Protocol analysis via probabilistic model checking

Marta Kwiatkowska
School of Computer Science

www.cs.bham.ac.uk/~mzk
www.cs.bham.ac.uk/~dxp/prism

Stanford University, 15th Nov 2004
Overview

- Network protocols
 - Probability - why needed, challenges

- Probabilistic model checking
 - The models
 - Specification languages
 - What does it involve?
 - The PRISM model checker

- Case studies
 - Self-stabilising algorithms
 - Bluetooth device discovery
 - Contract signing

- Challenges for future
The future: ubiquitous computing

Mobile, wearable, wireless devices (WiFi, Bluetooth)
Ad hoc, dynamic, ubiquitous computing environment
Security, privacy, anonymity protection on the Internet
Self-configurable - no need for men/women in white coats!
Fast, responsive, power efficient, ...

Correct design a challenge for formal methods?
Probability helps

- **In distributed co-ordination algorithms**
 - As a symmetry breaker
 - "leader election is eventually resolved with probability 1"
 - In gossip-based routing and multicasting
 - "the message will be delivered to all nodes with high probability"

- **When modelling uncertainty in the environment**
 - To quantify failures, express soft deadlines, QoS
 - "the chance of shutdown is at most 0.1%"
 - "the probability of a frame delivered within 5ms is at least 0.91"
 - To quantify environmental factors in decision support
 - "the expected cost of reaching the goal is 100"

- **When analysing system performance**
 - To quantify arrivals, service, etc, characteristics
 - "in the long run, mean waiting time in a lift queue is 30 sec"
Probabilistic model checking...

in a nutshell

- **Probabilistic model**
- **Probabilistic Model Checker**

Send → P_{>0.9}(◊deliver)

Probabilistic temporal logic specification

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.6789</td>
</tr>
<tr>
<td>6</td>
<td>0.9789</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.1245</td>
</tr>
</tbody>
</table>
Verification via model checking…

or falsification?

The model

Model Checker

send \rightarrow \diamond deliver

Temporal logic specification

Also refinement checking, equivalence checking, …
Probabilistic model checking...

Probabilistic model

Probabilistic temporal logic specification

send → P_{0.9}(◊deliver)

Probabilistic model checker

in a nutshell

or

The probability

\[
\begin{align*}
\text{State 1: } & 0.1245 \\
\text{State 5: } & 0.6789 \\
\text{State 6: } & 0.9789 \\
\text{State 7: } & 1.0 \\
\text{...} & \\
\text{State 12: } & 0 \\
\text{State 13: } & 0.1245
\end{align*}
\]
Probability elsewhere

• In performance modelling
 - Pioneered by Erlang, in telecommunications, ca 1910
 - Models: typically continuous time Markov chains
 - Emphasis on steady-state and transient probabilities

• In stochastic planning
 - Cf Bellman equations, ca 1950s
 - Models: Markov decision processes
 - Emphasis on finding optimum policies

• Our focus, probabilistic model checking
 - Distinctive, on automated verification for probabilistic systems
 - Temporal logic specifications, automata-theoretic techniques
 - Shared models
 - Exchanging techniques with the other two areas
Probabilistic models: discrete time

- **Labelled transition systems**
 - Discrete time steps
 - Labelling with atomic propositions

- **Probabilistic transitions**
 - Move to state with given probability
 - Represented as discrete probability distribution

- **Model types**
 - Discrete time Markov chains (DTMCs): probabilistic choice only
 - Markov decision processes (MDPs): probabilistic choice and nondeterminism

\[\sum_{i} p_i = 1 \]
Discrete-Time Markov Chains (DTMCs)

- Features:
 - Only probabilistic choice in each state

- Formally, \((S,s_0,P,L)\):
 - \(S\) finite set of states
 - \(s_0\) initial state
 - \(P: S \times S \rightarrow [0,1]\) probability matrix, s.t. \(\sum_{s'} P(s,s') = 1\), all \(s\)
 - \(L: S \rightarrow 2^{AP}\) atomic propositions

