

Probabilistic model checking

Marta Kwiatkowska

Department of Computer Science, University of Oxford

POPL 2015 tutorial, Mumbai, January 2015

What is probabilistic model checking?

- Probabilistic model checking...
 - is model checking applied to probabilistic models
- Probabilistic models...
 - can be derived from high-level specification or extracted from probabilistic programs

Model checking

Probabilistic model checking

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in wireless coordination protocols
 - as a symmetry breaker

```
bool short_delay = Bernoulli(0.5) // short or long delay
```

- Modelling uncertainty
 - to quantify rate of failures

```
bool fail = Bernoulli(0.001) // success wp 0.999 or failure
```

- Modelling performance and biological processes
 - reactions occurring between large numbers of molecules are naturally modelled in a stochastic fashion

```
float binding_rate = exp(2.5) // exponentially distributed
```

Probability example

- Modelling a 6-sided die using a fair coin
 - algorithm due to Knuth/Yao:
 - start at 0, toss a coin
 - upper branch when H
 - lower branch when T
 - repeat until value chosen
- Probability of obtaining a 4?
 - THH, TTTHH, TTTTTHH, ...
 - Pr("eventually 4")

$$= (1/2)^3 + (1/2)^5 + (1/2)^7 + ... = 1/6$$

- expected number of coin flips needed = 11/3
- NB termination guaranteed

Probabilistic models

```
dtmc
module die
// local state s : [0..7] init 0;
// value of the dice d:[0..6] init 0;
                                                               0.5
[] s=0 \rightarrow 0.5 : (s'=1) + 0.5 : (s'=2);
[] s=3 ->
                                                             0.5
 0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);
[] s=4 ->
 0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);
[] s=7 -> (s'=7);
endmodule
rewards "coin_flips"
[] s<7:1;
endrewards
```

Given in PRISM's guarded commands modelling notation

Probabilistic models

```
int s, d;
s = 0; d = 0;
while (s < 7) {
                                                                   0.5
  bool coin = Bernoulli(0.5);
  if (s = 0)
    if (coin) s = 1 else s = 2;
                                                                 0.5
 else if (s = 3)
    if (coin) s = 1 else \{s = 7; d = 1;\}
 else if (s = 4)
    if (coin) \{s = 7; d = 2\} else \{s = 7; d = 3;\}
                                                                            0.5
return (d)
```

· Given as a (loopy) probabilistic program

Relation to programming languages

- Probabilistic model checking (PMC)
 - probabilistic models, state based, where transition relation is probabilistic
 - nonterminating behaviour
 - focus on computing probability or expectation of an event, or repeated events, typically via numerical methods
 - considers models with nondeterminism
- Probabilistic programming (PP)
 - imperative or functional programming extended with random assignment, interpreted as distribution transformers
 - terminating behaviour
 - focus on probabilistic inference (computing representation of the denoted probability distribution), typically via sampling
 - no nondeterminism, but conditioning on observations

PMC vs PP

- Excellent potential for cross-fertilisation
 - PMC and PP different communities
 - yet shared models (Markov chains) and methods (symbolic MTBDD/ADD-based solvers)
- PMC: maturing field
 - variety of models, incl. nondeterministic, timed, hybrid, etc.
 - good for compact model representations, efficient automata-based and controller synthesis methods
 - can benefit from machine learning, cf ATVA 2014
- PP: emerging field
 - variety of efficient sampling-based MC methods
 - good for representing and computing distributions
 - can benefit from nondeterminism, useful for underspecification and input nondeterminism

Outline

- 1. Model checking for discrete-time Markov chains
 - Definition, paths & probability spaces
 - PCTL model checking
 - Costs and rewards
- 2. Model checking for Markov decision processes
 - Definition & adversaries
 - PCTL model checking
 - Note on LTL model checking
- 3. Probabilistic programs as Markov decision processes
 - How to verify probabilistic programs
- 4. PRISM
 - Functionality, supported models and logics
- 5. Summary and further reading

Part 1

Discrete-time Markov chains

Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- States
 - discrete set of states representing possible configurations of the system being modelled
- Transitions
 - transitions between states occur in discrete time-steps
- Probabilities
 - probability of making transitions between states is given by discrete probability distributions

Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - P: S × S → [0,1] is the transition probability matrix where $\Sigma_{s' \in S}$ P(s,s') = 1 for all s ∈ S
 - L : $S \rightarrow 2^{AP}$ is function labelling states with atomic propositions
- Note: no deadlock states
 - i.e. every state has at least one outgoing transition
 - terminating behaviour represented by adding self loops

Simple DTMC example

$$D = (S, s_{init}, P, L)$$

$$S = {s_0, s_1, s_2, s_3}$$

 $s_{init} = s_0$

AP = {try, fail, succ}

$$L(s_0) = \emptyset$$
,
 $L(s_1) = \{try\}$,
 $L(s_2) = \{fail\}$,
 $L(s_3) = \{succ\}$

