

The future: ubiquitous computing

Mobile, wearable, wireless devices (WiFi, Bluetooth)
Ad hoc, dynamic, ubiquitous computing environment
Security, privacy, anonymity protection on the Internet
Self-configurable - no need for men/women in white coats!
Fast, responsive, power efficient, …

The Internet

Correct design
a challenge

for
formal methods?

Probability helps

• In distributed co-ordination algorithms
– As a symmetry breaker

• “leader election is eventually resolved with probability 1”
– In gossip-based routing and multicasting

• “the message will be delivered to all nodes with high probability”

• When modelling uncertainty in the environment
– To quantify failures, express soft deadlines, QoS

• “the chance of shutdown is at most 0.1%”
• “the probability of a frame delivered within 5ms is at least 0.91”

– To quantify environmental factors in decision support
• “the expected cost of reaching the goal is 100”

• When analysing system performance
– To quantify arrivals, service, etc, characteristics

• “in the long run, mean waiting time in a lift queue is 30 sec”

Probabilistic model checking…

Probabilistic
Model Checker

Probabilistic temporal
logic specification

send → P>0.9(◊deliver)

or

The probability
State 5: 0.6789
State 6: 0.9789
State 7: 1.0

…
State 12: 0
State 13: 0.1245

or

in a nutshell

Probabilistic model

0.4
0.3

Verification via model checking…

The model

Model Checker

Temporal logic specification

send → ◊deliver

or

Error trace
Line 5: …
Line 21: …
Line 15: …

…
Line 27: …
Line 45: ...

or falsification?

Also refinement checking, equivalence checking, …

Probabilistic model checking…

Probabilistic
Model Checker

Probabilistic temporal
logic specification

send → P¸ 0.9(◊deliver)

or

The probability
State 5: 0.6789
State 6: 0.9789
State 7: 1.0

…
State 12: 0
State 13: 0.1245

or

in a nutshell

Probabilistic model

0.4
0.3

Probability elsewhere
• In performance modelling

– Pioneered by Erlang, in telecommunications, ca 1910
– Models: typically continuous time Markov chains
– Emphasis on steady-state and transient probabilities

• In stochastic planning
– Cf Bellman equations, ca 1950s
– Models: Markov decision processes
– Emphasis on finding optimum policies

• Our focus, probabilistic model checking
– Distinctive, on automated verification for probabilistic systems
– Temporal logic specifications, automata-theoretic techniques
– Shared models
– Exchanging techniques with the other two areas

Probabilistic models: discrete time
• Labelled transition systems

– Discrete time steps
– Labelling with atomic propositions

• Probabilistic transitions
– Move to state with given probability
– Represented as discrete probability

distribution

• Model types
– Discrete time Markov chains (DTMCs):

probabilistic choice only

– Markov decision processes (MDPs):
probabilistic choice and nondeterminism

. . .

∑i pi = 1

p1
p2

pn

• Features:
– Only probabilistic choice

in each state

• Formally, (S,s0,P,L):
– S finite set of states
– s0 initial state
– P: S £ S ! [0,1] probability matrix, s.t. ∑s’ P(s,s’) = 1, all s
– L: S ! 2AP atomic propositions

• Unfold into infinite paths s0s1s2s3s4… s.t. P(si,si+1) > 0, all i

• Probability for finite paths, multiply along path
e.g. s0 s1 s1 s2 is 1 ¢ 0.01 ¢ 0.97 = 0.0097

Discrete-Time Markov Chains (DTMCs)

s2

s0

s3

s1

1

1

0.01

0.02

0.97

1

init try

fail

succ

• Intuitively:
– Sample space = infinite paths Paths from s
– Event = set of paths
– Basic event = cone

• Formally, (Paths, Ω, Pr)
– For finite path ω = ss1…sn, define probability

P(ω) =

– Take Ω least σ-algebra containing cones
C(ω) = { π 2 Paths | ω is prefix of π}

– Define Pr(C(ω)) = P(ω), all ω
– Pr extends uniquely to measure on Paths

Probability space

ss1s2…sk

1 if ω has length one
P(s,s1) ¢ … ¢ P(sn-1,sn) otherwise

• Features:
– Nondeterministic choice
– Parallel composition

of DTMCs

• Formally, (S,s0,Steps,L):
– S finite set of states
– s0 initial state
– Steps maps states s to sets of probability distributions μ over S
– L: S ! 2AP atomic propositions