- Unfold into infinite paths \(s_0s_1s_2s_3s_4\ldots\) s.t. \(P(s_i,s_{i+1}) > 0\), all \(i\)

- Probability for finite paths, multiply along path
 e.g. \(s_0s_1s_1s_2\) is \(1 \cdot 0.01 \cdot 0.97 = 0.0097\)
• Intuitively:
 - **Sample space** = infinite paths \(\text{Path}_s \) from \(s \)
 - **Event** = set of paths
 - **Basic event** = cone

• Formally, \((\text{Path}_s, \Omega, \Pr)\)
 - For finite path \(\omega = s_1 s_2 \ldots s_n \), define probability

 \[
 P(\omega) = \begin{cases}
 1 & \text{if } \omega \text{ has length one} \\
 P(s, s_1) \cap \ldots \cap P(s_{n-1}, s_n) & \text{otherwise}
 \end{cases}
 \]

 - Take \(\Omega \) least \(\sigma \)-algebra containing cones

 \[
 C(\omega) = \{ \pi \mid 2 \text{ Path}_s \mid \omega \text{ is prefix of } \pi \}
 \]

 - Define \(\Pr(C(\omega)) = P(\omega) \), all \(\omega \)
 - \(\Pr \) extends uniquely to measure on \(\text{Path}_s \)
Markov Decision Processes (MDPs)

- Features:
 - Nondeterministic choice
 - Parallel composition of DTMCs

- Formally, \((S, s_0, \text{Steps}, L)\):
 - \(S\) finite set of states
 - \(s_0\) initial state
 - \(\text{Steps}\) maps states \(s\) to sets of probability distributions \(\mu\) over \(S\)
 - \(L\): \(S \rightarrow 2^{\text{AP}}\) atomic propositions

- Unfold into infinite paths \(s_0 \mu_0 s_1 \mu_1 s_2 \mu_2 s_3 \ldots\) s.t. \(\mu_i(s_i, s_{i+1}) > 0\), all \(i\)

- Probability space induced on \(\text{Paths}_s\) by adversary (policy) \(A\) mapping finite path \(s_0 \mu_0 s_1 \mu_1 \ldots s_n\) to a distribution from state \(s_n\)
The logic PCTL: syntax

- **Probabilistic Computation Tree Logic** [HJ94,BdA95,BK98]
 - For DTMCs/MDPs
 - New probabilistic operator, e.g. send → P_{0.9}(◊deliver)
 “whenever a message is sent, the probability that it is eventually delivered is at least 0.9”

- The syntax of state and path formulas of PCTL is:

 \[\phi ::= \text{true} | a | \phi \land \phi | :\phi | P_{p}(\alpha) \]
 \[\alpha ::= X\phi | \phi U \phi \]

 where \(p \in [0,1] \) is a probability bound and \(\llbracket \llbracket <, >, \ldots \rrbracket \rrbracket \)

- Subsumes the qualitative variants [Var85,CY95] \(P_{\geq1}(\alpha), P_{>0}(\alpha) \)

- Extension with cost/rewards and expectation operator \(E_{c}(\phi) \)
The logic PCTL: semantics

• Semantics is parameterised by a class of adversaries Adv
 - “under any scheduling, the probability bound is true at state s”
 - reasoning about worst-case/best-case scenario

• The probabilistic operator is a quantitative analogue of \(8, 9\)

\[
\begin{align*}
S_{Adv}^2 \mathcal{P} \gg_p \alpha, \quad & \Pr^A \{ \pi \; 2 \; \text{Path}^A_s \; j \; \pi_{Adv}^2 \alpha \} \gg_p \\
& \text{for all } A \in \text{Adv}
\end{align*}
\]
PCTL semantics: summary

- Semantics of state formulas:
 \[s^{2}_{\text{Adv}} a, \quad a 2 L(s) \]
 \[s^{2}_{\text{Adv}} :\phi, \quad s^{2}_{\text{Adv}} \phi \]
 \[s^{2}_{\text{Adv}} \phi_{1} \land \phi_{2}, \quad s^{2}_{\text{Adv}} \phi_{1} \land s^{2}_{\text{Adv}} \phi_{2} \]