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

DTMCs: An alternative definition

- Alternative definition... a DTMC is:
 - a family of random variables $\{X(k) \mid k=0,1,2,...\}$
 - where X(k) are observations at discrete time-steps
 - i.e. X(k) is the state of the system at time-step k
 - which satisfies…
- The Markov property ("memorylessness")
 - $Pr(X(k)=s_k \mid X(k-1)=s_{k-1}, ..., X(0)=s_0)$ = $Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$
 - for a given current state, future states are independent of past
- This allows us to adopt the "state-based" view presented so far (which is better suited to this context)

Other assumptions made here

- We consider time-homogenous DTMCs
 - transition probabilities are independent of time
 - $P(s_{k-1},s_k) = Pr(X(k)=s_k | X(k-1)=s_{k-1})$
 - otherwise: time-inhomogenous
- We will (mostly) assume that the state space S is finite
 - in general, S can be any countable set
- Initial state $s_{init} \in S$ can be generalised...
 - to an initial probability distribution s_{init} : S → [0,1]
- Transition probabilities are reals: $P(s,s') \in [0,1]$
 - but for algorithmic purposes, are assumed to be rationals

Paths and probabilities

- A (finite or infinite) path through a DTMC
 - is a sequence of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \ \forall i$
 - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
- To reason (quantitatively) about this system
 - need to define a probability space over paths
- Intuitively:
 - sample space: Path(s) = set of all infinite paths from a state s
 - events: sets of infinite paths from s
 - basic events: cylinder sets (or "cones")
 - cylinder set $C(\omega)$, for a finite path ω
 - = set of infinite paths with the common finite prefix ω
 - for example: C(ss₁s₂)

Probability space over paths

- Sample space Ω = Path(s)
 set of infinite paths with initial state s
- Event set $\Sigma_{Path(s)}$
 - the cylinder set $C(\omega) = \{ \omega' \in Path(s) \mid \omega \text{ is prefix of } \omega' \}$
 - $\Sigma_{Path(s)}$ is the least $\sigma\text{-algebra}$ on Path(s) containing $C(\omega)$ for all finite paths ω starting in s
- Probability measure Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1...s_n$ as:
 - $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $\cdot P_s(\omega) = P(s,s_1) \cdot ... \cdot P(s_{n-1},s_n)$ otherwise
 - · define $Pr_s(C(\omega)) = P_s(\omega)$ for all finite paths · ω
 - Pr_s extends uniquely to a probability measure $Pr_s: \Sigma_{Path(s)} \rightarrow [0,1]$
- See [KSK76] for further details
- Can also derive the probability space for finite and infinite sequences

Probability space - Example

Paths where sending fails the first time

$$-\omega = s_0 s_1 s_2$$

 $- C(\omega) = all paths starting s_0 s_1 s_2...$

$$- P_{s0}(\omega) = P(s_0,s_1) \cdot P(s_1,s_2)$$
$$= 1 \cdot 0.01 = 0.01$$

$$- Pr_{s0}(C(\omega)) = P_{s0}(\omega) = 0.01$$

Paths which are eventually successful and with no failures

$$-\ C(s_0s_1s_3)\ \cup\ C(s_0s_1s_1s_3)\ \cup\ C(s_0s_1s_1s_1s_3)\ \cup\ ...$$

$$- Pr_{s0}(C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup ...)$$

$$= P_{s0}(s_0s_1s_3) + P_{s0}(s_0s_1s_1s_3) + P_{s0}(s_0s_1s_1s_1s_3) + \dots$$

$$= 1.0.98 + 1.0.01.0.98 + 1.0.01.0.01.0.98 + ...$$

$$= 0.9898989898...$$

$$= 98/99$$

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- Example
 - send → $P_{>0.95}$ [true $U^{\leq 10}$ deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

PCTL syntax

PCTL syntax:

ψ is true with probability ~p

$$- \varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\sim p} [\psi]$$

(state formulas)

$$-\psi ::= X \varphi \quad | \quad \varphi \ U^{\leq k} \varphi \quad | \quad \varphi \ U \varphi$$

$$\text{"bounded until"} \text{"until"}$$

(path formulas)

- define F ϕ = true U ϕ (eventually), G ϕ = \neg (F $\neg \phi$) (globally)
- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- A PCTL formula is always a state formula
 - path formulas only occur inside the P operator

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC
 - $-s \models \phi$ denotes ϕ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s:

$$-s \models a$$

$$-s \models a \Leftrightarrow a \in L(s)$$

$$-s \models \varphi_1 \land \varphi_2$$

$$-s \models \varphi_1 \land \varphi_2 \Leftrightarrow s \models \varphi_1 \text{ and } s \models \varphi_2$$

$$-s \models \neg \Phi$$

$$-s \models \neg \varphi \Leftrightarrow s \models \varphi \text{ is false}$$

- Semantics of path formulas:
 - for a path $\omega = s_0 s_1 s_2 ...$:

$$-\omega \models X \varphi$$

$$-\omega \models X \varphi \Leftrightarrow s_1 \models \varphi$$

$$- \omega \models \varphi_1 \cup \varphi_2$$

$$- \ \omega \vDash \varphi_1 \ U \ \varphi_2 \qquad \Leftrightarrow \ \exists \ i \ such \ that \ s_i \vDash \varphi_2 \ and \ \forall j < i, \ s_j \vDash \varphi_1$$

