UNIVERSITY OF

OXFORD

Probabilistic model checking

Marta Kwiatkowska

Department of Computer Science, University of Oxford

POPL 2015 tutorial, Mumbai, January 2015

What is probabilistic model checking?

- Probabilistic model checking...
— is model checking applied to probabilistic models

- Probabilistic models...

— can be derived from high-level specification or
extracted from probabilistic programs

Model checking

Finite-state
Svstem model
a Result
~ v %
~
Model checker [
— €0 SMV, Spin
J
OOO —EF fail Counter-
° — —> example
System Temporal logic —Or0r0r0
require- specification

ments

Probabilistic model checking

Probabilistic model
Svstem e.g. Markov chain

0.5 Y 0.4

—— =
- LA
v X
—.
0.1
e
r
o (R
WA e
i e

QO:: Pooq [Ffail]| mm—

) —>

System

require- Probabilistic
ments temporal logic

specification
e.g. PCTL, LTL

Probabilistic

model checker

e.g. PRISM

—3 Result

v X

J

B Quantitative
results

— Counter-
example

R

4

Why probability?

- Some systems are inherently probabilistic...

Randomisation, e.g. in wireless coordination protocols
— as a symmetry breaker
bool short_delay = Bernoulli(0.5) // short or long delay

Modelling uncertainty
— to quantify rate of failures
bool fail = Bernoulli(0.001) // success wp 0.999 or failure

Modelling performance and biological processes

— reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

float binding rate = exp(2.5) // exponentially distributed

Probability example

Modelling a 6-sided die using a fair coin
— algorithm due to Knuth/Yao:
— start at 0, toss a coin
— upper branch when H
— lower branch when T
— repeat until value chosen

Probability of obtaining a 47
— THH, TTTHH, TTTTTHH, ...
— Pr(“eventually 47)
=(1/23+ /25 +(1/2)7 + ... =

- expected number of coin flips
needed = 11/3

— NB termination guaranteed

Probabilistic models

dtmc

module die

// local state s : [0..7] init O;

// value of the dice d : [0..6] init O;
[]s=0->0.5:(s'=1) + 0.5: (s'=2);

[] =3 ->
0.5:(s'=1) + 0.5:(s'=7) & (d'=1);
[] s=4 ->
0.5:(s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);

[s=7 -> (s'=7);
endmodule
rewards "coin_flips"
[] s<7 : 1;
endrewards

- Given in PRISM’s guarded commands modelling notation

Probabilistic models

int s, d;
s=0;d=0;
while (s < 7) {
bool coin = Bernoulli(0.5);
if (s =0)
if (coin) s =1 else s =2;

else if (s = 3)
if (coin)s=1else{s=7;d=1;)

else if (s = 4)
if (coin) {s=7;d=2}else{s=7;d=3;}

}

return (d)

- Given as a (loopy) probabilistic program

Relation to programming languages

Probabilistic model checking (PMC)
— probabilistic models, state based, where transition relation
is probabilistic
— nonterminating behaviour

— focus on computing probability or expectation of an event,
or repeated events, typically via numerical methods

— considers models with nondeterminism

Probabilistic programming (PP)
— imperative or functional programming extended with
random assignment, interpreted as distribution transformers
— terminating behaviour

— focus on probabilistic inference (computing representation
of the denoted probability distribution), typically via
sampling

— no nondeterminism, but conditioning on observations

PMC vs PP

Excellent potential for cross-fertilisation
— PMC and PP different communities

— yet shared models (Markov chains) and methods (symbolic
MTBDD/ADD-based solvers)

PMC: maturing field
— variety of models, incl. nondeterministic, timed, hybrid, etc

— good for compact model representations, efficient
automata-based and controller synthesis methods

— can benefit from machine learning, cf ATVA 2014
PP: emerging field

— variety of efficient sampling-based MC methods

— good for representing and computing distributions

— cah benefit from nondeterminism, useful for under-
specification and input nondeterminism

Probabilistic programming. Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, 10
Sriram K. Rajamani. Proc. FOSE 2074, pp 167-181.

Outline

0. Motivation

1. Model checking for discrete-time Markov chains
— Definition, paths & probability spaces
— PCTL model checking
— Costs and rewards

2. Model checking for Markov decision processes
— Definition & adversaries
— PCTL model checking
— Note on LTL model checking

3. Probabilistic programs as Markov decision processes
— How to verify probabilistic programs

4. PRISM
— Functionality, supported models and logics

5. Summary and further reading

11

Part 1

Discrete-time Markov chains

Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

- States

- Transitions

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur
in discrete time-steps

Probabilities

— probability of making transitions
between states is given by
discrete probability distributions

13

Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s,;,P,L) where:
— S is a finite set of states (“state space”)
— Si,i¢ € Sis the initial state
— P:S xS — [0,1]is the transition probability matrix
where 2., P(s,s’) = 1 forall s € S

— L:S — 2APjs function labelling states with atomic
propositions

Note: no deadlock states
— i.e. every state has at least
one outgoing transition

— terminating behaviour represented
by adding self loops

14

Simple DTMC example

D = (SisiniUP)L) f(PSOT:{gy’ fall! SUCC}
L(s,)={try},
> = 150, 515 52, 83} Lzsgzifa»ill}}
init = S0 L(s5)={succ}
0 1 0 0 |
p_ O 0.01 0.01 0.98
1 0 0 0
0o 0o o 1

15 15

DTMCs: An alternative definition

. Alternative definition... a DTMC is:

— a family of random variables { X(k) | k=0,1,2,... }
— where X(k) are observations at discrete time-steps
— i.e. X(k) is the state of the system at time-step k
— which satisfies...

