
SAFECOM 2012, Magdeburg

Sensing everywhere:

Towards Safer and More Reliable
Sensor-enabled Devices

Marta Kwiatkowska
University of Oxford

2

Sensing everywhere

3

Smartphones, tablets…

Sensor apps

GPS/GPRS tracking
Accelerometer
Air quality

Access to services
Personalised monitoring

4

Home appliances, networked…

Fridge that
Tweets!

Home network
Internet-enabled
Remote control
Energy
management

5

Medical devices…

Wearable or
implantable
health monitoring

Heart rate
Breathing
Movement
Glucose…

6

Ubiquitous computing

• (also known as Pervasive Computing or Internet of Things

− enabled by wireless technology and cloud computing)

• Populations of sensor-enabled computing devices that are

− embedded in the environment, or even in our body

− sensors for interaction and control of the environment

− software controlled, can communicate

− operate autonomously, unattended

− devices are mobile, handheld or wearable

− miniature size, limited resources, bandwidth and memory

• Unstoppable technological progress

− smaller and smaller devices, more and more complex
scenarios…

77

Challenges

• Smart sensors and apps

− sensors are integral components of devices

− quantitative readings, not just binary

• Failure a tangible risk, in view of

− wireless connectivity

− mobility

− probabilistic modelling helpful

• Energy- and resource efficiency of growing importance

− battery-powered, small memory

− quantitative analysis needed

• and more…

• How to ensure correctness, safety, dependability, security,
performability?

− complex scenarios, recovery from faults, resource usage, …

8

Safety-critical applications

• Consequences of failure may endanger life

− implantable medical devices, automotive components,
avionics, biosensing, etc

• Software is a critical component

− failure of embedded software accounts for costly recalls

• Need quality assurance methodologies

− model-based development

− rigorous software engineering

− software product lines

• Focus on automated, tool-supported methodologies

− automated verification via model checking

− quantitative/probabilistic verification

9

Rigorous software engineering

• Verification and validation

− Derive model, or extract from software artefacts

− Verify correctness, validate if fit for purpose

Model
Formal
specification

System
Validation

Verification

A
b

s
tr

a
c
t R

e
fin

e

F
o
rm

a
li
s
e

Simulation

Informal
requirements

10

Towards certifiable sensor devices

• Standards (e.g. DO-178B for avionics) recommend model-
based approaches

• Combine traditional safety assurance methodologies

− hazard analysis

− FTA, FMEA

− safety/dependability cases

• with formal verification techniques to automatically
produce guarantees for:

− safety, reliability, performance, resource usage, trust, …

− (safety) “probability of failure to raise alarm is tolerably low”

− (reliability) “the smartphone will never execute the financial
transaction twice”

• Probabilistic/quantitative verification necessary for safety
and dependability analysis

11

Rigorous safety development

• Base on SAML (Safety Analysis Modelling Language)

• Example of an airbag
component

Gudemann et al

12

Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models

13

Why quantitative verification?

• Real ubicomp software/systems are quantitative:

− Real-time aspects

• hard/soft time deadlines

− Resource constraints

• energy, buffer size, number of unsuccessful transmissions, etc

− Randomisation, e.g. in distributed coordination algorithms

• random delays/back-off in Bluetooth, Zigbee

− Uncertainty, e.g. communication failures/delays

• prevalence of wireless communication

• Analysis “quantitative” & “exhaustive”

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies

14

Quantitative properties

• Simple properties

− P≤0.01 [F “fail”] – “the probability of a failure is at most 0.01”

• Analysing best and worst case scenarios

− Pmax=? [F≤10 “outage”] – “worst-case probability of an outage
occurring within 10 seconds, for any possible scheduling of
system components”

− P=? [G≤0.02 !“deploy” {“crash”}{max}] - “the maximum
probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward/cost-based properties

− R{“time”}=? [F “end”] – “expected algorithm execution time”

− R{“energy”}max=? [C≤7200] – “worst-case expected energy
consumption during the first 2 hours”

15

Historical perspective

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking
[Kwiatkowska, Norman, Parker, …]

− ETMCC (now MRMC): model checking for continuous-time Markov
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains,
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols,
biological systems, quantum cryptography, planning…

− genuine flaws found and corrected in real-world systems

16

Tool support: PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …

− properties: PCTL, CSL, LTL, PCTL*, rPATL, costs/rewards, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

• Many import/export options, tool connections

− in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

− out: Matlab, MRMC, INFAMY, PARAM, …

• See: http://www.prismmodelchecker.org/

1717

Probabilistic model checking involves…

• Construction of models

− from a high-level modelling language

− e.g. probabilistic process algebra

• Implementation of probabilistic model checking algorithms

− graph-theoretical algorithms, combined with

• (probabilistic) reachability

− numerical computation – iterative methods

• quantitative model checking (plot values for a range of
parameters)