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{\sim p} [\psi]$ means that "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ "
 - example: $s \models P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - formally: $s \models P_{p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
 - where: Prob(s, ψ) = Pr_s { $\omega \in Path(s) \mid \omega \models \psi$ }
 - (sets of paths satisfying ψ are always measurable [Var85])

Quantitative properties

- Consider a PCTL formula $P_{\sim p}$ [ψ]
 - if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
 - we allow the form $P_{=2}$ [ψ]
 - "what is the probability that path formula ψ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $-P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D= (S, s_{init}, P, L) , PCTL formula ϕ
 - output: $Sat(\phi) = \{ s \in S \mid s \models \phi \} = set \text{ of states satisfying } \phi$
- What does it mean for a DTMC D to satisfy a formula φ?
 - sometimes, want to check that $s \models \varphi \forall s \in S$, i.e. $Sat(\varphi) = S$
 - sometimes, just want to know if $s_{init} = \phi$, i.e. if $s_{init} \in Sat(\phi)$
- Sometimes, focus on quantitative results
 - e.g. compute result of P=? [F error]
 - e.g. compute result of P=? [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of φ
 - example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95}$ [¬fail U succ]
- For the non-probabilistic operators:
 - Sat(true) = S
 - Sat(a) = { s \in S | a \in L(s) }
 - $\operatorname{Sat}(\neg \varphi) = \operatorname{S} \setminus \operatorname{Sat}(\varphi)$
 - $-\operatorname{Sat}(\varphi_1 \wedge \varphi_2) = \operatorname{Sat}(\varphi_1) \cap \operatorname{Sat}(\varphi_2)$
- For the $P_{\sim p}$ [ψ] operator
 - need to compute the probabilities Prob(s, ψ) for all states s ∈ S
 - focus here on "until" case: $Ψ = Φ_1 U Φ_2$

PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0
 - $S^{yes} = Sat(P_{>1} [\varphi_1 U \varphi_2])$
 - $S^{no} = Sat(P_{\leq 0} [\varphi_1 U \varphi_2])$
- Then solve linear equation system for remaining states
- We refer to the first phase as "precomputation"
 - two algorithms: Prob0 (for S^{no}) and Prob1 (for S^{yes})
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - reduces the set of states for which probabilities must be computed numerically (which is more expensive)
 - gives exact results for the states in Syes and Sno (no round-off)
 - for $P_{\sim p}[\cdot]$ where p is 0 or 1, no further computation required

PCTL until – Linear equations

• Probabilities Prob(s, $\phi_1 \cup \phi_2$) can now be obtained as the unique solution of the following set of linear equations:

$$Prob(s,\, \phi_1 \,U\, \phi_2) \ = \ \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s,s') \cdot Prob(s',\, \phi_1 \,U\, \phi_2) & \text{otherwise} \end{cases}$$

- can be reduced to a system in $|S^2|$ unknowns instead of |S| where $S^2 = S \setminus (S^{yes} \cup S^{no})$
- This can be solved with (a variety of) standard techniques
 - direct methods, e.g. Gaussian elimination
 - iterative methods, e.g. Jacobi, Gauss-Seidel, ...
 (preferred in practice due to scalability)
 - PRISM works with a compact MTBDD-based matrix

PCTL until – Example

Example: P_{>0.8} [¬a U b]

PCTL until – Example

Example: P_{>0.8} [¬a U b]

PCTL until – Example

$$S^{no} =$$
 $Sat(P_{<0} [\neg a \cup b])$

• Let
$$x_s = Prob(s, \neg a \cup b)$$

Solve:

$$x_4 = x_5 = 1$$

$$x_1 = x_3 = 0$$

$$x_0 = 0.1x_1 + 0.9x_2 = 0.8$$

$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$\underline{\text{Prob}}(\neg a \ U \ b) = \underline{x} = [0.8, 0, 8/9, 0, 1, 1]$$

$$Sat(P_{>0.8} [\neg a U b]) = \{ s_2, s_4, s_5 \}$$

$$S^{yes} = 0.7$$
 Sat($P_{\geq 1}$ [¬a U b])

PCTL model checking – Summary

- Computation of set Sat(Φ) for DTMC D and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - $-\Phi_1 \cup \Phi_2$: linear equation system, at most |S| variables, $O(|S|^3)$
- Complexity:
 - linear in |Φ| and polynomial in |S|

Reward-based properties

- We augment DTMCs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards (or costs)
 - formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...
- Instantaneous properties
 - the expected value of the reward at some time point
- Cumulative properties
 - the expected cumulated reward over some period

Rewards in the PRISM language

```
rewards "total_queue_size"
true : queue1+queue2;
endrewards
```

(instantaneous, state rewards)

```
rewards "dropped"
[receive] q=q_max : 1;
endrewards
```

```
(cumulative, transition rewards)
(q = queue size, q_max = max.
queue size, receive = action label)
```

```
rewards "time"
true : 1;
endrewards
```

(cumulative, state rewards)

```
rewards "power"

sleep=true: 0.25;
sleep=false: 1.2 * up;
[wake] true: 3.2;
endrewards
```

