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Sensing everywhere



3

Smartphones, tablets…

Sensor apps

GPS/GPRS tracking
Accelerometer
Air quality

Access to services
Personalised monitoring
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Home appliances, networked…

Fridge that
Tweets!

Home network
Internet-enabled
Remote control
Energy
management
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Medical devices…

Wearable or
implantable
health monitoring

Heart rate
Breathing
Movement
Glucose…
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Ubiquitous computing

• (also known as Pervasive Computing or Internet of Things

− enabled by wireless technology and cloud computing)

• Populations of sensor-enabled computing devices that are

− embedded in the environment, or even in our body

− sensors for interaction and control of the environment

− software controlled, can communicate

− operate autonomously, unattended

− devices are mobile, handheld or wearable

− miniature size, limited resources, bandwidth and memory

• Unstoppable technological progress

− smaller and smaller devices, more and more complex 
scenarios…
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Challenges

• Smart sensors and apps

− sensors are integral components of devices

− quantitative readings, not just binary

• Failure a tangible risk, in view of

− wireless connectivity

− mobility

− probabilistic modelling helpful

• Energy- and resource efficiency of growing importance

− battery-powered, small memory

− quantitative analysis needed

• and more…

• How to ensure correctness, safety, dependability, security,
performability?

− complex scenarios, recovery from faults, resource usage, …
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Safety-critical applications

• Consequences of failure may endanger life

− implantable medical devices, automotive components, 
avionics, biosensing, etc

• Software is a critical component

− failure of embedded software accounts for costly recalls

• Need quality assurance methodologies

− model-based development

− rigorous software engineering

− software product lines

• Focus on automated, tool-supported methodologies

− automated verification via model checking

− quantitative/probabilistic verification
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Rigorous software engineering

• Verification and validation

− Derive model, or extract from software artefacts

− Verify correctness, validate if fit for purpose

Model
Formal
specification

System
Validation

Verification
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Towards certifiable sensor devices

• Standards (e.g. DO-178B for avionics) recommend model-
based approaches

• Combine traditional safety assurance methodologies

− hazard analysis

− FTA, FMEA

− safety/dependability cases

• with formal verification techniques to automatically
produce guarantees for:

− safety, reliability, performance, resource usage, trust, …

− (safety) “probability of failure to raise alarm is tolerably low”

− (reliability) “the smartphone will never execute the financial
transaction twice”

• Probabilistic/quantitative verification necessary for safety
and dependability analysis
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Rigorous safety development

• Base on SAML (Safety Analysis Modelling Language)

• Example of an airbag
component

Gudemann et al
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Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [ F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models
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Why quantitative verification?

• Real ubicomp software/systems are quantitative:

− Real-time aspects

• hard/soft time deadlines

− Resource constraints

• energy, buffer size, number of unsuccessful transmissions, etc

− Randomisation, e.g. in distributed coordination algorithms

• random delays/back-off in Bluetooth, Zigbee

− Uncertainty, e.g. communication failures/delays

• prevalence of wireless communication

• Analysis “quantitative” & “exhaustive”

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies
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Quantitative properties

• Simple properties

− P≤0.01 [ F “fail” ] – “the probability of a failure is at most 0.01”

• Analysing best and worst case scenarios

− Pmax=? [ F≤10 “outage” ] – “worst-case probability of an outage
occurring within 10 seconds, for any possible scheduling of
system components”

− P=? [ G≤0.02 !“deploy” {“crash”}{max} ] - “the maximum
probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward/cost-based properties

− R{“time”}=? [ F “end” ] – “expected algorithm execution time”

− R{“energy”}max=? [ C≤7200 ] – “worst-case expected energy
consumption during the first 2 hours”
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Historical perspective

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking 
[Kwiatkowska, Norman, Parker, …]

− ETMCC (now MRMC): model checking for continuous-time Markov 
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains, 
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols,
biological systems, quantum cryptography, planning…

− genuine flaws found and corrected in real-world systems
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Tool support: PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …

− properties: PCTL, CSL, LTL, PCTL*, rPATL, costs/rewards, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

• Many import/export options, tool connections

− in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

− out: Matlab, MRMC, INFAMY, PARAM, …

• See: http://www.prismmodelchecker.org/
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Probabilistic model checking involves…

• Construction of models

− from a high-level modelling language

− e.g. probabilistic process algebra

• Implementation of probabilistic model checking algorithms

− graph-theoretical algorithms, combined with

• (probabilistic) reachability

− numerical computation – iterative methods

• quantitative model checking (plot values for a range of
parameters)