- The Markov property (“memorylessness”)
— Pr(X(k)=s, | X(k-1)=s,_¢, ..., X(0)=s,)
= Pr(X(k)=s, | X(k-1)=s,_;)
— for a given current state, future states are independent of past

- This allows us to adopt the “state-based” view presented so
far (which is better suited to this context)

16 16

Other assumptions made here

- We consider time-homogenous DTMCs

— transition probabilities are independent of time
— P(s,_1,5) = Pr(X(k)=s, | X(k-1)=s,_;)
— otherwise: time-inhomogenous

- We will (mostly) assume that the state space S is finite
— in general, S can be any countable set

Initial state s,;; € S can be generalised...
— to an initial probability distribution s;;; ' S — [0,1]

- Transition probabilities are reals: P(s,s’) € [0,1]
— but for algorithmic purposes, are assumed to be rationals

17 17

Paths and probabilities

- A (finite or infinite) path through a DTMC
— is a sequence of states s,5,;5,55... such that P(s;,s;,;) > 0 Vi

— represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

- To reason (quantitatively) about this system
— need to define a probability space over paths

Intuitively: o

— sample space: Path(s) = set of all 5’;3::

infinite paths from a state s
— events: sets of infinite paths froms 7
— basic events: cylinder sets (or “cones”)

— cylinder set C(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: C(ss;s,)

18

Probability space over paths

- Sample space QO = Path(s)

set of infinite paths with initial state s
Event set 2,
— the cylinder set C(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpaths) 1S the least o- algebra on Path(s) containing C(w) for all
finite paths w starting in s

Probability measure Pr,
— define probability P,(w) for finite path w = ss,...s, as:
- P,(w) = 1 if w has length one (i.e. w = s)
- P,(w) = P(s,s;) - ... - P(s,_¢,S,) otherwise
. define Pr(C(w)) = P,(w) for all finite paths- w
— Pry extends uniquely to a probability measure Prg:3p,,—[0,1]

- See [KSK76] for further details
- Can also derive the probability space for finite and infinite

sequences
20

Probability space - Example

Paths where sending fails the first time
— W = 5¢5;5;
— C(w) = all paths starting sys;s,...
— P,o(w) = P(sy,s;) - P(sy,S5)
=1-0.01 =0.01
— Pro(C(w)) = P o(w) = 0.01

Paths which are eventually successful and with no failures
— C(50S7153) U C(5051571S3) U C(5(5:57151S3) U ...
— Pro(C(syS;:53) U C(545:5:53) U C(555:51571S3) U ...)
= P.o(S0S51S3) + P.o(S0S15153) + Po(S0515151S3) + ..
=1-0.98 + 1-0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 0.9898989898...
= 98/99

21

PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H]94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — Py o [true U=10 deliver]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

22

PCTL syntax

W is true with

- PCTL syntax: / probability ~p

—¢ =truelaldAd| - |P (W] (state formulas)
- = Xod | dUkd | dUD (path formulas)
T N A : T
“ ” “bou nded “ ”
next : i until
............................ until

— define F ¢ = true U ¢ (eventually), G & = —(F =) (globally)

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,2}, k e N

- A PCTL formula is always a state formula

— path formulas only occur inside the P operator
23

PCTL semantics for DTMCs

PCTL formulas interpreted over states of a DTMC
— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

— for a state s:

—SkEa < a € L(s)
—SE O AP, < sE¢, and s E= ¢,
— s E —¢ < s E ¢ is false

- Semantics of path formulas:

— for a path w = s4s;s,... :
—wWEXo < S E
-~ wE o, Ud, < disuchthats; = ¢, and Vj<i, s; = ¢,

24

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s = P_, [@ | means that “the probability,
from state s, that P is true for an outgoing path satisfies ~p”

— example: s E P_g,: [X fail] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

— formally: s = P_, [w] < Prob(s, @) ~p
— where: Prob(s, @) = Pr,{ w € Path(s) | w = @ }
— (sets of paths satisfying Y are always measurable [Var85])

L ; 25

Quantitative properties

Consider a PCTL formula P_, [W]
— if the probability is unknown, how to choose the bound p?

- When the outermost operator of a PTCL formula is P
— we allow the form P_, [@]
— “what is the probability that path formula @ is true?”

Model checking is no harder: compute the values anyway
Useful to spot patterns, trends

PRISM [21]

—o—) =0.01
—a—) =0.02
—a—) =0.03
—— L =0.04
Analytical [7]
~%-e- 1-0.01

Example
— P_, [Ferr/total>0.1]
— “what is the probability

Probability

that 10% of the NAND i i:g‘gg
gate outputs are erroneous?’ - 4- 1=0.04

Number of restorative stages 28

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,H)94,CY95]
— inputs: DTMC D=(S,s,,;,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k= ¢} = setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— sometimes, want to check that s = d V s €S, i.e. Sat(dp) = S
— sometimes, just want to know if s,.. = &, i.e. if 5, ., € Sat(d)

- Sometimes, focus on quantitative results
— e.g. compute result of P=? [F error]
— e.g. compute result of P=? [F=k error] for 0<k<100