DTMC reward structures

- For a DTMC (S, s_{init} , P,L), a reward structure is a pair (ρ , ι)
 - $-\underline{\rho}:S\to\mathbb{R}_{\geq 0}$ is the state reward function (vector)
 - ι : S × S → $\mathbb{R}_{\geq 0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
 - "size of message queue": $\underline{\rho}$ maps each state to the number of jobs in the queue in that state, ι is not used
- Examples (for use with cumulative properties)
 - "time-steps": $\underline{\rho}$ returns 1 for all states and ι is zero (equivalently, $\underline{\rho}$ is zero and ι returns 1 for all transitions)
 - "number of messages lost": $\underline{\rho}$ is zero and ι maps transitions corresponding to a message loss to 1
 - "power consumption": $\underline{\rho}$ is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

PCTL and rewards

- Extend PCTL to incorporate reward-based properties
 - add an R operator, which is similar to the existing P operator

- where $r \in \mathbb{R}_{\geq 0}$, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- $R_{\sim r}$ [] means "the expected value of satisfies $\sim r$ "

Reward formula semantics

- Formal semantics of the three reward operators
 - based on random variables over (infinite) paths
- · Recall:

$$-s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s \{ \omega \in Path(s) \mid \omega \models \psi \} \sim p$$

• For a state s in the DTMC (see [KNP07a] for full definition):

$$-s \models R_{\sim r} [I^{=k}] \Leftrightarrow Exp(s, X_{l=k}) \sim r$$

$$- s \models R_{\sim r} [C^{\leq k}] \Leftrightarrow Exp(s, X_{C \leq k}) \sim r$$

$$- s \models R_{\sim r} [F \Phi] \Leftrightarrow Exp(s, X_{F\Phi}) \sim r$$

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

Reward formula semantics

Definition of random variables:

- for an infinite path $\omega = s_0 s_1 s_2 ...$

$$X_{l=k}(\omega) \; = \; \underline{\rho}(s_k)$$

$$X_{C \le k}(\omega) \ = \left\{ \begin{array}{cc} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{array} \right.$$

$$X_{F\varphi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in Sat(\varphi) \\ \infty & \text{if } s_i \notin Sat(\varphi) \text{ for all } i \ge 0 \end{cases}$$
$$\sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise}$$

- where $k_{\varphi} = \min\{ j \mid s_{j} \models \varphi \}$

Model checking reward properties

- Instantaneous: $R_{\sim r}$ [$I^{=k}$]
- Cumulative: $R_{\sim r}$ [$C^{\leq k}$]
 - variant of the method for computing bounded until probabilities (not discussed)
 - solution of recursive equations
- Reachability: R_{~r} [F φ]
 - similar to computing until probabilities
 - precomputation phase (identify infinite reward states)
 - then reduces to solving a system of linear equation
- For more details, see e.g. [KNP07a]
 - complexity not increased wrt classical PCTL

Part 2

Markov decision processes

Recap: Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formally: DTMC D = (S, s_{init}, P, L) where:
 - S is a set of states and $s_{init} \in S$ is the initial state
 - $-P:S\times S\rightarrow [0,1]$ is the transition probability matrix
 - $-L:S \rightarrow 2^{AP}$ labels states with atomic propositions
 - define a probability space Pr, over paths Path,
- Properties of DTMCs
 - can be captured by the logic PCTL
 - e.g. send → $P_{>0.95}$ [F deliver]
 - key question: what is the probability of reaching states T ⊆ S from state s?
 - reduces to graph analysis + linear equation system

Nondeterminism

- Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}
- Unknown environments unknown inputs
 - e.g. probabilistic security protocols unknown adversary

Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states

Markov decision processes

- Formally, an MDP M is a tuple $(S, s_{init}, \alpha, \delta, L)$ where:
 - S is a set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - $-\alpha$ is an alphabet of action labels
 - $-\delta \subseteq S \times \alpha \times Dist(S)$ is the transition probability relation, where Dist(S) is the set of all discrete probability distributions over S
 - $-L:S \rightarrow 2^{AP}$ is a labelling with atomic propositions
- Notes:
 - we also abuse notation and use δ as a function
 - − i.e. δ : S → $2^{\alpha \times Dist(S)}$ where δ(s) = { (a,μ) | (s,a,μ) ∈ δ }
 - we assume δ (s) is always non-empty, i.e. no deadlocks
 - MDPs, here, are identical to probabilistic automata [Segala]
 - · usually, MDPs take the form: $\delta : S \times \alpha \rightarrow Dist(S)$

{heads}

{tails}

{init} a 1

Simple MDP example

A simple communication protocol

- after one step, process starts trying to send a message
- then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
- if the latter, with probability 0.99 send successfully and stop
- and with probability 0.01, message sending fails, restart

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here

Paths and strategies

- A (finite or infinite) path through an MDP
 - is a sequence (s₀...s_n) of (connected)
 states
 - represents an execution of the system
 - resolves both the probabilistic and nondeterministic choices