- Semantics of path formulas:
 \[\pi^{2}_{\text{Adv}} X \phi, \quad \pi = s_{0} \cdots \text{ and } s_{1}^{2}_{\text{Adv}} \phi \]
 \[\pi^{2}_{\text{Adv}} \phi_{1} \lor \phi_{2}, \quad \pi = s_{0} \cdots \text{ and } 9 \text{ k s.t. } s_{k}^{2}_{\text{Adv}} \phi_{2} \text{ and } 8 \text{ j < k . } s_{j}^{2}_{\text{Adv}} \phi_{1} \]

- The probabilistic operator:
 \[s^{2}_{\text{Adv}} P_{p} (\alpha), \quad \text{Pr}^{A} \{ \pi 2 \text{ Path}^{A} s_{j}^{2}_{\text{Adv}} \alpha \} \rightarrow p \]
 for all \(A 2 \text{ Adv} \)
The logic PCTL: model checking

- By induction on structure of formula, as for CTL

- For the probabilistic operator and Until, solve
 - recursive linear equation for DTMCs
 - linear optimisation problem (form of Bellman equation) for MDPs
 - typically iterative solution methods

- Need to combine
 - conventional graph traversal
 - numerical linear algebra and linear optimisation (value iteration)

- Qualitative properties (probability 1, 0) proceed by graph traversal [Var85,dAKNP97]
PCTL model checking for DTMCs

- By induction on structure of formula
- For the probabilistic operator
 - \(\text{Sat}(P » p(\mathbf{X} \phi)) \), \(\{ s \in S | \sum_{s' \in S} \text{Sat}(\phi) P(s,s') » p \} \)
 - \(\text{Sat}(P » p(\phi_1 \mathbf{U} \phi_2)) \), \(\{ s \in S | x_s » p \} \)

where \(x_s, s \in S \), are obtained from the recursive linear equation

\[
x_s = \begin{cases}
0 & \text{if } s \in S^{\text{no}} \\
1 & \text{if } s \in S^{\text{yes}} \\
\sum_{s' \in S} P(s,s') \phi x_{s'} & \text{if } s \in S^{\text{Sn}}[S^{\text{yes}}]
\end{cases}
\]

and

- \(S^{\text{yes}} \) - states that satisfy \(\phi_1 \mathbf{U} \phi_2 \) with probability exactly 1
- \(S^{\text{no}} \) - states that satisfy \(\phi_1 \mathbf{U} \phi_2 \) with probability exactly 0
PCTL model checking for DTMCs

- For the remaining formulas standard:

\[
\begin{align*}
\text{Sat}(a) &= L(a) \\
\text{Sat}(\phi) &= S \backslash \text{Sat}(\phi) \\
\text{Sat}(\phi_1 \land \phi_2) &= \text{Sat}(\phi_1) \backslash \text{Sat}(\phi_2)
\end{align*}
\]

- \text{Sys}, \text{Sno} can be precomputed by *graph traversal* [Var85] (or BDD fixed point computation)

- Need to combine
 - Conventional *graph-theoretic traversal*
 - Numerical linear algebra
PCTL model checking for MDPs

- \(S_{yes}, S_{no}\) can also be precomputed by graph traversal (BDD fixed point) [dAKNP97]

- The linear equation generalises to linear optimisation problems solvable iteratively, e.g.

\[
\text{Sat}(P_{p}(\phi_1 \cup \phi_2)) \quad \{s \in S \mid x_s, p\}
\]

\[
x_s = \begin{cases}
 0 & \text{if } s \in S_{no} \\
 1 & \text{if } s \in S_{yes} \\
 \min_{\mu} 2 \text{ Steps}(s) \sum_{s' \in S} \mu(s') \not\in x_{s'} & \text{if } s \in S(S_{no} \mid S_{yes})
\end{cases}
\]

- Need to combine
 - Conventional graph-theoretic traversal
 - Linear optimisation (simplified value iteration)
Probabilistic models: continuous