• Unfold into infinite paths s0μ0s1 μ1s2μ2s3… s.t. μi(si,si+1) > 0, all i

• Probability space induced on Paths by adversary (policy) A
mapping finite path s0μ0s1μ1…sn to a distribution from state sn

Markov Decision Processes (MDPs)

s2

s0

s3

s1

1

0.02

0.98
init try

fail

succ1

1
1

The logic PCTL: syntax
• Probabilistic Computation Tree Logic [HJ94,BdA95,BK98]

– For DTMCs/MDPs
– New probabilistic operator, e.g. send → P¸ 0.9(◊deliver)

“whenever a message is sent, the probability that it is eventually
delivered is at least 0.9”

• The syntax of state and path formulas of PCTL is:

φ ::= true | a | φ Æ φ | :φ | P» p(α)
α ::= X φ | φ U φ

where p 2 [0,1] is a probability bound and » 2 { <, >, … }

• Subsumes the qualitative variants [Var85,CY95] P=1(α), P> 0(α)

• Extension with cost/rewards and expectation operator E» c(φ)

• Semantics is parameterised by a class of adversaries Adv
– “under any scheduling, the probability bound is true at state s”
– reasoning about worst-case/best-case scenario

• The probabilistic operator is a quantitative analogue of 8, 9

s ²Adv P» p(α) , PrA { π 2 PathA
s j π ²Adv α } » p

for all A 2 Adv

threshold level p
S

α-paths

The logic PCTL: semantics

< 1 - p

¸ p

• Semantics of state formulas:
s ²Adv a , a 2 L(s)
s ²Adv :φ , s ²Adv φ
s ²Adv φ1 Æ φ2 , s ²Adv φ1 and s ²Adv φ2

• Semantics of path formulas:
π ²Adv X φ , π = s0L and s1 ²Adv φ
π ²Adv φ1 U φ2 , π = s0L and 9 k s.t.

sk ²Adv φ2 and 8 j < k . sj ²Adv φ1

• The probabilistic operator:

s ²Adv P» p(α) , PrA { π 2 PathA
s j π ²Adv α } » p

for all A 2 Adv

PCTL semantics: summary

• By induction on structure of formula, as for CTL

• For the probabilistic operator and Until, solve
– recursive linear equation for DTMCs
– linear optimisation problem (form of Bellman equation) for MDPs
– typically iterative solution methods

• Need to combine
– conventional graph traversal
– numerical linear algebra and linear optimisation (value iteration)

• Qualitative properties (probability 1, 0) proceed by graph
traversal [Var85,dAKNP97]

The logic PCTL: model checking

• By induction on structure of formula
• For the probabilistic operator

– Sat(P» p(X φ)) , {s 2 S | ∑s’ 2 Sat(φ) P(s,s’) » p}

– Sat(P» p(φ1 U φ2)) , {s 2 S | xs » p}

where xs, s 2 S, are obtained from the recursive linear equation

0 if s 2 Sno

xs = 1 if s 2 Syes

∑s’ 2 S P(s,s’) ¢ xs’ if s 2 Sn(Sno [Syes)
and

Syes – states that satisfy φ1 U φ2 with probability exactly 1
Sno - states that satisfy φ1 U φ2 with probability exactly 0

PCTL model checking for DTMCs

• For the remaining formulas standard:

Sat(a) = L(a)
Sat(:φ) = S\Sat(φ)
Sat(φ1 Æ φ2) = Sat(φ1) \ Sat(φ2)

• Syes, Sno can be precomputed by graph traversal [Var85] (or
BDD fixed point computation)

• Need to combine
– Conventional graph-theoretic traversal
– Numerical linear algebra

PCTL model checking for DTMCs

• Syes, Sno can also be precomputed by graph traversal (BDD
fixed point) [dAKNP97]

• The linear equation generalises to linear optimisation
problems solvable iteratively, e.g.