{heads}

- A strategy σ (aka. "adversary" or "policy") of an MDP
 - is a resolution of nondeterminism only
 - is (formally) a mapping from finite paths to distributions on action-distribution pairs
 - induces a fully probabilistic model
 - i.e. an (infinite-state) Markov chain over finite paths
 - on which we can define a probability space over infinite paths

Classification of strategies

- Strategies are classified according to
- randomisation:
 - σ is deterministic (pure) if $\sigma(s_0...s_n)$ is a point distribution, and randomised otherwise
- memory:
 - σ is memoryless (simple) if $\sigma(s_0...s_n) = \sigma(s_n)$ for all $s_0...s_n$
 - σ is finite memory if there are finitely many modes such as $\sigma(s_0...s_n)$ depends only on s_n and the current mode, which is updated each time an action is performed
 - otherwise, σ is infinite memory
- A strategy σ induces, for each state s in the MDP:
 - a set of infinite paths $Path^{\sigma}(s)$
 - a probability space Pr_s^{σ} over $Path_s^{\sigma}$ (s)

Example strategy

Fragment of induced Markov chain for strategy which picks
 b then c in s₁

{tails}

PCTL

- Temporal logic for properties of MDPs (and DTMCs)
 - extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- PCTL syntax:
 - $\varphi ::= true \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid P_{\neg p} [\psi]$ (state formulas)
 - $\psi ::= X \varphi | \varphi U^{\leq k} \varphi | \varphi U \varphi$ (path formulas)
 - where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
 - Example: send $\rightarrow P_{>0.95}$ [true U $^{\leq 10}$ deliver]

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific strategy σ
 - $-s ⊨ P_{\sim p}$ [ψ] means "the probability, from state s, that ψ is true for an outgoing path satisfies ~p for all strategies σ"
 - formally $s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s^{\sigma}(\psi) \sim p$ for all strategies σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma}\{\omega \in Path_s^{\sigma} \mid \omega \models \psi\}$

Minimum and maximum probabilities

Letting:

- $Pr_s^{max}(\psi) = sup_{\sigma} Pr_s^{\sigma}(\psi)$
- $\operatorname{Pr}_{s}^{\min}(\psi) = \inf_{\sigma} \operatorname{Pr}_{s}^{\sigma}(\psi)$
- We have:
 - if ~ ∈ {≥,>}, then s ⊨ $P_{\sim p}$ [ψ] \Leftrightarrow Pr_s^{min} (ψ) ~ p
 - $\text{ if } \sim \in \{<, \le\}, \text{ then } s \models P_{\sim_D} \left[\right. \psi \left. \right] \ \Leftrightarrow \ Pr_s^{\,max}(ψ) \sim p$
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all strategies of either:
 - the minimum probability of ψ holding
 - the maximum probability of ψ holding
- Crucial result for model checking PCTL until on MDPs
 - memoryless strategies suffice, i.e. there are always memoryless strategies σ_{min} and σ_{max} for which:
 - $Pr_s^{\sigma_{min}}(\psi) = Pr_s^{min}(\psi) \text{ and } Pr_s^{\sigma_{max}}(\psi) = Pr_s^{min}(\psi)$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - quantitative form (two types): $P_{min=?}$ [ψ] and $P_{max=?}$ [ψ]
 - i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
 - corresponds to an analysis of best-case or worst-case behaviour of the system
 - model checking is no harder since compute the values of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ anyway
 - useful to spot patterns/trends
- Example: CSMA/CD protocol
 - "min/max probability that a message is sent within the deadline"

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP M=(S,s_{init}, α , δ ,L), PCTL formula ϕ
 - output: Sat(ϕ) = { s ∈ S | s $\models \phi$ } = set of states satisfying ϕ
- Basic algorithm same as PCTL model checking for DTMCs
 - proceeds by induction on parse tree of φ
 - non-probabilistic operators (true, a, \neg , \land) straightforward
- Only need to consider $P_{\sim p}$ [ψ] formulas
 - reduces to computation of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ for all $s \in S$
 - dependent on whether \sim ∈ {≥,>} or \sim ∈ {<,≤}
 - these slides cover the case $Pr_s^{min}(\phi_1 \cup \phi_2)$, i.e. $\sim \in \{\geq, >\}$
 - case for maximum probabilities is very similar

PCTL until for MDPs

- Computation of probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - "precomputation" algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
 - either: solve linear programming problem
 - or: approximate with an iterative solution method
 - or: use policy iteration

PCTL until - Precomputation

- Identify all states where $Pr_s^{min}(\phi_1 \cup \phi_2)$ is 1 or 0
 - $-S^{yes} = Sat(P_{>1} [\varphi_1 U \varphi_2]), S^{no} = Sat(\neg P_{>0} [\varphi_1 U \varphi_2])$
- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes Syes
 - for all strategies the probability of satisfying $\phi_1 \cup \phi_2$ is 1
 - algorithm Prob0E computes S^{no}
 - there exists a strategy for which the probability is 0

Example: $P_{\geq p}$ [F a]

Method 1 – Linear programming

• Probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ for remaining states in the set $S^? = S \setminus (S^{yes} \cup S^{no})$ can be obtained as the unique solution of the following linear programming (LP) problem:

maximize $\sum_{s \in S^?} x_s$ subject to the constraints:

$$x_s \leq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$$

for all $s \in S^{?}$ and for all $(a, \mu) \in \delta(s)$

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut

Example – PCTL until (LP)