- **Assumptions on time and probability**
 - Continuous passage of time
 - Continuous randomly distributed delays
 - Continuous space

- **Model types**
 - Continuous time Markov chains (CTMCs): exponentially distributed delays, discrete space, no nondeterminism
 - Probabilistic Timed Automata (PTAs): dense time, (usually) discrete probability, admit nondeterminism
 - (not considered) Labelled Markov Processes (LMPs): continuous space/time, no nondeterminism

\[S_0^{+1} f(x)dx = 1 \]
Continuous Time Markov Chains (CTMCs)

- Features:
 - Discrete states and real time
 - Exponentially distributed random delays

- Formally:
 - Set of states S plus rates $R(s,s') > 0$ of moving from s to s'
 - Probability of moving from s to s' by time $t > 0$ is $1 - e^{-R(s,s')c^t}$
 - Transition rate matrix $S \in \mathbb{R}_{\geq 0}$

- Unfold into infinite paths $s_0 \uparrow s_1 \uparrow s_2 \uparrow s_3 ...$
 - $\text{prob}_s(s')$, probability of being in s' in the long-run, starting in s
 - $\text{prob}_s(s',t)$, probability of being in s' at time instant t

- But: no nondeterminism
• Dense real-time, $t \in \mathbb{R}_0$

• **Clocks** take values from time domain \mathbb{R}_0
 - Increase at the same rate as real time
 - Assume finite set X of clocks, maximum const K_{max}
 - If n clocks, $v,v' \in \mathbb{R}_0^n$ are clock valuations
 - $v + t$ is time increment, $v[X:=0]$ clock reset of all clocks in X

• **Zones** of X, for $x,y \in X$, $c \in \mathbb{N}$

\[
\zeta := x \sim c \quad \land \quad x-y \sim c \quad \land \quad \zeta \in \mathbb{E} \quad \zeta \in \mathbb{C} \quad \zeta \in \mathbb{I} : \zeta
\]

- Consider only in canonical form
- **Closed, diagonal-free** if do not feature $x < c, x > c, x-y \sim c$
- Convex, or non-convex (cf [Tripakis98])
Probabilistic Timed Automata: syntax

- **Features:**
 - Clocks, x, real-valued
 - Can be reset, e.g. $\{x:=0\}$
 - Invariants, e.g. $x \cdot 8$
 - Probabilistic transitions, guarded e.g. $x \cdot 4$, $x=8$

- Formally, $(\text{Loc}, s_0, \text{Inv}, \text{prob}, \text{Act}, L)$:
 - Loc finite set of locations
 - s_0 initial location
 - Inv maps locations s to invariant clock constraints
 - prob probabilistic edge relation that yields the probability of moving from s to s' if enabled at s, resetting specified clocks
 - Act action labelling of transitions μ (probability distribution)
 - L: $S \rightarrow 2^{AP}$ atomic propositions
Probabilistic model checking in practice

- **Model construction:** probability matrices
 - Enumerative
 - Manipulation of *individual* states
 - Size of state space main limitation
 - Symbolic
 - Manipulation of *sets* of states
 - Compact representation possible in case of regularity

- **Temporal logic** model checking: currently limited to
 - discrete probability/space models
 - CTMCs
 - Simulation admits more general distributions

- Probabilistic Symbolic Model Checker PRISM
The PRISM tool: overview

• **Functionality**
 - Direct support for models: DTMCs, MDPs and CTMCs
 - Extension with costs/rewards, expectation operator
 - PTAs with digital clocks by manual translation
 - Connection from KRONOS to PRISM for PTAs
 - Experimental implementation using DBMs/DDDs for PTAs

• **Input languages**
 - System description
 - probabilistic extension of reactive modules [Alur and Henzinger]
 - Probabilistic temporal logics: PCTL and CSL

• **Implementation**
 - **Symbolic** model construction (MTBDDs), uses CUDD [Somenzi]
 - Three numerical computation engines
 - Written in Java and C++
The PRISM tool: implementation