• typically, linear equation or linear optimisation

• exhaustive, unlike simulation

− also sampling-based (statistical) for approximate analysis

• e.g. hypothesis testing based on simulation runs
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Model derivation techniques

• Models are typically state-transition systems (automata)

• Manual construction

− derive a model from description

• e.g. IEEE standards document

− express in high-level language, then build

• Automated extraction

− extract a model from software

• using e.g. abstract interpretation, slicing, static analysis…

− build a data structure

• Challenges

− state space explosion, infinite state systems

− need to consider augmenting with additional information

• action labels, state labels, time, probability, rate, etc

Model
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Quantitative verification in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference
documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

• Bluetooth time to hear one reply

− Worst-case expected time = 2.5716s

− in 921,600 possible initial states

− Best-case expected time = 635μs

• Bluetooth time to hear two replies

− Worst-case expected time = 5.177s 

− in 444 possible initial states
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Current directions

• Recent advances in (quantitative) verification for sensor-
based devices

• Implantable medical devices

− cardiac pacemaker study

• Nanoscale computing and biosensing

− DNA computation and self-assembly

• Software verification for sensor networks

− TinyOS

• Brief overview of the above directions

− each demonstrating transition from theory to practice

− formulating novel verification algorithms

− resulting in new software tools
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Implantable medical devices

• Typical safety-critical application

− electrical signal, velocity, distance,  chemical concentration, …

− often modelled by non-linear differential equations

− necessary to extend models with continuous flows

• Many typical scenarios

− e.g. smart energy meters, automotive control, closed loop 
medical devices

• Natural to adopt hybrid system models, which combine
discrete mode switches and continuous variables

− widely used in embedded systems, control engineering …

− probabilistic extensions needed to model failure

• Research question: can we apply quantitative verification to
establish correctness of implantable cardiac pacemakers?
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Function of the heart

• Maintains blood circulation by contracting the atria and
ventricles

− spontaneously generates electrical signal (action potential)

− conducted through cellular pathways into atrium, causing 
contraction of atria then ventricles

− repeats, maintaining 60-100 beats per minute

− a real-time system, and natural pacemaker

• Abnormalities in
electrical
conduction

− missed/slow 
heart beat

− can be corrected by 
by implantable
pacemakers
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Implantable pacemaker

• How it works

− reads electrical (action potential) signals through sensors
placed in the right atrium and right ventricle

− monitors the timing of heart beats
and local electrical activity

− generates artificial pacing signal
as necessary

• Embedded software

• Widely used, replaced
every few years

• Unfortunately…

− 600,000 devices recalled 
during 1990-2000

− 200,000 due to 
firmware problems
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Closed-loop pacemaker testing

FPGA-based system developed at PRECISE Centre, Upenn [Jiang et al]

Real pacemaker devices, patient specific, but testing/validation only
(various cardiac rhythms)
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Quantitative verification for pacemakers?

• Pacemaker model

− various approaches exist, e.g. Simulink, SCADE, Z and 
theorem proving, not suitable for quantitative verification

− here, adopt the timed automata model of [Jiang et al]

• What does correctness mean?

− the rhythm depends on the patient

− faulty pacemaker may induce undesirable heart behaviour

• Seek realistic heart models for verification

− adopt synthetic ECG model (non-linear ODE) [Clifford et al]

− reflects chest surface measurements, map to action potential

− probabilistic, can encode various diseases and can be learnt
from patient data

• Properties

− expressible as timed automata or MTL (Metric Temporal Logic)

− more generally, reward properties for energy usage
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Quantitative verification for pacemakers

• Model the pacemaker and the heart, compose and verify
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Quantitative verification for pacemakers
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Quantitative verification for pacemakers
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Correction of Bradycardia

Purple lines original (slow) heart beat, green are induced (correcting)
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Faulty pacemaker inducing Tachycardia

Purple lines are normal, green lines are induced (too fast)
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Tool support: PRISM & MATLAB

• Developed and implemented a framework based on (I/O)
synchronised composition of

− discretised heart model (Runge-Kutta)

− PRISM digital clock models of the pacemaker

• Support for probabilistic analysis

− probabilistic switching between diseases, can be learnt from 
patient data

− undersensing (faulty sensor leads)