Let
$$x_i = Pr_{s_i}^{min}(F a)$$

 $S^{yes}: x_2=1, S^{no}: x_3=0$
For $S^? = \{x_0, x_1\}:$

$$x_0 \le x_1$$

$$x_0 \le 0.25 \cdot x_0 + 0.5$$

$$x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Example - PCTL until (LP)

Let
$$x_i = Pr_{s_i}^{min}(F a)$$

Syes:
$$x_2 = 1$$
, S^{no} : $x_3 = 0$

For
$$S^? = \{x_0, x_1\}$$
:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

Example - PCTL until (LP)

Let
$$x_i = Pr_{s_i}^{min}(F a)$$

 S^{yes} : $x_2=1$, S^{no} : $x_3=0$
For $S^? = \{x_0, x_1\}$:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

Example - PCTL until (LP)

Let
$$x_i = Pr_{s_i}^{min}(F \ a)$$

 $S^{yes}: x_2=1, S^{no}: x_3=0$

For
$$S^? = \{x_0, x_1\}$$
:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

Method 2 - Value iteration

• For probabilities $Pr_s^{min}(\phi_1 \cup \phi_2)$ it can be shown that:

-
$$Pr_s^{min}(\varphi_1 \cup \varphi_2) = Iim_{n\to\infty} x_s^{(n)}$$
 where:

$$x_s^{(n)} = \begin{cases} & 1 & \text{if } s \in S^{yes} \\ & 0 & \text{if } s \in S^{no} \end{cases}$$

$$x_s^{(n)} = \begin{cases} & 0 & \text{if } s \in S^? \text{ and } n = 0 \\ & \sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} & \text{if } s \in S^? \text{ and } n > 0 \end{cases}$$

- This forms the basis for an (approximate) iterative solution
 - iterations terminated when solution converges sufficiently

Example - PCTL until (value iteration)


```
Compute: Pr_{si}^{min}(F a)
S^{yes} = \{x_2\}, S^{no} = \{x_3\}, S^? = \{x_0, x_1\}
            [ X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)} ]
       n=0: [0, 0, 1, 0]
  n=1: [min(0,0.25·0+0.5),
            0.1 \cdot 0 + 0.5 \cdot 0 + 0.4, 1, 0
             = [0, 0.4, 1, 0]
n=2: [ min(0.4,0.25·0+0.5),
            0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4, 1, 0
            = [0.4, 0.6, 1, 0]
              n=3: ...
```

Example - PCTL until (value iteration)


```
[X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)}]
        [0.000000, 0.000000, 1, 0]
n=0:
n=1:
        [0.000000, 0.400000, 1, 0]
        [ 0.400000, 0.600000, 1, 0 ]
n=2:
n=3:
        [0.600000, 0.740000, 1, 0]
n=4:
        [0.650000, 0.830000, 1, 0]
n=5:
        [0.662500, 0.880000, 1, 0]
        [0.665625, 0.906250, 1, 0]
n=6:
n=7:
        [ 0.666406, 0.919688, 1, 0 ]
n=8:
        [0.666602, 0.926484, 1, 0]
n=9:
        [0.666650, 0.929902, 1, 0]
n = 20:
        [ 0.666667, 0.933332, 1, 0 ]
        [ 0.666667, 0.933332, 1, 0 ]
n = 21:
           \approx [2/3, 14/15, 1, 0]
```

Example - Value iteration + LP


```
[x_0^{(n)},x_1^{(n)},x_2^{(n)},x_3^{(n)}]
        [0.000000, 0.000000, 1, 0]
n=0:
n=1:
        [0.000000, 0.400000, 1, 0]
        [ 0.400000, 0.600000, 1, 0 ]
n=2:
n=3:
        [0.600000, 0.740000, 1, 0]
n=4:
        [0.650000, 0.830000, 1, 0]
n=5:
        [0.662500, 0.880000, 1, 0]
        [0.665625, 0.906250, 1, 0]
n=6:
n=7:
        [0.666406, 0.919688, 1, 0]
n=8:
        [0.666602, 0.926484, 1, 0]
n=9:
        [0.666650, 0.929902, 1, 0]
n=20:
        [ 0.666667, 0.933332, 1, 0 ]
        [ 0.666667, 0.933332, 1, 0 ]
n = 21:
           \approx [2/3, 14/15, 1, 0]
```

Method 3 - Policy iteration

- Value iteration:
 - iterates over (vectors of) probabilities
- Policy iteration:
 - iterates over strategies ("policies")
- 1. Start with an arbitrary (memoryless) strategy σ
- 2. Compute the reachability probabilities Pr^{σ} (F a) for σ
- 3. Improve the strategy in each state
- 4. Repeat 2/3 until no change in strategy
- Termination:
 - finite number of memoryless strategies
 - improvement in (minimum) probabilities each time