• Numerical engines
 - **Symbolic**, MTBDD based
 • Fast construction, reachability analysis
 • Very large models if regularity
 - **Enumerative**, sparse-matrix based
 • Generally fast numerical computation
 • Model size up to millions
 - **Hybrid**
 • Speed comparable to sparse matrices for numerical calculations
 • Limited by size of vector

• Experimental results
 - Several large scale examples: $10^{10} - 10^{30}$ states
 - **No** engine wins overall
 - See www.cs.bham.ac.uk/~dxp/prism
PRISM real-world case studies

- **MDPs/DTMCs**
 - Bluetooth device discovery [ISOLA’04]
 - Crowds anonymity protocol (by Shmatikov) [JCS 2004]
 - Randomised consensus [CAV’01]
 - Randomised Byzantine Agreement [FORTE’02]
 - NAND multiplexing for nanotechnology (with Shukla) [VLSI’04]
 - Self-stabilising protocols

- **CTMCs**
 - Dynamic Power Management (with Shukla and Gupta) [HLDVT’02]
 - Dependability of embedded controller [INCOM’04]

- **PTAs**
 - IPv4 Zeroconf dynamic configuration [FORMATS’03]
 - Root contention in IEEE 1394 FireWire [FAC 2003, STTT 2004]
 - IEEE 802.11 (WiFi) Wireless LAN MAC protocol [PROBMIV’02]
Case Study: Self-Stabilization

- Self-stabilizing protocol for a network of processes
 - starts from possibly illegal start state
 - returns to a legal (stable) state
 - without any outside intervention
 - within some finite number of steps

- Network: synchronous or asynchronous ring of \(N \) processes
 - Illegal states: more than one process is privileged (has a token)
 - Stable states: exactly one process is privileged (has a token)
 - Properties
 - From any state, a stable state is reached with probability 1
 - Expected time to reach a stable state
Herman's self-stabilising protocol

- Synchronous ring of \(N \) (\(N \) odd) processes (DTMC)
 - Each process has a local boolean variable \(x_i \)
 - Token in place \(i \) if \(x_i = x_{i+1} \)
 - Basic step of process \(i \):
 - if \(x_i = x_{i+1} \) make a uniform random choice as to the next value of \(x_i \)
 - otherwise set \(x_i \) to the current value of \(x_{i+1} \)
 - In the PRISM language:

    ```
    module process1
      x1 : bool;
      [step] x1=x2  -> 0.5 : x1'=0 + 0.5 : x1'=1;
      [step] !(x1=x2)  -> x1'=x2;
    endmodule
    
    module process2 = process1 [x1=x2, x2=x3] endmodule
    ...
    ...
    module processN = process1 [x1=xN, x2=x1] endmodule
    ```
Results: Herman’s protocol

- $P_{\leq 1}(\text{stable})$: min probability of reaching a stable state is 1
- $E_{\geq 2}(\text{stable})$: max expected time (number of steps) to reach a stable state, assuming the probability is 1, is:

![Bar chart showing expected time for different numbers of processes.](chart.png)
Israeli-Jalfon’s self-stabilising protocol

- Asynchronous ring of N processes (MDP)
- Each process has a local boolean variable q_i
 - token in place i if q_i=true
 - process is active if and only if has a token
 - Basic step of (active) process: uniform random choice as to whether to move the token to the left or right

- In the PRISM language:

```
global q1 : [0..1]; ... global qN : [0..1];
module process1
    s1 : bool; // dummy variable
    [] (q1=1) -> 0.5 : (q1'=0) & (qN'=1) + 0.5 : (q1'=0) & (q2'=1);
endmodule

module process2 = process1 [s1=s2, q1=q2, q2=q3, qN=q1] endmodule
    : 
module processN = process1 [s1=sN, q1=qN, q2=q1, qN=qN-1] endmodule
```
Results: Israeli-Jalfon’s protocol

- $P_1(\text{stable})$: min probability of reaching a stable state is 1
- $E_2(\text{stable})$: max expected time (number of steps) to reach a stable state, assuming the probability is 1, is:

![Graph showing expected time vs. number of processes]
Beauquier, Gradinariu and Johnen's self-stabilising protocol