• typically, linear equation or linear optimisation

• exhaustive, unlike simulation

− also sampling-based (statistical) for approximate analysis

• e.g. hypothesis testing based on simulation runs

1818

Model derivation techniques

• Models are typically state-transition systems (automata)

• Manual construction

− derive a model from description

• e.g. IEEE standards document

− express in high-level language, then build

• Automated extraction

− extract a model from software

• using e.g. abstract interpretation, slicing, static analysis…

− build a data structure

• Challenges

− state space explosion, infinite state systems

− need to consider augmenting with additional information

• action labels, state labels, time, probability, rate, etc

Model

19

Quantitative verification in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference
documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

• Bluetooth time to hear one reply

− Worst-case expected time = 2.5716s

− in 921,600 possible initial states

− Best-case expected time = 635μs

• Bluetooth time to hear two replies

− Worst-case expected time = 5.177s

− in 444 possible initial states

20

Current directions

• Recent advances in (quantitative) verification for sensor-
based devices

• Implantable medical devices

− cardiac pacemaker study

• Nanoscale computing and biosensing

− DNA computation and self-assembly

• Software verification for sensor networks

− TinyOS

• Brief overview of the above directions

− each demonstrating transition from theory to practice

− formulating novel verification algorithms

− resulting in new software tools

21

Implantable medical devices

• Typical safety-critical application

− electrical signal, velocity, distance, chemical concentration, …

− often modelled by non-linear differential equations

− necessary to extend models with continuous flows

• Many typical scenarios

− e.g. smart energy meters, automotive control, closed loop
medical devices

• Natural to adopt hybrid system models, which combine
discrete mode switches and continuous variables

− widely used in embedded systems, control engineering …

− probabilistic extensions needed to model failure

• Research question: can we apply quantitative verification to
establish correctness of implantable cardiac pacemakers?

22

Function of the heart

• Maintains blood circulation by contracting the atria and
ventricles

− spontaneously generates electrical signal (action potential)

− conducted through cellular pathways into atrium, causing
contraction of atria then ventricles

− repeats, maintaining 60-100 beats per minute

− a real-time system, and natural pacemaker

• Abnormalities in
electrical
conduction

− missed/slow
heart beat

− can be corrected by
by implantable
pacemakers

23

Implantable pacemaker

• How it works

− reads electrical (action potential) signals through sensors
placed in the right atrium and right ventricle

− monitors the timing of heart beats
and local electrical activity

− generates artificial pacing signal
as necessary

• Embedded software

• Widely used, replaced
every few years

• Unfortunately…

− 600,000 devices recalled
during 1990-2000

− 200,000 due to
firmware problems

24

Closed-loop pacemaker testing

FPGA-based system developed at PRECISE Centre, Upenn [Jiang et al]

Real pacemaker devices, patient specific, but testing/validation only
(various cardiac rhythms)

25

Quantitative verification for pacemakers?

• Pacemaker model

− various approaches exist, e.g. Simulink, SCADE, Z and
theorem proving, not suitable for quantitative verification

− here, adopt the timed automata model of [Jiang et al]

• What does correctness mean?

− the rhythm depends on the patient

− faulty pacemaker may induce undesirable heart behaviour

• Seek realistic heart models for verification

− adopt synthetic ECG model (non-linear ODE) [Clifford et al]

− reflects chest surface measurements, map to action potential

− probabilistic, can encode various diseases and can be learnt
from patient data

• Properties

− expressible as timed automata or MTL (Metric Temporal Logic)

− more generally, reward properties for energy usage

26

Quantitative verification for pacemakers

• Model the pacemaker and the heart, compose and verify

27

Quantitative verification for pacemakers

28

Quantitative verification for pacemakers

29

Correction of Bradycardia

Purple lines original (slow) heart beat, green are induced (correcting)

30

Faulty pacemaker inducing Tachycardia

Purple lines are normal, green lines are induced (too fast)

31

Tool support: PRISM & MATLAB

• Developed and implemented a framework based on (I/O)
synchronised composition of

− discretised heart model (Runge-Kutta)

− PRISM digital clock models of the pacemaker

• Support for probabilistic analysis

− probabilistic switching between diseases, can be learnt from
patient data

− undersensing (faulty sensor leads)

− expected energy usage

• Prototype toolset

− implemented in MATLAB and PRISM

• Wireless glucose monitors present a greater challenge

• See

• http://www.prismmodelchecker.org/bibitem.php?key=CDK
M12b

32

Nanoscale computing and biosensing

• The molecular programming approach

− aim to devise programmable mechanisms directly at the
molecular level

− DNA computing devices

− e.g., DNA origami pliers to detect presence of a target
molecule

− product families, e.g. DNA tweezers

• Many safety-critical applications

− e.g. drug delivery directly into the blood stream, implantable
continuous monitoring devices

• First approaches towards rigorous safety analysis

− goal-oriented requirements modelling and analysis of the
DNA pliers

− based on van Lamsweerde (2009) and using PRISM [Lutz et al,
ICSE 2012, RE 2012]

33

Digital circuits

• Logic gates realised in silicon

• 0s and 1s are represented as low and high voltage

• Hardware verification indispensable as design methodology

34

DNA programming

2nm

DNA origami

• “Computing with soup” (The Economist 2012)

− DNA strands are mixed together in a test tube

− single strands are inputs and outputs

− computation proceeds autonomously

• Can we transfer verification to this new application domain?