Method 3 - Policy iteration

- pick an element of $\delta(s)$ for each state $s \in S$
- 2. Compute the reachability probabilities $Pr^{\sigma}(F a)$ for σ
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the strategy in each state

$$\sigma'(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot \operatorname{Pr}_{s'}^{\sigma}(Fa) \mid (a, \mu) \in \delta(s) \right\}$$

4. Repeat 2/3 until no change in strategy

Example – Policy iteration

Arbitrary strategy **o**:

Compute: $\underline{Pr}^{\sigma}(F a)$

Let
$$x_i = Pr_{s_i}^{\sigma}(F a)$$

$$x_2=1$$
, $x_3=0$ and:

•
$$x_0 = x_1$$

$$\cdot x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

$$Pr^{\sigma}(F a) = [1, 1, 1, 0]$$

Refine σ in state s_0 :

$$min\{1(1), 0.5(1)+0.25(0)+0.25(1)\}$$

$$= min\{1, 0.75\} = 0.75$$

Example - Policy iteration

Refined strategy o':

Compute: $\underline{Pr}^{\sigma'}(F a)$

Let
$$x_i = Pr_{s_i}^{\sigma'}(F a)$$

$$x_2=1$$
, $x_3=0$ and:

•
$$x_0 = 0.25 \cdot x_0 + 0.5$$

•
$$x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

$$Pr^{\sigma'}(F a) = [2/3, 14/15, 1, 0]$$

This is optimal

Example - Policy iteration

PCTL model checking – Summary

- Computation of set Sat(Φ) for MDP M and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - Φ₁ U Φ₂ : linear programming problem, polynomial in |S| (assuming use of linear programming)
- Complexity:
 - linear in $|\Phi|$ and polynomial in |S|
 - S is states in MDP, assume $|\delta(s)|$ is constant

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit
- Extend logic PCTL with R operator, for "expected reward"
 - as for PCTL, either R_{r} [...], $R_{min=?}$ [...] or $R_{max=?}$ [...]
- Some examples:
 - $R_{min=?} [I^{=90}], R_{max=?} [C^{\le 60}], R_{max=?} [F "end"]$
 - "the minimum expected queue size after exactly 90 seconds"
 - "the maximum expected power consumption over one hour"
 - the maximum expected time for the algorithm to terminate

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] the non-probabilistic linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
- In PCTL, temporal operators always appear inside $P_{\sim p}$ [...]
 - (and, in CTL, they always appear inside A or E)
 - in LTL (and PCTL*), temporal operators can be combined

LTL + probabilities

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula ψ :
 - $-\operatorname{Prob}(s, \psi) = \operatorname{Pr}_s \{ \omega \in \operatorname{Path}(s) \mid \omega \vDash \psi \}$
 - all such path sets are measurable (see later)
- For MDPs, we can again consider lower/upper bounds
 - $-p_{\min}(s, \psi) = \inf_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$
 - $-p_{\max}(s, \psi) = \sup_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$
 - (for LTL formula ψ)
- For DTMCs or MDPs, an LTL specification often comprises an LTL (path) formula and a probability bound
 - e.g. $P_{>0.99}$ [F (req ∧ X ack)]

LTL model checking for DTMCs

- Model check LTL specification $P_{\sim p}[\psi]$ against DTMC D
- 1. Generate a deterministic Rabin automaton (DRA) for ψ
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]
- 2. Construct product DTMC D⊗A
- 3. Identify accepting BSCCs of D⊗A
- 4. Compute probability of reaching accepting BSCCs
 - from all states of the D⊗A
- 5. Compare probability for (s, q_s) against p for each s
- Qualitative LTL model checking no probabilities needed

PCTL* model checking

PCTL* syntax:

$$- \varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\sim p} [\psi]$$
$$- \psi ::= \varphi | \psi \wedge \psi | \neg \psi | X \psi | \psi U \psi$$

• Example:

$$-P_{p}$$
 [GF (send $\rightarrow P_{0}$ [F ack])]

- PCTL* model checking algorithm
 - bottom-up traversal of parse tree for formula (like PCTL)
 - to model check $P_{\sim p}$ [ψ]:
 - · replace maximal state subformulae with atomic propositions
 - · (state subformulae already model checked recursively)
 - · modified formula ψ is now an LTL formula
 - · which can be model checked as for LTL

LTL model checking for MDPs

- Model check LTL specification $P_{\sim p}[\psi]$ against MDP M
- 1. Convert problem to one needing maximum probabilities
 - e.g. convert $P_{>p}$ [ψ] to $P_{<1-p}$ [$\neg \psi$]
- 2. Generate a DRA for ψ (or $\neg \psi$)
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]
- 3. Construct product MDP M⊗A
- 4. Identify accepting end components (ECs) of $M \otimes A$
- 5. Compute max. probability of reaching accepting ECs
 - from all states of the D⊗A
- 6. Compare probability for (s, q_s) against p for each s

Complexity

- Complexity of model checking LTL formula ψ on DTMC D
 - is doubly exponential in $|\Psi|$ and polynomial in |D|
- Converting LTL formula ψ to DRA A
 - for some LTL formulae of size n, size of smallest DRA is
- In total: O(poly(|D|,|A|))