- Asynchronous ring of \(N \) (\(N \) odd) processes (MDP)
 - Each process has two boolean variables: \(d_i \) and \(p_i \) where:
 - if \(d_i = d_{i-1} \) process \(i \) is said to have a deterministic token
 - if \(p_i = p_{i-1} \) process \(i \) is said to have a probabilistic token
 - stable states are those where there is only one probabilistic token
 - process is active if and only if has a deterministic token
 - Basic step of (active) process \(i \):
 - negate \(d_i \) and if \(p_i = p_{i-1} \), then set \(p_i \) uniformly at random
 - In the PRISM language:

```plaintext
module process1
  d1 : bool; p1 : bool;
  [] d1=d3 & p1=p3 -> 0.5 : (d1'=!d1) & (p1'=p1) + 0.5 : (d1'=!d1) & (p1'=!p1);
  [] d1=d3 & !p1=p3 -> (d1'=!d1);
endmodule

module process2 = process1 [d1=d2, d2=d3, p1=p2, p2=p3] endmodule
  : ...
module processN = process1 [d1=dN, d2=d1, p1=pN, p2=p1] endmodule
```
Results: Beauquier, Gradinariu and Johnen’s protocol

- $P_{\hat{1}}(\hat{\text{stable}})$: min probability of reaching a stable state is 1
- $E_{\hat{2}}(\hat{\text{stable}})$: max expected time (number of steps) to reach a stable state, assuming the probability is 1, is:
Case Study: Bluetooth protocol

- **Short-range low-power wireless protocol**
 - Personal Area Networks (PANs)
 - Open standard, versions 1.1 and 1.2
 - Widely available in phones, PDAs, laptops, ...

- **Uses frequency hopping scheme**
 - To avoid interference (uses unregulated 2.4GHz band)
 - Pseudo-random frequency selection over 32 of 79 frequencies
 - Inquirer hops faster
 - Must synchronise hopping frequencies

- **Network formation**
 - Piconets (1 master, up to 7 slaves)
 - Self-configuring: devices discover themselves
 - Master-slave roles
States of a Bluetooth device

- Master looks for device, slave listens for master
- Standby: default operational state
- Inquiry: device discovery
- Page: establishes connection
- Connected: device ready to communicate in a piconet
Why focus on device discovery?

- **Performance of device discovery crucial**
 - No communication before initialisation
 - First mandatory step: *device discovery*

- **Device discovery**
 - Exchanges information about slave clock times, which can be used in later stages
 - Has considerably higher power consumption
 - Determines the speed of piconet formation
Frequency hopping

- **Clock** CLK, 28 bit free-running, ticks every 312.5 μs
- **Inquiring device (master)** broadcasts inquiry packets on two consecutive frequencies, then listens on the same two (plus margin)
- Potential **slaves** want to be discovered, scan for messages
- **Frequency sequence** determined by formula, dependent on bits of clock CLK (k defined on next slide):

 \[
 \text{freq} = [\text{CLK}_{16-12} + k + (\text{CLK}_{4-2,0} - \text{CLK}_{16-12}) \mod 16] \mod 32
 \]
Frequency hopping sequence

freq = \([CLK_{16-12} + k + (CLK_{4-2,0} - CLK_{16-12}) \mod 16] \mod 32\)

- Two trains (=lines)
- k is offset that determines which train
- Swaps between trains every 2.56 sec
- Each line repeated 128 times
Sending and receiving in Bluetooth

- **Sender**: broadcasts inquiry packets, sending according to the frequency hopping sequence, then listens, and repeats.
 - Follows the frequency hopping sequence, own clock.
 - Listens continuously on one frequency.
 - If hears message sent by the sender, then replies on the same frequency.
 - Random wait to avoid collision if two receivers hear on same frequency.