29

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) — P_y 45 [—fail U succ]

- For the non-probabilistic operators:

— Sat(true) = S
— Sat(a) ={seS|ael(s)}

— Sat(—$) = S\ Sat(d) / \

— Sat(d, A b,) = Sat(d;) N Sat(d,) & Pooos [+ U -]

. For the P~p [@] operator - %D B é@

— need to compute the
probabilities Prob(s,) © ©
for all states s € S fail fail

— focus here on “until”
case: Y = ¢, U §, 30

b

PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U ¢,) forall s € S
First, identify all states where the probability is 1 or O

— Sves = Sat(P.; [, U ¢,])

— S"o = Sat(P_o[¢, U,]
- Then solve linear equation system for remaining states

- We refer to the first phase as “precomputation”
— two algorithms: ProbO (for S"°) and Prob1 (for Sves)
— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons

— reduces the set of states for which probabilities must be
computed numerically (which is more expensive)

— gives exact results for the states in S¥¢s and S"° (no round-off)

— for P_,[-] where p is 0 or 1, no further computation required
31

PCTL until - Linear equations

Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations:

1 if se S
Prob(s, ¢, U d,) = | 0 if se S™
ZP(s,s')- Prob(s', ¢, U ¢,) otherwise

s'eS
N

— can be reduced to a system in |S?| unknowns instead of |S|
where S = S\ (Sves U Sno)

- This can be solved with (a variety of) standard techniques
— direct methods, e.g. Gaussian elimination

— iterative methods, e.g. Jacobi, Gauss-Seidel, ...
(preferred in practice due to scalability)

— PRISM works with a compact MTBDD-based matrix
32

PCTL until - Example

- Example: P_,gs[ma UDb]

33

PCTL until - Example

. Example: P_yg[-aUb]

SnO =
Sat(P_, [-aUb])
1 0.3
a
Syes —
0.1 07 Sat(P., [-aUb])

34

PCTL until - Example

Example: P s [-aUb]

Sno —
Sat(P_, [-aUb])

Let x;, = Prob(s, —a U b)

i a
® SOIVe ; Syes _
0.1 07 Sat(P., [-aUb])
—(0
X; = X3 =0 :

Xo = 0.1%,+0.9x, = 0.8
Prob(-aUb) =x=1[0.8,0,8/9,0, 1, 1]

Sat(P>0_8 [—aUb]) — { 52’54’55} 35

PCTL model checking - Summary

- Computation of set Sat(®) for DTMC D and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X @ : one matrix-vector multiplication, O(|S|?)
— &, U=k d, : k matrix-vector multiplications, O(k|S|?)
— &, U &, : linear equation system, at most |S| variables, O(|S|3)

- Complexity:

— linear in |®| and polynomial in |S]

36

Reward-based properties

- We augment DTMCs with rewards (or, conversely, costs)

— real-valued quantities assigned to states and/or transitions
— allow a wide range of quantitative measures of the system

— basic notion: expected value of rewards (or costs)

— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— the expected value of the reward at some time point

Cumulative properties
— the expected cumulated reward over some period

37

Rewards in the PRISM language

rewards “total_queue_size” rewards “time”
true : queuel +queue?; true : 1;
endrewards endrewards
(instantaneous, state rewards) (cumulative, state rewards)
rewards “power”
rewards "dropped"” sleep=true : 0.25;
[receive] g=g_max : 1; sleep=false : 1.2 * up;
endrewards [wake] true : 3.2;
endrewards

(cumulative, transition rewards)
(g = queue size, g_max = max.
queue size, receive = action label)

(cumulative, state/trans. rewards)
(up = num. operational components,
wake = action label)

38

DTMC reward structures

For a DTMC (S,s;,;,P,L), a reward structure is a pair (p,U)
— p:S — R_,is the state reward function (vector)
—L:S XS — R_,is the transition reward function (matrix)

Example (for use with instantaneous properties)

— “size of message queue”: p maps each state to the number of
jobs in the queue in that state, L is not used

Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and L is zero
(equivalently, p is zero and L returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and v as the energy cost of
each transition 39

PCTL and rewards

Extend PCTL to incorporate reward-based properties
— add an R operator, which is similar to the existing P operator

expected :
. reward is ~r :

— wherer e R_,, ~ € {<,>,<,2}, ke N

R.. [-] means “the expected value of - satisfies ~r”

40

Reward formula semantics

- Formal semantics of the three reward operators

— based on random variables over (infinite) paths

- Recall:

- sEP [Ww] & Pry{wePath(s) | w=yP}~p

For a state s in the DTMC (see [KNPO7a] for full definition):
—sER_[IFK] < Exp(s, X_) ~r
—sER_[C=k] & Exp(s, Xc) ~r
—sSER,[F®] < Exp(s, Xpge) ~ 1

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,

42

Reward formula semantics

. Definition of random variables:
— for an infinite path w= sys,5,...