2^{2ⁿ}

- In practice: |ψ| is small and |D| is large
- Can be reduced to single exponential in $|\psi|$
 - see e.g. [CY88,CY95]
- Complexity of model checking LTL formula ψ on MDP M
 - is doubly exponential in $|\Psi|$ and polynomial in |M|
 - unlike DTMCs, this cannot be improved upon

Part 3

Probabilistic programs as MDPs

Probabilistic software

- Consider sequential ANSI C programs
 - support functions, pointers, arrays, but not dynamic memory allocation, unbounded recursion, floating point operations
- Add function bool coin(double p) for probabilistic choice
 - for modelling e.g. failures, randomisation
- Add function int ndet(int n) for nondeterministic choice
 - for modelling e.g. user input, unspecified function calls
- Aim: verify software with failures, e.g. wireless protocols
 - extract models as Markov decision processes
 - properties: maximum probability of unsuccessful data transmission, minimum expected number of packets sent
- Develop abstraction-refinement framework [VMCAI09]

Example - sample target program

```
bool fail = false;
int c = 0;
int main ()
    // nondeterministic
    c = num_to_send ();
    while (! fail && c > 0)
        // probabilistic
        fail = send_msg ();
        C --;
```

Φ: "what is the minimum/maximum probability of the program terminating with fail being true?"

Example - simplified

input nondeterminism

Φ: "what is the minimum/maximum probability of the program terminating with fail being true?"

Bernoulli distribution

Abstraction-refinement loop

- Probabilistic program
 - probabilistic control flow graph
 - Markov decision process (MDP) semantics

Back to example

Probabilistic program

Probabilistic program as MDP

Probabilistic program

minimum/maximum probability of the program terminating with fail being true is 0 and 0.19, respectively

MDP semantics 1 f,0 2 f,1 2 f,2 2 f,0 3 f,2 3 f,1 0.1 0.1 5 f,0 0.9 0.9 4 f,1 4 f,2 4 t,1 4 t,2 2 t,1 2 t,0 5 t,0 (5 t, 1)

Experimental results

- Successfully applied to several Linux network utilities:
 - TFTP (file-transfer protocol client)
 - 1 KLOC of non-trivial ANSI-C code
 - Loss of packets modelled by probabilistic choice
 - Linux kernel calls modelled by nondeterministic choice
- Example properties
 - "maximum probability of establishing a write request"
 - "maximum expected amount of data that is sent before timeout"
 - "maximum expected number of echo requests required to establish connectivity"
- Implemented through extension of CProver and PRISM

Part 4

PRISM

Tool support: PRISM

- PRISM: Probabilistic symbolic model checker [CAV11]
 - developed at Birmingham/Oxford University, since 1999
 - free, open source software (GPL), runs on all major OSs
- Support for:
 - models: DTMCs, CTMCs, MDPs, PTAs, SMGs, ...
 - properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, ...
- Features:
 - simple but flexible high-level modelling language
 - user interface: editors, simulator, experiments, graph plotting
 - multiple efficient model checking engines (e.g. symbolic)
 - New! strategy synthesis, stochastic game models (SMGs), multiobjective verification, parametric models
- See: http://www.prismmodelchecker.org/

PRISM GUI: Editing a model

PRISM GUI: The Simulator

PRISM GUI: Model checking and graphs

Probabilistic verification in action

Bluetooth device discovery protocol

- frequency hopping, randomised delays
- low-level model in PRISM, based on detailed Bluetooth reference documentation
- numerical solution of 32 Markov chains,
 each approximately 3 billion states

identified worst-case time to hear one message, 2.5 seconds

FireWire root contention

- wired protocol, uses randomisation
- model checking using PRISM
- optimum probability of leader election by time T for various coin biases

Probabilistic verification in action

- DNA transducer gate [Lakin et al, 2012]
 - DNA computing with a restricted class of DNA strand displacement structures
 - transducer design due to Cardelli
 - automatically found and fixed design error, using Microsoft's DSD and PRISM

- Microgrid demand management protocol [TACAS12,FMSD13]
 - designed for households to actively manage demand while accessing a variety of energy sources
 - found and fixed a flaw in the protocol, due to lack of punishment for selfish behaviour
 - implemented in PRISM-games

Summary

- Overview of probabilistic model checking
 - discrete-time Markov chains and Markov decision processes
 - property specifications in temporal logics
 - model checking methods combine graph-theoretic techniques, automata-based methods, numerical equation solving and optimisation
- Ongoing work (not discussed)
 - further models (stochastic games, probabilistic timed/hybrid automata)
 - controller/strategy synthesis
 - runtime verification
 - multiobjective verification and synthesis
 - sampling-based exploration
- Potential for connections to probabilistic programming
 - integrate with probabilistic inference

Further material

Reading

- [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.
 Automated Verification Techniques for Probabilistic Systems.
 LNCS vol 6659, p53-113, Springer 2011.
- [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic Model Checking. LNCS vol 4486, p220-270, Springer 2007.
- [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and Katoen, MIT Press 2008
- See also
 - 20 lecture course taught at Oxford
 - http://www.prismmodelchecker.org/lectures/pmc/
- PRISM website <u>www.prismmodelchecker.org</u>