− expected energy usage

• Prototype toolset

− implemented  in MATLAB and PRISM

• Wireless glucose monitors present a greater challenge

• See

• http://www.prismmodelchecker.org/bibitem.php?key=CDK
M12b



32

Nanoscale computing and biosensing

• The molecular programming approach

− aim to devise programmable mechanisms directly at the
molecular level

− DNA computing devices

− e.g., DNA origami pliers to detect presence of a target 
molecule

− product families, e.g. DNA tweezers

• Many safety-critical applications

− e.g. drug delivery directly into the blood stream, implantable 
continuous monitoring devices

• First approaches towards rigorous safety analysis

− goal-oriented requirements modelling and analysis of the
DNA pliers

− based on van Lamsweerde (2009 ) and using PRISM [Lutz et al, 
ICSE 2012, RE 2012]
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Digital circuits

• Logic gates realised in silicon

• 0s and 1s are represented as low and high voltage

• Hardware verification indispensable as design methodology
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DNA programming

2nm

DNA origami

• “Computing with soup” (The Economist 2012)

− DNA strands are mixed together in a test tube

− single strands are inputs and outputs

− computation proceeds autonomously

• Can we transfer verification to this new application domain?

− stochasticity essential!
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DNA circuits

Pop quiz, hotshot: what's
the square root of 13?
Science Photo Library/Alamy

[Qian, Winfree,
Science 2012]

• Techniques exist for designing
DNA circuits

• (DNA Strand Displacement)

• Circuit of 130 strands computes
square root of 4 bit number,
rounded down

• 10 hours, but it’s a first…
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DNA Strand Displacement

• Design (simplified) logic gates in DNA

− double strands with nicks (interruptions) in the top strand

− and single strands consisting of one (short) toehold domain  t 
and one recognition domain x

− “toehold exchange”: branch migration of strand <t^ x> 
leading to displacement of strand <x t^>

• DSD process algebra semantics due to Cardelli

• DSD programming environment due to Phillips (Microsoft)

[Cardelli’10] Two-Domain DNA Strand Displacement. DCM’10
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Example: Transducer

• Transducer: converts input <t^ x> into output <t^ y>
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Example: Transducer

• Transducer: full reaction list

input output
unreactive structures
(no exposed toeholds)
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Transducer flaw

• Unwanted deadlock!

− OK for one, fails for two copies of the 
gates

• PRISM identifies a 5-step trace

− problem  caused by “crosstalk”
(interference) between DSD species

− previously found manually  [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

output
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Transducers: Quantitative properties

• We can also use PRISM to study the kinetics of the pair of
(faulty) transducers:

− P=? [ F[T,T] "deadlock" ]

− P=? [ F[T,T] "deadlock" & !"all_done" ]

− P=? [ F[T,T] "deadlock" & "all_done" ]
success/error
equally likely
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Tool support: DSD & PRISM

• Developed a framework incorporating DSD and PRISM

− DSD designs automatically translated to PRISM via SBML

• Model checking as for molecular signalling networks

− reduction to CTMC model

− reuse existing PRISM algorithms

• Achievements

− first ever (quantitative) verification of a DNA circuit

− demonstrated bugs can be found automatically

− but scalability major challenge, can only deal with small 
designs

• Further case studies

− Approximate Majority population protocol

• Available now:

http://research.microsoft.com/en-us/projects/dna/



42

Software verification for sensor networks

TinyOS and NesC:

OS and language for

embedded systems



43

A TinyOS application

Threads, so concurrency

Interrupts
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...and TinyOS’s compile stages

Platform dependency!
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Tool support for TinyOS

• Use software verification via model checking

− extract model automatically, via translation of NesC to C

• Two approaches

− precise model of application, assumptions on the behaviour of
the platform

− preserve system-wide code (including the kernel), model the
microcontroller’s working:

• memory map, interrupt system

• not quantitative, yet…

• Progress with “bounded” verification

− few IRQ calls, little recursion unwinding (CBMC)

− specifications asassertions upon program states

• Encouraging results – model checks in a few sec/minutes!

• Uses CProver tools by Daniel Kroening, see

http://code.google.com/p/tos2cprover/
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Summing up…

• Brief overview of three directions aimed at improving the
safety and reliability of sensor-based devices

− demonstrated some successes and usefulness of quantitative
verification methodology

− new techniques and tools

• Many challenges remain

− incorporation of quantitative verification in pacemaker 
development environments

− real industrial case studies

− certification and code generation for medical devices

− scalability of verification for molecular programming models

• More challenges not covered in this lecture

− integrated environments, safety and dependability 
applications, automated synthesis, …
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