X|=k ((D) = E(Sk)

Y (w) - 0 ifk=0
C<k - Z::o] E(Si)"‘L(Si’SiH) otherwise

0 if s, € Sat(d)
Xep(W) =1 oo if s. ¢ Sat(e) for alli> 0
i Zikjf p(s;)+(s,s,,) otherwise

— where kd, =min{ j | S; F $ }

43

Model checking reward properties

Instantaneous: R_, [I7¢]
+ Cumulative: R_, [C=k]

— variant of the method for computing bounded until
probabilities (not discussed)

— solution of recursive equations

Reachability: R_, [F ¢]
— similar to computing until probabilities
— precomputation phase (identify infinite reward states)
— then reduces to solving a system of linear equation

For more details, see e.g. [KNPO7a]
— complexity not increased wrt classical PCTL

44

Part 2

Markov decision processes

Recap: Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)

— state-transition systems augmented with probabilities
Formally: DTMC D = (S, s,,, P, L) where:

— Sis a set of states and s,,;, € S is the initial state

— P:S xS - [0,1]is the transition probability matrix

— L:S — 2AP |abels states with atomic propositions

— define a probability space Pr_ over paths Path,

Properties of DTMCs
— can be captured by the logic PCTL
— e.g. send — P_, s [F deliver]

— key question: what is the probability
of reaching states T < S from state s?

— reduces to graph analysis + linear equation system

501 lsucc}

46

Nondeterminism

- Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

Concurrency - scheduling of parallel components

— e.g. randomised distributed algorithms - multiple
probabilistic processes operating asynchronously

Underspecification - unknown model parameters

— e.g. a probabilistic communication protocol designed for
message propagation delays of between d,,;, and d

max

Unknown environments — unknown inputs
— e.g. probabilistic security protocols - unknown adversary

47

Markov decision processes

Markov decision processes (MDPs)
— extension of DTMCs which allow nondeterministic choice

Like DTMCs:

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur in discrete time-steps

Probabilities and nondeterminism {heads}

— in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

48

Markov decision processes

Formally, an MDP M is a tuple (S,s;,;;,%,0,L) where:
— Sis a set of states (“state space”)
— Si,ie € Sis the initial state
— o is an alphabet of action labels

— 0 € S X o X Dist(S) is the transition
probability relation, where Dist(S) is the set 0.3 {tails}
of all discrete probability distributions over S

— L:S — 2A%is a labelling with atomic propositions

Notes:
— we also abuse notation and use 6 as a function
— j.e. 8 : S — 20xDist®) where 8(s) = { (a,M) | (s,a,u) € 0}
— we assume 0 (s) is always non-empty, i.e. no deadlocks

— MDPs, here, are identical to probabilistic automata [Segala]
. usually, MDPs take the form: o : S X o — Dist(S) 49

Simple MDP example

- A simple communication protocol
— after one step, process starts trying to send a message

— then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart

50

Example - Parallel composition

Asynchronous parallel 0.5
composition of two w]
3-state DTMCs

Action labels
omitted here

Paths and strategies

- A (finite or infinite) path through an MDP {heads}

— is a sequence (s,...s_) of (connected)
states

— represents an execution of the system

— resolves both the probabilistic and
nondeterministic choices

- A strategy o (aka. “adversary” or “policy”) of an MDP
— is a resolution of nondeterminism only

— is (formally) a mapping from finite paths to distributions on
action-distribution pairs

— induces a fully probabilistic model
— i.e. an (infinite-state) Markov chain over finite paths
— on which we can define a probability space over infinite paths

52

Classification of strategies

- Strategies are classified according to

randomisation:

— o is deterministic (pure) if o(s,...s,) is a point distribution, and
randomised otherwise

memory:
— o0 is memoryless (simple) if o(s,...s,) = o(s,) for all s,...s_

— o is finite memory if there are finitely many modes such as
0(s,...s,) depends only on s_and the current mode, which is
updated each time an action is performed

— otherwise, g is infinite memory

.- A strategy o induces, for each state s in the MDP:
— a set of infinite paths Patho (s)
— a probability space Pro, over Path? (s)

53

Example strategy

- Fragment of induced Markov chain for strategy which picks

b then cin s,

finite—-memory,
deterministic

54

PCTL

- Temporal logic for properties of MDPs (and DTMCs)
— extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P

— quantitative extension of CTL’s A and E operators

PCTL syntax:

—¢ =truelaldAd|—-|P [w] (state formulas)
—P = Xod|dUskd|dUD (path formulas)

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=}, ke N

- Example: send — P_;os [true U='0 deliver]

55

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
— can only define probabilities for a specific strategy o

— s = P_, [@] means “the probability, from state s, that @ is
true for an outgoing path satisfies ~p for all strategies o’

— formally s=P_[w] < Pro) ~ p for all strategies o
— where we use Pr.°(p) to denote Pr,°{ w € Path,? | w = ¢ }

56

Minimum and maximum probabilities

- Letting:

— Pr,max(@) = sup, Pr.o(p)
— Pr,mn(y) = inf; Pr,o(y)

- We have:

—if~e{z,>} thenseP_[w] & Prmn(y) ~p
—if~e{<,slthens=P_[Ww] & Prm>(yp) ~p
- Model checking P_,[@] reduces to the computation over all
strategies of either:

— the minimum probability of ¢ holding

— the maximum probability of Y holding
+ Crucial result for model checking PCTL until on MDPs

— memoryless strategies suffice, i.e. there are always
memoryless strategies o,,,, and o,,,, for which:

— Promin(y) = Pr,min(p) and Pr.%max(y) = Pr,min(y)

max

57

Quantitative properties

For PCTL properties with P as the outermost operator
— quantitative form (two types): P, [w]land P, ., [W]

— i.e. "what is the minimum/maximum probability (over all
adversaries) that path formula p is true?”