Sat(P¸ p(φ1 U φ2)) , {s 2 S | xs ¸ p}

0 if s 2 Sno

xs = 1 if s 2 Syes

minμ 2 Steps(s) ∑s’ 2 S μ(s’) ¢ xs’ if s 2 Sn(Sno [Syes)

• Need to combine
– Conventional graph-theoretic traversal
– Linear optimisation (simplified value iteration)

PCTL model checking for MDPs

Probabilistic models: continuous
• Assumptions on time and probability

– Continuous passage of time
– Continuous randomly distributed

delays
– Continuous space

• Model types
– Continuous time Markov chains

(CTMCs): exponentially distributed
delays, discrete space, no
nondeterminism

– Probabilistic Timed Automata
(PTAs): dense time, (usually) discrete
probability, admit nondeterminism

– (not considered) Labelled Markov
Processes (LMPs): continuous
space/time, no nondeterminism

time

s0
+1 f(x)dx = 1

Continuous Time Markov Chains (CTMCs)
• Features:

– Discrete states and
real time

– Exponentially
distributed random delays

• Formally:
– Set of states S plus rates R(s,s’) > 0 of moving from s to s’
– Probability of moving from s to s’ by time t > 0 is 1 - e-R(s,s’)¢ t

– Transition rate matrix S £ S ! R¸0

• Unfold into infinite paths s0t0s1t1s2t2s3…
– probs (s’), probability of being in s’ in the long-run, starting in s
– probs (s’,t), probability of being in s’ at time instant t

• But: no nondeterminism

empty full

1

33

44 4

3

2 30

Time, clocks and zones
• Dense real-time, t 2 R¸0

• Clocks take values from time domain R¸0
– Increase at the same rate as real time
– Assume finite set X of clocks, maximum const kmax
– If n clocks, v,v’ 2 Rn

¸0 are clock valuations
– v+t is time increment, v[X:=0] clock reset of all clocks in X 2 X

• Zones of X, for x,y 2 X, c 2 N

ζ ::= x ~ c j x-y ~ c j ζ Æ ζ j ζ Ç ζ j : ζ

– Consider only in canonical form
– Closed, diagonal-free if do not feature x < c, x > c, x-y ~ c
– Convex, or non-convex (cf [Tripakis98])

Probabilistic Timed Automata: syntax
• Features:

– Clocks, x, real-valued
– Can be reset,

e.g. {x:=0}
– Invariants, e.g. x·8
– Probabilistic transitions,

guarded e.g. x¸4, x=8

• Formally, (Loc,s0,Inv,prob,Act,L):
– Loc finite set of locations
– s0 initial location
– Inv maps locations s to invariant clock constraints
– prob probabilistic edge relation that yields the probability of

moving from s to s’ if enabled at s, resetting specified clocks
– Act action labelling of transitions μ (probability distribution)
– L: S ! 2AP atomic propositions

0.01

0.99

send wait

fail

{x:=0} x=8

x¸4

true

x≤8true
1

waited

transmit

Probabilistic model checking in practice
• Model construction: probability matrices

– Enumerative
• Manipulation of individual states
• Size of state space main limitation

– Symbolic
• Manipulation of sets of states
• Compact representation possible in case of regularity

• Temporal logic model checking: currently limited to
– discrete probability/space models
– CTMCs
– Simulation admits more general distributions

• Probabilistic Symbolic Model Checker PRISM

The PRISM tool: overview
• Functionality

– Direct support for models: DTMCs, MDPs and CTMCs
– Extension with costs/rewards, expectation operator
– PTAs with digital clocks by manual translation
– Connection from KRONOS to PRISM for PTAs
– Experimental implementation using DBMs/DDDs for PTAs

• Input languages
– System description

• probabilistic extension of reactive modules [Alur and Henzinger]
– Probabilistic temporal logics: PCTL and CSL

• Implementation
– Symbolic model construction (MTBDDs), uses CUDD [Somenzi]
– Three numerical computation engines
– Written in Java and C++

The PRISM tool: implementation
• Numerical engines

– Symbolic, MTBDD based
• Fast construction, reachability analysis
• Very large models if regularity

– Enumerative, sparse-matrix based
• Generally fast numerical computation
• Model size up to millions

– Hybrid
• Speed comparable to sparse matrices for numerical calculations
• Limited by size of vector