- **Receiver**: follows the frequency hopping sequence, own clock.
Bluetooth modelling

• Very complex interaction
 - Genuine randomness, probabilistic modelling essential
 - Devices make contact only if listen on the right frequency at the right time!
 - Sleep/scan periods unbreakable, much longer than listening
 - Cannot scale constants (approximate results)
 - Cannot omit subactivities, otherwise oversimplification

• Huge model, even for one sender and one receiver!
 - Initial configurations dependent on 28 bit clock
 - Cannot fix start state of receiver, clock value could be arbitrary
 - 17,179,869,184 possible initial states

• But is a realistic future ubiquitous computing scenario!
What about other approaches?

• Indeed, others have tried...
 - network simulation tools (BlueHoc)
 - analytical approaches

• But
 - simulations obtain averaged results, in contrast to best/worst case analysis performed here
 - analytical approaches require simplifications to the model
 - it is easy to make incorrect probabilistic assumptions, as we can demonstrate

• There is a case for all types of analyses, or their combinations...
Lessons learnt...

• **Must optimise/reduce model**
 - Assume negligible clock drift
 - Discrete time, obtain a DTMC
 - Manual abstractions, combine transitions, etc
 - Divide into 32 separate cases
 - Success (**exhaustive analysis**) with one/two replies

• **Observations**
 - Work with **realistic constants**, as in the standard
 - Analyse v1.2 and 1.1, confirm 1.1 slower
 - Show best/worst case values, can **pinpoint scenarios** which give rise to them
 - Also obtain **power consumption** analysis
Max time to hear is 2.5716sec, in 921,600 possible initial states, (Min 635μs)

Cumulative: assume uniform distribution on states when receiver first starts to listen
Time to hear 2 replies

- Max time to hear is 5.177 sec (16,565 slots), in 444 possible initial states
- Cumulative (derived): assumes time to reply to 2nd message is independent of time to reply to 1st (incorrect, compare with exact curve obtained from model checking)
Case Study: Contract Signing

• Two parties want to agree on a contract
• Each will sign if the other will sign
 - Cannot trust other party in the protocol
 - There may be a trusted third party (judge), but it should only be used if something goes wrong

• **Contract signing with pen and paper**
 - Sit down and write signatures *simultaneously*

• **Contract signing on the Internet**
 - Challenge: how to exchange commitments on an asynchronous network?
Contract Signing

Partial secret exchange protocol of Even, Goldreich and Lempel (1985) for two parties (A and B)

- A (B) holds secrets a_1, \ldots, a_{2n} (b_1, \ldots, b_{2n})
 - Secret is a binary string of length l
 - Secrets partitioned into pairs:
 - $\{(a_i, a_{n+i}) | i=1,\ldots,n\}$ and $\{(b_i, b_{n+i}) | i=1,\ldots,n\}$
 - A (B) committed if B (A) knows one of A's (B's) pairs

- Uses **1-out-of-2 oblivious transfer protocol**: $\text{OT}(S,R,x,y)$
 - S sends x and y to R
 - R receives x with probability $\frac{1}{2}$ otherwise receives y
 - S does not know which one R receives
 - if S cheats then R can detect this with probability $\frac{1}{2}$
Contract Signing

(step 1)
for i=1,…,n
 OT(A,B, a_i, a_{n+i})
 OT(B,A b_i, b_{n+i})
end

(step 2)
for i=1,…,l (l is the bit length of the secrets)
 for j=1,…,2n
 A transmits bit i of secret a_j to B
 end
 for j=1,…,2n
 B transmits bit i of secret b_j to A
 end
end
Results: Contract Signing

- Discovered a **weakness** in the protocol when party B is allowed to act maliciously by quitting the protocol early
 - this behaviour not considered in the original analysis

- **PRISM** analysis shows:
 - if B stops participating in the protocol as soon as he/she has obtained at least one of A pairs, then, with **probability 1**, at this point:
 - B possesses a pair of A’s secrets
 - A does not have complete knowledge of any pair of B’s secrets

- Protocol is therefore not fair under this attack:
 - B has a distinct advantage over A
The protocol is unfair because in step 2: A sends a bit for each of its secret before B does.

Can we make this protocol fair by changing the message sequence scheme?

Since the protocol is asynchronous the best we can hope for is with probability $\frac{1}{2}$ B (or A) gains this advantage.