— corresponds to an analysis of best-case or worst-case
behaviour of the system

— model checking is no harder since compute the values of
Pr.min(p) or Pr,m2(y) anyway

1

— useful to spot patterns/trends
0.8
£06
Example: CSMA/CD protocol 3°
Q0
— “min/max probability £ 04,
that a message is sent 0.2l |: ——maximum
1 ~“a\{e_rage
within the deadline” — minimum
gOO 1000 1200 1400 1600 1800

T
58

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
— inputs: MDP M=(S,s,,;;,x,0,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k= ¢} = setof states satisfying ¢

- Basic algorithm same as PCTL model checking for DTMCs
— proceeds by induction on parse tree of ¢
— non-probabilistic operators (true, a, —, A) straightforward

- Only need to consider P_, [¢ | formulas

— reduces to computation of Pr,m"(p) or Pr,m2(yp) for all s € S
— dependent on whether ~ € {>=,>} or ~ € {<,<}

— these slides cover the case Pr,""(¢, U &,), i.e. ~ € {=,>}

— case for maximum probabilities is very similar

59

PCTL until for MDPs

- Computation of probabilities Pr;m"(¢, U ¢,) forall s € S
First identify all states where the probability is 1T or 0

— “precomputation” algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
— either: solve linear programming problem
— or: approximate with an iterative solution method
— or: use policy iteration

Example:
P.,[Fa]

P.,[trueUa]

60

PCTL until - Precomputation

Identify all states where Pr,mn(db, U ¢,)is 1 or 0
— Sves = Sat(P.; [d, U, 1), S"°=Sat(—P.,[P; U,])
- Two graph-based precomputation algorithms:

— algorithm Prob1A computes Syes

. for all strategies the probability of satisfying ¢, U &, is 1
— algorithm ProbOE computes S

. there exists a strategy for which the probability is 0

Sves = Sat(P_, [Fa])

Sno = Sat(—=P_.,[Fal)

61

Method 1 - Linear programming

- Probabilities Pr,min(d, U ¢,) for remaining states in the set
S? =S\ (S¥es U S"°) can be obtained as the unique solution
of the following linear programming (LP) problem:

maximize ZS o X subject to the constraints
X, < D u(s")- X, + D u(s")
s'eS’ s'eSYes

for all s € S” and for all (a, n) € 8(s)

- Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

- This can be solved with standard techniques

— e.g. Simplex, ellipsoid method, branch-and-cut 6

Example — PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xo = X
° XO < 025X0 + 05
e X; =0.1-x5+0.5-x; + 0.4

63

Example — PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xg < X
e« Xo = 2/3
e X <0.2-%x,+ 0.8

| xo<2/3 | x;, <0.2-x,
' ' + 0.8

2/3 1 0]
64

— PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xg < X
e« Xo = 2/3
e X <0.2-%x,+ 0.8

Solution:

|] ma% (XO’ x])

(2/3, 14/15)

2/3 1 65

— PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xg < X
e« Xo = 2/3
e X <0.2-%x,+ 0.8

2,
X; <0.2:xy + 0.8 _ ma%
wo memoryless
/'/' adversaries
XO = X] /

0 2/3 1 66

Method 2 - Value iteration

- For probabilities Prym"(¢, U ¢,) it can be shown that:

— Pr,min(, U &,) = lim,_ x.™ where:

-

] ifs e §¥
0 ifse S™
(n)
X, =) 0 ifseS andn=0
min(a,u)eSteps(s) [Z H(S')' XS'(n])J if s e S? andn>0
L s'eS

- This forms the basis for an (approximate) iterative solution
— iterations terminated when solution converges sufficiently

67

Example — PCTL until (value iteration)

Compute: Pr,™n(F a)
Sves = {x,}, Sn° ={x3}, S’ = {Xq, X}

[Xo(n),xl(n),xz(n),x?)(n)]
n=0: [0,0,1,0]

n=1: [min(0,0.25-0+0.5),
0.1-0+0.5-0+0.4, 1, 0]
=10,0.4,1,0]

2: [min(0.4,0.25-0+0.5),
0.1-0+0.5-0.4+0.4,1, 0]
=[10.4,0.6,1,0]

n=3:

n

68

Example — PCTL until (value iteration)

[XO(“),X1(”),X2(“),X3(”)]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, O]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

5 3 3 3 3 3 3 3 35 5
I
© X NV A WN 7O

[0.666667, 0.933332, 1, 0]
[0.666667, 0.933332, 1, 0]
~[2/3,14/15,1,0]

> S
[
N N
— O

69

Example - Value iteration + LP

[Xo(n),X1(n),X2(n),X3(n)]
[0.000000, 0.000000, 1, 0]

[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, O]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

5 3 3 3 3 3 3 3 35 5
I
© X NV A WN 7O

2/3

v

[0.666667, 0.933332, 1, 0]
[0.666667, 0.933332, 1, 0]
~[2/3,14/15,1,0]

X
o
> S
[
N N
— O

70

Method 3 - Policy iteration

- Value iteration:

— iterates over (vectors of) probabilities
Policy iteration:
— iterates over strategies (“policies”)

1. Start with an arbitrary (memoryless) strategy o

2. Compute the reachability probabilities Pro (F a) for o
3. Improve the strategy in each state

- 4. Repeat 2/3 until no change in strategy

- Termination:

— finite number of memoryless strategies
— improvement in (minimum) probabilities each time