• Experimental results
– Several large scale examples: 1010 - 1030 states
– No engine wins overall
– See www.cs.bham.ac.uk/~dxp/prism

PRISM real-world case studies
• MDPs/DTMCs

– Bluetooth device discovery [ISOLA’04]
– Crowds anonymity protocol (by Shmatikov) [JCS 2004]
– Randomised consensus [CAV’01]
– Randomised Byzantine Agreement [FORTE’02]
– NAND multiplexing for nanotechnology (with Shukla) [VLSI’04]
– Self-stabilising protocols

• CTMCs
– Dynamic Power Management (with Shukla and Gupta) [HLDVT’02]
– Dependability of embedded controller [INCOM’04]

• PTAs
– IPv4 Zeroconf dynamic configuration [FORMATS’03]
– Root contention in IEEE 1394 FireWire [FAC 2003, STTT 2004]
– IEEE 802.11 (WiFi) Wireless LAN MAC protocol [PROBMIV’02]

Case Study: Self-Stabilization
• Self-stabilizing protocol for a network of processes

– starts from possibly illegal start state
– returns to a legal (stable) state

• without any outside intervention
• within some finite number of steps

• Network: synchronous or asynchronous ring of N processes
– Illegal states: more than on process is privileged (has a token)
– Stable states: exactly one process is privileged (has a token)
– Properties

• From any state, a stable state is reached with probability 1
• Expected time to reach a stable state

Herman’s self-stabilising protocol
• Synchronous ring of N (N odd) processes (DTMC)

– Each process has a local boolean variable xi
– Token in place i if xi=xi+1
– Basic step of process i:

• if xi = xi+1 make a uniform random choice as to the next value of xi
• otherwise set xi to the current value of xi+1

– In the PRISM language:
module process1

x1 : bool;
[step] x1=x2 -> 0.5 : x1’=0 + 0.5 : x1’=1;
[step] !(x1=x2) -> x1’=x2;

endmodule

module process2 = process1 [x1=x2, x2=x3] endmodule
M M

module processN = process1 [x1=xN, x2=x1] endmodule

Results: Herman’s protocol
• P¸ 1 (◊stable): min probability of reaching a stable state is 1
• E· ? (stable): max expected time (number of steps) to reach a

stable state, assuming the probability is 1, is:

0
10
20
30
40
50
60
70

3 5 7 9 11 13 15 17 19 21

number of processes

Israeli-Jalfon’s self-stabilising protocol
• Asynchronous ring of N processes (MDP)
• Each process has a local boolean variable qi

– token in place i if qi=true
– process is active if and only if has a token
– Basic step of (active) process: uniform random choice as to

whether to move the token to the left or right

– In the PRISM language:

global q1 : [0..1]; … global qN : [0..1];
module process1

s1 : bool; // dummy variable
[] (q1=1) -> 0.5 : (q1'=0) & (qN'=1) + 0.5 : (q1'=0) & (q2'=1);

endmodule

module process2 = process1 [s1=s2, q1=q2, q2=q3 , qN=q1] endmodule
M M

module processN = process1 [s1=sN, q1=qN, q2=q1 , qN=qN-1] endmodule

Results: Israeli-Jalfon’s protocol
• P¸ 1 (◊stable): min probability of reaching a stable state is 1
• E· ? (stable): max expected time (number of steps) to reach a

stable state, assuming the probability is 1, is:

0
20
40
60
80

100
120
140
160
180
200
220

3 5 7 9 11 13 15 17 19 21

number of processes

Beauquier, Gradinariu and Johnen’s
self-stabilising protocol

• Asynchronous ring of N (N odd) processes (MDP)
– Each process has two boolean variables: di and pi where:

• if di=di-1 process i is said to have a deterministic token
• if pi=pi-1 process i is said to have a probabilistic token
• stable states are those where there is only one probabilistic token
• process is active if and only if has a deterministic token

– Basic step of (active) process i:
• negate di and if pi=pi-1, then set pi uniformly at random