We consider 3 possible alternate message sequence schemes...
Contract Signing: EGL2

(step1)

...

(step2)

for i=1,...,l
 for j=1,...,n A transmits bit i of secret a_j to B
 for j=1,...,n B transmits bit i of secret b_j to A
end

for i=1,...,l
 for j=n+1,...,2n A transmits bit i of secret a_j to B
 for j=n+1,...,2n B transmits bit i of secret b_j to A
end
Contract Signing: EGL3

(step1)

...

(step2)

for $i=1,\ldots,l$ for $j=1,\ldots,n$

A transmits bit i of secret a_j to B
B transmits bit i of secret b_j to A

end

for $i=1,\ldots,l$ for $j=n+1,\ldots,2n$

A transmits bit i of secret a_j to B
B transmits bit i of secret b_j to A

end
(step 1)

...

(step 2)

for $i=1,\ldots,l$

A transmits bit i of secret a_1 to B

for $j=1,\ldots,n$ B transmits bit i of secret b_j to A

for $j=2,\ldots,n$ A transmits bit i of secret a_j to B

end

for $i=1,\ldots,l$

A transmits bit i of secret a_{n+1} to B

for $j=n+1,\ldots,2n$ B transmits bit i of secret b_j to A

for $j=n+2,\ldots,2n$ A transmits bit i of secret a_j to B

end
Results: Contract Signing

- Probability the other party gains knowledge first
 - The chance that the protocol is unfair

A solid line
B dashed line
Results: Contract Signing

- Expected bits a party requires to know a pair once the other knows a pair
 - quantifies how unfair the protocol is
Results: Contract Signing

- Expected messages a party must receive to know a pair once the other knows a pair
 - measures the influence the other party has on the fairness, since it can try and delay these messages

\[
\begin{align*}
\text{A solid line} & \quad \text{B dashed line}
\end{align*}
\]
Results: Contract Signing

- Expected messages that need to be sent for a party to know a pair once the other party knows a pair
 - measures the duration of unfairness

A solid line
B dashed line
Results: Contract Signing

• Results show EGL4 is the 'fairest' protocol
• Except for duration of fairness measure:
 Expected messages that need to be sent for a party to know a pair once the other party knows a pair
 - this value is larger for B than for A
 - and, in fact, as n increases, this measure:
 • increases for B
 • decreases for A

• Solution: if a party sends a sequence of bits in a row (without the other party sending messages in between), require that the party send these bits as a single message
Results: Contract Signing

- Expected messages that need to be sent for a party to know a pair once the other party knows a pair
 - measures the duration of unfairness

A solid line
B dashed line
Related projects

• **FORWARD (this case study, see ISOLA’04)**
 - Performance modelling of MAC layer of Bluetooth
 - Security analysis of Bluetooth

• **Modelling and verification of mobile ad hoc network protocols**
 - Modelling language with mobility and randomisation
 - Model checking algorithms & techniques
 - Tool development & implementation
 - Modelling timing properties of AODV

• **Focus on properties**
 - “probability of delivery within time deadline is ...”
 - “expected time to device discovery is ...”
 - “expected power consumption is ...”
Challenges for future

- Exploiting structure
 - Abstraction, data reduction, compositionality…
 - Parametric probabilistic verification?
- Proof assistant for probabilistic verification
- Extension for mobility
- Extension for hybrid systems
- Simulation, statistical testing [Younes]
- Approximation methods
- Continuous PTAs
 - Efficient model checking methods?
- More expressive specifications
 - Probabilistic LTL/PCTL*/mu-calculus?
- Real software, not models!
For more information...

J. Rutten, M. Kwiatkowska, G. Norman and D. Parker

Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems

P. Panangaden and F. van Breugel (editors), CRM Monograph Series, vol. 23, AMS
March 2004

www.cs.bham.ac.uk/~dxp/prism/

- Case studies, statistics, group publications
- Download, version 2.0 (approx. 1000 users)
- Publications by others and courses that feature PRISM...
PRISM Contributors