/1

Method 3 - Policy iteration

1. Start with an arbitrary (memoryless) strategy o
— pick an element of d(s) for each state s € S
- 2. Compute the reachability probabilities Pro(F a) for o
— probabilistic reachability on a DTMC
— i.e. solve linear equation system
- 3. Improve the strategy in each state

¢ (s) = argmin {Zu(s')- Pro(Fa) | (a,pn) e 6(5)}

s'eS

- 4. Repeat 2/3 until no change in strategy

72

Example - Policy iteration

Arbitrary strategy o:
Compute: Pro(F a)
Let x; = Pr °(F a)

* Xy = X

*X; = 0.1-x5 + 0.5-x;, + 0.4
Solution:

Pro(Fa)=1[1,1,1,0]

Refine o in state s;:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}
= min{1, 0.75} = 0.75

73

Example - Policy iteration

Refined strategy o’:
Compute: Pro'(F a)

Let x; = Pr o (F a)

x,=1, x3=0 and:

* Xy = 0.25:x, + 0.5

*X; = 0.1-x5 + 0.5-x; + 0.4

Solution:
Pro'(Fa)=1[2/3,14/15,1,0]

This is optimal

/4

Example - Policy iteration

PCTL model checking - Summary

- Computation of set Sat(®) for MDP M and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X @ : one matrix-vector multiplication, O(|S|?)
— &, U=k @, : k matrix-vector multiplications, O(k|S|?)

— @, U @, : linear programming problem, polynomial in [S]
(assuming use of linear programming)

- Complexity:

— linear in |®| and polynomial in |S]
— S is states in MDP, assume |8(s)| is constant

76

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit

Extend logic PCTL with R operator, for “expected reward”
— as for PCTL, either R_ [...], Rjijns [.- JOor Ry o [-2]

Some examples:
— Ryine? [179], Ry [C=90], R_..> [F “end”]
— “the minimum expected queue size after exactly 90 seconds”
— “the maximum expected power consumption over one hour”

— the maximum expected time for the algorithm to terminate
77

Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:

— LTL [Pnu77] - the non-probabilistic linear-time temporal logic
— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow path operators to be combined

In PCTL, temporal operators always appear inside P_, [...]

— (and, in CTL, they always appear inside A or E)
— in LTL (and PCTL*), temporal operators can be combined

78 78

LTL + probabilities

- Same idea as PCTL: probabilities of sets of path formulae
— for a state s of a DTMC and an LTL formula y:

— Prob(s, W) = Pr,{ w € Path(s) | w = P}

— all such path sets are measurable (see later)

- For MDPs, we can again consider lower/upper bounds
— Pmin(s, W) = inf _aq, Prob9(s, p)

_ pmax(s’ L|)) = SUPgeAdy PrObG(S’ \-IJ)
— (for LTL formula)

- For DTMCs or MDPs, an LTL specification often comprises
an LTL (path) formula and a probability bound

—e.g.P.g99[F(req A Xack)]

79 79

LTL model checking for DTMCs

- Model check LTL specification P_,[@ | against DTMC D

1. Generate a deterministic Rabin automaton (DRA) for @
— build nondeterministic Biichi automaton (NBA) for ¢ [VW94]
— convert the NBA to a DRA [Saf88]

.+ 2. Construct product DTMC D®A

. 3. Identify accepting BSCCs of DQA

- 4. Compute probability of reaching accepting BSCCs
— from all states of the D®A

- 5. Compare probability for (s, gq.) against p for each s

-+ Qualitative LTL model checking - no probabilities needed

80 80

PCTL* model checking

PCTL* syntax:
~¢ u=truelaldAad|—d|P,[w]

~p = |lwAap | WXy |lwuy
Example:
—P>p[GF(send—»P>o[Fack])]

PCTL* model checking algorithm
— bottom-up traversal of parse tree for formula (like PCTL)
— to model check P_, [@]
. replace maximal state subformulae with atomic propositions
. (state subformulae already model checked recursively)
. modified formula @ is now an LTL formula
. which can be model checked as for LTL

81 81

LTL model checking for MDPs

- Model check LTL specification P_,[@ | against MDP M

1. Convert problem to one needing maximum probabilities
— e.g. convertP_, []toP_ [Y]

- 2. Generate a DRA for @y (or =)

— build nondeterministic Biichi automaton (NBA) for ¢ [VW94]
— convert the NBA to a DRA [Saf88]

.+ 3. Construct product MDP M®A

+ 4. Identify accepting end components (ECs) of MQA

- 5. Compute max. probability of reaching accepting ECs
— from all states of the D®A

- 6. Compare probability for (s, gq.) against p for each s

82 82

Complexity

- Complexity of model checking LTL formula ¢ on DTMC D
— is doubly exponential in || and polynomial in |D]

- Converting LTL formula y to DRA A

— for some LTL formulae of size n, size of smallest DRA is

. In total: O(poly(|D|,|Al)) 2%
- In practice: || is small and |D]| is large

- Can be reduced to single exponential in ||

— see e.g. [CY88,CY95]

- Complexity of model checking LTL formula ¢ on MDP M
— is doubly exponential in || and polynomial in [M|
— unlike DTMCs, this cannot be improved upon

83 83

Part 3

Probabilistic programs as MDPs

Probabilistic software

Consider sequential ANSI C programs

— support functions, pointers, arrays, but not dynamic memory
allocation, unbounded recursion, floating point operations