− stochasticity essential!

35

DNA circuits

Pop quiz, hotshot: what's
the square root of 13?
Science Photo Library/Alamy

[Qian, Winfree,
Science 2012]

• Techniques exist for designing
DNA circuits

• (DNA Strand Displacement)

• Circuit of 130 strands computes
square root of 4 bit number,
rounded down

• 10 hours, but it’s a first…

36

DNA Strand Displacement

• Design (simplified) logic gates in DNA

− double strands with nicks (interruptions) in the top strand

− and single strands consisting of one (short) toehold domain t
and one recognition domain x

− “toehold exchange”: branch migration of strand <t^ x>
leading to displacement of strand <x t^>

• DSD process algebra semantics due to Cardelli

• DSD programming environment due to Phillips (Microsoft)

[Cardelli’10] Two-Domain DNA Strand Displacement. DCM’10

37

Example: Transducer

• Transducer: converts input <t^ x> into output <t^ y>

38

Example: Transducer

• Transducer: full reaction list

input output
unreactive structures
(no exposed toeholds)

39

Transducer flaw

• Unwanted deadlock!

− OK for one, fails for two copies of the
gates

• PRISM identifies a 5-step trace

− problem caused by “crosstalk”
(interference) between DSD species

− previously found manually [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

output

40

Transducers: Quantitative properties

• We can also use PRISM to study the kinetics of the pair of
(faulty) transducers:

− P=? [F[T,T] "deadlock"]

− P=? [F[T,T] "deadlock" & !"all_done"]

− P=? [F[T,T] "deadlock" & "all_done"]
success/error
equally likely

41

Tool support: DSD & PRISM

• Developed a framework incorporating DSD and PRISM

− DSD designs automatically translated to PRISM via SBML

• Model checking as for molecular signalling networks

− reduction to CTMC model

− reuse existing PRISM algorithms

• Achievements

− first ever (quantitative) verification of a DNA circuit

− demonstrated bugs can be found automatically

− but scalability major challenge, can only deal with small
designs

• Further case studies

− Approximate Majority population protocol

• Available now:

http://research.microsoft.com/en-us/projects/dna/

42

Software verification for sensor networks

TinyOS and NesC:

OS and language for

embedded systems

43

A TinyOS application

Threads, so concurrency

Interrupts

44

...and TinyOS’s compile stages

Platform dependency!

45

Tool support for TinyOS

• Use software verification via model checking

− extract model automatically, via translation of NesC to C

• Two approaches

− precise model of application, assumptions on the behaviour of
the platform

− preserve system-wide code (including the kernel), model the
microcontroller’s working:

• memory map, interrupt system

• not quantitative, yet…

• Progress with “bounded” verification

− few IRQ calls, little recursion unwinding (CBMC)

− specifications asassertions upon program states

• Encouraging results – model checks in a few sec/minutes!

• Uses CProver tools by Daniel Kroening, see

http://code.google.com/p/tos2cprover/

46

Summing up…

• Brief overview of three directions aimed at improving the
safety and reliability of sensor-based devices

− demonstrated some successes and usefulness of quantitative
verification methodology

− new techniques and tools

• Many challenges remain

− incorporation of quantitative verification in pacemaker
development environments

− real industrial case studies

− certification and code generation for medical devices

− scalability of verification for molecular programming models

• More challenges not covered in this lecture

− integrated environments, safety and dependability
applications, automated synthesis, …

47

References

• Pacemaker

− T. Chen, M. Diciolla, M. Kwiatkowska and A. Mereacre. Quantitative
Verification of Implantable Cardiac Pacemakers. RTSS 2012.

− See also Jiang et al: Modeling and Verification of a Dual Chamber
Implantable Pacemaker. TACAS 2012: 188-203.

• DNA programming

− M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska and A. Phillips. Design
and Analysis of DNA Strand Displacement Devices using Probabilistic
Model Checking. J R Soc Interface, 9(72), 1470-1485, 2012.

• TinyOS

− D. Bucur, M. Kwiatkowska: On software verification for sensor nodes.
Journal of Systems and Software 84(10): 1693-1707 (2011).

• See also

− M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. CAV 2011: 585-591.

48

Acknowledgements

• My group and collaborators in this work

− Doina Bucur, Luca Cardelli, Taolue Chen, Marco Diciolla,
Matthew Lakin, Alexandru Mereacre, Gethin Norman, Dave
Parker, Andrew Phillips

• Collaborators who contributed to theoretical and practical
PRISM development

• External users of and contributors to PRISM

• Project funding

− ERC, EPSRC

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org