– In the PRISM language:

module process1
d1 : bool; p1 : bool;
[] d1=d3 & p1=p3 -> 0.5 : (d1'=!d1) & (p1'=p1) + 0.5 : (d1'=!d1) & (p1'=!p1);
[] d1=d3 & !p1=p3 -> (d1'=!d1);

endmodule

module process2 = process1 [d1=d2, d2=d3, p1=p2, p2=p3] endmodule
M M

module processN = process1 [d1=dN, d2=d1, p1=pN, p2=p1] endmodule

Results: Beauquier, Gradinariu and
Johnen’s protocol

• P¸ 1 (◊stable): min probability of reaching a stable state is 1
• E· ? (stable): max expected time (number of steps) to reach a

stable state, assuming the probability is 1, is:

0
20
40
60
80

100
120
140
160

3 5 7 9 11

number of processes

Case Study: Bluetooth protocol
• Short-range low-power wireless protocol

– Personal Area Networks (PANs)
– Open standard, versions 1.1 and 1.2
– Widely available in phones, PDAs, laptops, …

• Uses frequency hopping scheme
– To avoid interference (uses unregulated 2.4GHz band)
– Pseudo-random frequency selection over 32 of 79 frequencies
– Inquirer hops faster
– Must synchronise hopping frequencies

• Network formation
– Piconets (1 master, up to 7 slaves)
– Self-configuring: devices discover themselves
– Master-slave roles

States of a Bluetooth device

• Master looks for device, slave listens for master
• Standby: default operational state
• Inquiry: device discovery
• Page: establishes connection
• Connected: device ready to communicate in a piconet

Why focus on device discovery?
• Performance of device discovery crucial

– No communication before initialisation
– First mandatory step: device discovery

• Device discovery
– Exchanges information about slave clock times, which can

be used in later stages
– Has considerably higher power consumption
– Determines the speed of piconet formation

Frequency hopping

• Clock CLK, 28 bit free-running, ticks every 312.5μs
• Inquiring device (master) broadcasts inquiry packets on two

consecutive frequencies, then listens on the same two (plus
margin)

• Potential slaves want to be discovered, scan for messages
• Frequency sequence determined by formula, dependent on

bits of clock CLK (k defined on next slide):

freq = [CLK16-12+k+ (CLK4-2,0-CLK16-12) mod 16] mod 32

Frequency hopping sequence

freq = [CLK16-12+k+ (CLK4-2,0-
CLK16-12) mod 16] mod 32

• Two trains (=lines)
• k is offset that

determines which train
• Swaps between trains

every 2.56 sec
• Each line repeated 128

times

Sending and receiving in Bluetooth

• Sender: broadcasts inquiry packets, sending according to the
frequency hopping sequence, then listens, and repeats

• Receiver: follows the frequency hopping sequence, own clock

• Listens continuously on one frequency
• If hears message sent by the sender, then replies on the

same frequency
• Random wait to avoid collision if two receivers hear on same

frequency

Bluetooth modelling
• Very complex interaction

– Genuine randomness, probabilistic modelling essential
– Devices make contact only if listen on the right frequency at

the right time!
– Sleep/scan periods unbreakable, much longer than listening
– Cannot scale constants (approximate results)
– Cannot omit subactivities, otherwise oversimplification

• Huge model, even for one sender and one receiver!
– Initial configurations dependent on 28 bit clock
– Cannot fix start state of receiver, clock value could be

arbitrary
– 17,179,869,184 possible initial states

• But is a realistic future ubiquitous computing scenario!

What about other approaches?
• Indeed, others have tried…

– network simulation tools (BlueHoc)
– analytical approaches

• But
– simulations obtain averaged results, in contrast to best/worst

case analysis performed here
– analytical approaches require simplifications to the model
– it is easy to make incorrect probabilistic assumptions, as we can

demonstrate

• There is a case for all types of analyses, or their
combinations…

Lessons learnt…
• Must optimise/reduce model

– Assume negligible clock drift
– Discrete time, obtain a DTMC
– Manual abstractions, combine transitions, etc
– Divide into 32 separate cases
– Success (exhaustive analysis) with one/two replies

• Observations
– Work with realistic constants, as in the standard
– Analyse v1.2 and 1.1, confirm 1.1 slower
– Show best/worst case values, can pinpoint scenarios

which give rise to them
– Also obtain power consumption analysis

Time to hear 1 reply

• Max time to hear is 2.5716sec, in 921,600 possible initial
states, (Min 635μs)

• Cumulative: assume uniform distribution on states when
receiver first starts to listen