- Add function bool coin(double p) for probabilistic choice
— for modelling e.qg. failures, randomisation

- Add function int ndet(int n) for nondeterministic choice
— for modelling e.g. user input, unspecified function calls

- Aim: verify software with failures, e.g. wireless protocols
— extract models as Markov decision processes

— properties: maximum probability of unsuccessful data
transmission, minimum expected number of packets sent

Develop abstraction-refinement framework [VMCAIQ9]
85

Example - sample target program

bool fail = false;
intc =0;
int main ()

{

// nondeterministic

¢ =num_to_send (); minimum/maximum probability of
while (! fail && ¢ > 0) the progrém P Y

// probabilistic terminating with fail being true:
fail = send_msg ();
C--;

®: “what is the

86

Example - simplified

bool fail = false;
int c = 0;
int main ()

{
// nondeterministic

c = ndet (3);

while (! fail && ¢ > 0)

{
// probabilistic
fail = coin (0.1);
C --;

—

input :
/ nondeterminism

®: “what is the

minimum/maximum probability of

the program

terminating with fail being true?”

~ Bernoulli
. distribution

87

Abstraction-refinement loop

Probabilistic B%OIS.Tn . Abstraction
program propabpilistic (game)
SAT program model
model -based construction model
extraction abstraction checking
ANSI-C : lerror=e] Bounds and
program Predicates strategies
refinement
l [error<e]
Model extraction: extension of goto-cc
— function inlining, constant/invariant Return
propagation, side-effect free expressions, bounds

points-to analysis, etc.
Probabilistic program
— probabilistic control flow graph
— Markov decision process (MDP) semantics

88

Back to example

bool fail = false;
intc =0;
int main ()
{
// nondeterministic
c = ndet (3);
while (! fail && ¢ > 0)
{
// probabilistic
fail = coin (0.1);
C--;

Probabilistic program

¥
1
| c=ndet(3)
=c-1
) i
4 [Mfail &&| \ '(c>0)]
c>0 |
fail=coin(0.1) 3] [3

89

Probabilistic program as MDP

Probabilistic program MDP semantics

¥
1

c=c-1 2'

c=ndet(3)
[fail ||

4 [Mfail &&| \ '(¢>0)]
c>0]

fail=coin(0.1) 3 5

minimum/maximum probability of
the program terminating with fail
being true is 0 and 0.19,
respectively

90

Experimental results

- Successfully applied to several Linux network utilities:

— TFTP (file-transfer protocol client)

— 1 KLOC of non-trivial ANSI-C code

— Loss of packets modelled by probabilistic choice

— Linux kernel calls modelled by nondeterministic choice

Example properties
— “maximum probability of establishing a write request”

— “maximum expected amount of data that is sent before
timeout”

— “maximum expected number of echo requests required to
establish connectivity”

Implemented through extension of CProver and PRISM
91

Part 4

PRISM

Tool support: PRISM

PRISM: Probabilistic symbolic model checker [CAV11]
— developed at Birmingham/Oxford University, since 1999
— free, open source software (GPL), runs on all major OSs

- Support for:

_ models: DTMCs, CTMCs, MDPs, PTAs, SMGs, ... | &

— properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, .
Features:

— simple but flexible high-level modelling language

— user interface: editors, simulator, experiments, graph plotting

— multiple efficient model checking engines (e.g. symbolic)

— New! strategy synthesis, stochastic game models (SMGs) ,
multiobjective verification, parametric models

- See: http://www.prismmodelchecker.org/

93

PRISM GUI: Editing a model

8 00 PRISM 4.1

File Edit Model Properties Simulator Log Options

Ao [o/e[m]x]

PRISM Model File: /Users/dxp/prism-www/tutorial/examples/power/power_policyl.sm

+ Model: p.ower_pollcyl‘sm : e IT———————————_————_————
@ Type: CTMC 10
@ I Modules 11| // Service Queue (50Q)
? sQ 12| // Stores requests which arrive Into the system to be processed.
9 9q 13
® min: 0 : 14| // Maximum queue size
® max: g_max 15| const int q_max = 20;
@ init: 0 A 16
] SP 17| // Request arrival rate
® dsp 18| const double rate_arrive = 1/0.72; // (mean Inter-arrival time Is 8.72 seconds)
® min: 0 19
® max: 2 20| module 50
e init: 0 I
PM 22 /S q = number u:" f‘euuesfs currently In queue
@ 3 Constants 33 q : [0..q_max] init 0;
©- @ q_max : Int 25 // A request arrives
©- @ rate_arrive : double 26 [request] true -> rate_arrive : (q'=min(q+1,q_max));
© @ rate_serve : double 27 // A request Is served
Lo rate_s2i double 28 [serve]l g>1 -> (q'=q-1);
©- @ rate_i2s : d_ouble 29 // Last request Is served
©- @ q_trigger : int 39 [serve_last] g=1 -> (q'=g-1);
31
32 endmodule
33
B -
as
36| // Service Provider (SP)
37| // Processes requests from service queve.
38| // The 5P has 3 power states: sleep, Idle and busy
39
48| // Rate of service (average service time = @.008s)
41| const double rate_serve = 1/0.008;
Built Model 42| // Rate of switching from sleep to Idle (average transition time = 1.65)
States: 42 43| const double rate_s2i = 1/1.6;
44| // Rate of switching from Idle to sleep (average transition time = 8.675)
Initial states: 1 45| const double rate_i2s = 1/0.67;
Transitions: 81 6 vl