Time to hear 2 replies

• Max time to hear is 5.177sec (16,565 slots), in 444 possible
initial states

• Cumulative (derived): assumes time to reply to 2nd message is
independent of time to reply to 1st (incorrect, compare with
exact curve obtained from model checking)

Case Study: Contract Signing

• Two parties want to agree on a contract
• Each will sign if the other will sign

– Cannot trust other party in the protocol
– There may be a trusted third party (judge), but it should

only be used if something goes wrong

• Contract signing with pen and paper
– Sit down and write signatures simultaneously

• Contract signing on the Internet
– Challenge: how to exchange commitments on an

asynchronous network?

Contract Signing
Partial secret exchange protocol of Even, Goldreich and Lempel

(1985) for two parties (A and B)

• A (B) holds secrets a1,…,a2n (b1,…,b2n)
– Secret is a binary string of length l
– Secrets partitioned into pairs:

{(ai, an+i) | i=1,…,n} and {(bi, bn+i) | i=1,…,n}
– A (B) committed if B (A) knows one of A’s (B’s) pairs

• Uses 1-out-of-2 oblivious transfer protocol: OT(S,R,x,y)
– S sends x and y to R
– R receives x with probability ½ otherwise receives y
– S does not know which one R receives
– if S cheats then R can detect this with probability ½

Contract Signing
(step 1)
for i=1,…,n

OT(A,B, ai, an+i)
OT(B,A bi, bn+i)

end
(step 2)
for i=1,…,l (l is the bit length of the secrets)

for j=1,…,2n
A transmits bit i of secret aj to B

end
for j=1,…,2n

B transmits bit i of secret bj to A
end

end

Results: Contract Signing
• Discovered a weakness in the protocol when party B is

allowed to act maliciously by quitting the protocol early
– this behaviour not considered in the original analysis

• PRISM analysis shows:
– if B stops participating in the protocol as soon as he/she has

obtained at least one of A pairs, then, with probability 1, at this
point:

• B possesses a pair of A’s secrets
• A does not have complete knowledge of any pair of B’s

secrets

• Protocol is therefore not fair under this attack:
– B has a distinct advantage over A

• The protocol is unfair because in step 2: A sends a bit for
each of its secret before B does.

• Can we make this protocol fair by changing the message
sequence scheme?

• Since the protocol is asynchronous the best we can hope for
is with probability ½ B (or A) gains this advantage

• We consider 3 possible alternate message sequence
schemes…

Results: Contract Signing

Contract Signing: EGL2

(step1)
…

(step2)
for i=1,…,l

for j=1,…,n A transmits bit i of secret aj to B
for j=1,…,n B transmits bit i of secret bj to A

end
for i=1,…,l

for j=n+1,…,2n A transmits bit i of secret aj to B
for j=n+1,…,2n B transmits bit i of secret bj to A

end

Contract Signing: EGL3

(step1)
…

(step2)
for i=1,…,l for j=1,…,n

A transmits bit i of secret aj to B
B transmits bit i of secret bj to A

end
for i=1,…,l for j=n+1,…,2n

A transmits bit i of secret aj to B
B transmits bit i of secret bj to A

end

Contract Signing: EGL4
(step1)

…
(step2)
for i=1,…,l

A transmits bit i of secret a1 to B
for j=1,…,n B transmits bit i of secret bj to A
for j=2,…,n A transmits bit i of secret aj to B

end
for i=1,…,l

A transmits bit i of secret an+1 to B
for j=n+1,…,2n B transmits bit i of secret bj to A
for j=n+2,…,2n A transmits bit i of secret aj to B

end

Results: Contract Signing
• Probability the other party gains knowledge first

– The chance that the protocol is unfair

A solid line
B dashed line

Results: Contract Signing
• Expected bits a party requires to know a pair once the

other knows a pair
– quantifies how unfair the protocol is

A solid line
B dashed line

Results: Contract Signing
• Expected messages a party must receive to know a pair

once the other knows a pair
– measures the influence the other party has on the fairness,

since it can try and delay these messages

A solid line
B dashed line

Results: Contract Signing
• Expected messages that need to be sent for a party to

know a pair once the other party knows a pair
– measures the duration of unfairness

A solid line
B dashed line

Results: Contract Signing
• Results show EGL4 is the ‘fairest’ protocol
• Except for duration of fairness measure:

Expected messages that need to be sent for a party to
know a pair once the other party knows a pair
– this value is larger for B than for A
– and, in fact, as n increases, this measure:

• increases for B
• decreases for A

• Solution: if a party sends a sequence of bits in a
row (without the other party sending messages in
between), require that the party send these bits
as as a single message

Results: Contract Signing
• Expected messages that need to be sent for a party to

know a pair once the other party knows a pair
– measures the duration of unfairness

A solid line
B dashed line

Related projects
• FORWARD (this case study, see ISOLA’04)

– Performance modelling of MAC layer of Bluetooth
– Security analysis of Bluetooth

• Modelling and verification of mobile ad hoc network
protocols
– Modelling language with mobility and randomisation
– Model checking algorithms & techniques
– Tool development & implementation
– Modelling timing properties of AODV

• Focus on properties
– “probability of delivery within time deadline is …”
– “expected time to device discovery is …”
– “expected power consumption is …”

Challenges for future
• Exploiting structure

– Abstraction, data reduction, compositionality…
– Parametric probabilistic verification?

• Proof assistant for probabilistic verification
• Extension for mobility
• Extension for hybrid systems
• Simulation, statistical testing [Younes]
• Approximation methods
• Continuous PTAs

– Efficient model checking methods?
• More expressive specifications

– Probabilistic LTL/PCTL*/mu-calculus?
• Real software, not models!

For more information…

www.cs.bham.ac.uk/~dxp/prism/
• Case studies, statistics, group publications
• Download, version 2.0 (approx. 1000 users)
• Publications by others and courses that

feature PRISM…

J. Rutten, M. Kwiatkowska, G. Norman and
D. Parker
Mathematical Techniques for Analyzing
Concurrent and Probabilistic Systems
P. Panangaden and F. van Breugel (editors),
CRM Monograph Series, vol. 23, AMS
March 2004

http://www.ams.org/bookstore?fn=20&arg1=crmmseries&item=CRMM-23
http://www.cs.bham.ac.uk/~dxp/prism/

PRISM Contributors

	Protocol analysis via probabilistic model checking
	Overview
	The future: ubiquitous computing
	Probability helps
	Probabilistic model checking…
	Verification via model checking…
	Probabilistic model checking…
	Probability elsewhere
	Probabilistic models: discrete time
	Discrete-Time Markov Chains (DTMCs)
	Probability space
	Markov Decision Processes (MDPs)
	The logic PCTL: syntax
	The logic PCTL: semantics
	PCTL semantics: summary
	The logic PCTL: model checking
	PCTL model checking for DTMCs
	PCTL model checking for DTMCs
	PCTL model checking for MDPs
	Probabilistic models: continuous
	Continuous Time Markov Chains (CTMCs)
	Time, clocks and zones
	Probabilistic Timed Automata: syntax
	Probabilistic model checking in practice
	The PRISM tool: overview
	The PRISM tool: implementation
	PRISM real-world case studies
	Case Study: Self-Stabilization
	Herman’s self-stabilising protocol
	Results: Herman’s protocol
	Israeli-Jalfon’s self-stabilising protocol
	Results: Israeli-Jalfon’s protocol
	Beauquier, Gradinariu and Johnen’s self-stabilising protocol
	Results: Beauquier, Gradinariu and Johnen’s protocol
	Case Study: Bluetooth protocol
	States of a Bluetooth device
	Why focus on device discovery?
	Frequency hopping
	Frequency hopping sequence
	Sending and receiving in Bluetooth
	Bluetooth modelling
	What about other approaches?
	Lessons learnt…
	Time to hear 1 reply
	Time to hear 2 replies
	Case Study: Contract Signing
	Contract Signing
	Contract Signing
	Results: Contract Signing
	Results: Contract Signing
	Contract Signing: EGL2
	Contract Signing: EGL3
	Contract Signing: EGL4
	Results: Contract Signing
	Results: Contract Signing
	Results: Contract Signing
	Results: Contract Signing
	Results: Contract Signing
	Results: Contract Signing
	Related projects
	Challenges for future
	For more information…
	PRISM Contributors