| Model

Building model... don. |
- —
94

PRISM GUI: The Simulator

e 00 PRISM 4.1
File Edit Model Properties Simulator Log Options
el o | e
Automatic exploration Manual exploration : (State labels } Path formulae] Path information]
| simulate Module/(action] | Rate Update 5 init
» Left 0.006 left_n'=2 ¥ deadlock
| teps |t Right 0.002 right_n'=0 & mini
a - inimum
Backtracking Line 2.0E-4 line_n'=false XK premium
[Q ik Toleft 2.5E-4 mle.h_n'=lallse
[startLeft) 10.0 left'=true, r'=true
[Steps i ‘ h [¥ Generate time automatically
-
Path
Step Time Left Right Repair... Line Toleft ToRight Rewards
Action J # |Time (+) left_n | left right_n ‘ right r line [line_n toleft ‘ toleft_n | toright Itorighl_n "perce...‘ '!tme_...[[“num..
0o |0 (false % (false) | (false) | (true) | (false) | (true) | (false) | (true @ ©
Right 1 12.0649 4
ToRight 2 |12.0806 (false
[startRight] 3 12.1674 true 8
[repairRight] 4 12.2677 ® false 0
Left 5 12.2809
Left 6 12.3071
Left 7 |12.3446 @
Left 8 12.3653
Right 9 12.4059)}
[startLeft] 10 |12.4583 true
[repairLeft] 11 15.6657 (false)
[startLeft] 12 |15.6834 (true)
[repairLeft) 13 |15.7585 @
Right 14 15.8505 3
Right 15 |15.874
Right 16 15.9084 | ! I , L , L L L ! C

I Model [Properties I Simulator LLog I

[Loading model... done.

95

PRISM GUI: Model checking and graphs

8 00 PRISM 4.1
| Eile Edit Model Properties Simulator Log Options
al 3 5 [5] [B
Properties list: /Users/dxp/prism-www/tutorial/examples/power/power.csl*
Properties 4|, Experiments
»
P=? [F[T,T) q=q_max | . ')
S=?[q=q_max]
& Re7[1aT] Property | Defined Const..| Progress Stats | Method
¥ R=2(5) R=7[1=T]) T=0:1:40 Done Verification
" Ri — R=7[1=T] q_trigger=3:3... Done Verification
N <1. -
= l R=7[I=T] q_trigger=5,T... Done Verification
K R<2(5] R=?[1=T] q_trigger=5,T... Done Verification
R=?[S] q_trigger=2:1... Done Verification
R=?[S] q_trigger=2:1... 49 Stopped Verification
What is the long-run expected size of the queue?
Constants ((Graph 1| Graph2
Name I Type Value Z Expected queue size attime T
T int
12.5 1
- 10.0 o
g f \' e e ¥ -y - i -
$ 7s5) e \\ gt ey qu!gger—E
- N S S SIS SR SR -=-q_trigger=6
Labels g - Wy - q_trigger=9
Name Definition g 509 \"v"'"'""” --q_trigger=12
b} "-1.. - -+ q_trigger=15
2.5 1 q_trigger=18
0.0 = = ; = .
0 10 15 20 25 30 35 40
T

W Properties lelllmr LE’J

Verifying properties... done.

96

Probabilistic verification in action

- Bluetooth device discovery protocol 0
— frequency hopping, randomised delays

— low-level model in PRISM, based on
detailed Bluetooth reference documentation

— numerical solution of 32 Markov chains, ; |Rd|f tha)
. A expected time to hear two replies (sec
each approximately 3 billion states

— identified worst-case time to hear one message, 2.5 seconds

N

—
(%)

—_

number of states

b
o

(=)

- FireWire root contention
— wired protocol, uses randomisation
— model checking using PRISM

— optimum probability of leader election
by time T for various coin biases

— demonstrated that a biased coin can improve performance

97

Probabilistic verification in action

DNA transducer gate [Lakin et al, 2012]

— DNA computing with a restricted
class of DNA strand displacement
structures

— transducer design due to Cardelli

— automatically found and fixed
design error, using Microsoft’s DSD and PRISM

—— Terminate
——Error
—— Success

Probability

Microgrid demand management protocol [TACAS12,FMSD13]

— designed for households to actively manage
demand while accessing a variety of energy
sources

— found and fixed a flaw in the protocol, due to
lack of punishment for selfish behaviour

— implemented in PRISM-games

Summary

Overview of probabilistic model checking
— discrete-time Markov chains and Markov decision processes
— property specifications in temporal logics

— model checking methods combine graph-theoretic
techniques, automata-based methods, numerical equation
solving and optimisation

Ongoing work (not discussed)

— further models (stochastic games, probabilistic timed/hybrid
automata)

— controller/strategy synthesis
— runtime verification
— multiobjective verification and synthesis
— sampling-based exploration
Potential for connections to probabilistic programming

— integrate with probabilistic inference 99

Further material

Reading

— [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.

Automated Verification Techniques for Probabilistic Systems.
LNCS vol 6659, p53-113, Springer 2011.

— [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic
Model Checking. LNCS vol 4486, p220-270, Springer 2007.

— [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and
Katoen, MIT Press 2008

- See also

— 20 lecture course taught at Oxford
— http:/ /www.prismmodelchecker.org/lectures/pmc/

PRISM website www.prismmodelchecker.org

100

