
Probabilistic model checking

Marta Kwiatkowska

Department of Computer Science, University of Oxford

POPL 2015 tutorial, Mumbai, January 2015

2

What is probabilistic model checking?

• Probabilistic model checking…

− is model checking applied to probabilistic models

• Probabilistic models…

− can be derived from high-level specification or
extracted from probabilistic programs

3

Model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬EF fail

Model checker
e.g. SMV, Spin

4

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic
temporal logic
specification
e.g. PCTL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.1 [F fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

5

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in wireless coordination protocols

− as a symmetry breaker

bool short_delay = Bernoulli(0.5) // short or long delay

• Modelling uncertainty

− to quantify rate of failures

bool fail = Bernoulli(0.001) // success wp 0.999 or failure

• Modelling performance and biological processes

− reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

float binding_rate = exp(2.5) // exponentially distributed

6

Probability example

• Modelling a 6-sided die using a fair coin

− algorithm due to Knuth/Yao:

− start at 0, toss a coin

− upper branch when H

− lower branch when T

− repeat until value chosen

• Probability of obtaining a 4?

− THH, TTTHH, TTTTTHH, …

− Pr(“eventually 4”)

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

- expected number of coin flips
needed = 11/3

- NB termination guaranteed

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

7

Probabilistic models

dtmc

module die

// local state s : [0..7] init 0;

// value of the dice d : [0..6] init 0;

[] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);

…

[] s=3 ->

0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);

[] s=4 ->

0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);

…

[] s=7 -> (s'=7);

endmodule

rewards "coin_flips"

[] s<7 : 1;

endrewards

• Given in PRISM’s guarded commands modelling notation

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

8

Probabilistic models

int s, d;

s = 0; d = 0;

while (s < 7) {

bool coin = Bernoulli(0.5);

if (s = 0)

if (coin) s = 1 else s = 2;

...

else if (s = 3)

if (coin) s = 1 else {s = 7; d = 1;}

else if (s = 4)

if (coin) {s = 7; d = 2} else {s = 7; d = 3;}

…

}

return (d)

• Given as a (loopy) probabilistic program

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

9

Relation to programming languages

• Probabilistic model checking (PMC)

− probabilistic models, state based, where transition relation
is probabilistic

− nonterminating behaviour

− focus on computing probability or expectation of an event,
or repeated events, typically via numerical methods

− considers models with nondeterminism

• Probabilistic programming (PP)

− imperative or functional programming extended with
random assignment, interpreted as distribution transformers

− terminating behaviour

− focus on probabilistic inference (computing representation
of the denoted probability distribution), typically via
sampling

− no nondeterminism, but conditioning on observations

10

PMC vs PP

Probabilistic programming. Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori,
Sriram K. Rajamani. Proc. FOSE 2014, pp 167-181.

• Excellent potential for cross-fertilisation

− PMC and PP different communities

− yet shared models (Markov chains) and methods (symbolic
MTBDD/ADD-based solvers)

• PMC: maturing field

− variety of models, incl. nondeterministic, timed, hybrid, etc

− good for compact model representations, efficient
automata-based and controller synthesis methods

− can benefit from machine learning, cf ATVA 2014

• PP: emerging field

− variety of efficient sampling-based MC methods

− good for representing and computing distributions

− can benefit from nondeterminism, useful for under-
specification and input nondeterminism

11

Outline

0. Motivation

1. Model checking for discrete-time Markov chains

− Definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

2. Model checking for Markov decision processes

− Definition & adversaries

− PCTL model checking

− Note on LTL model checking

3. Probabilistic programs as Markov decision processes

− How to verify probabilistic programs

4. PRISM

− Functionality, supported models and logics

5. Summary and further reading

Discrete-time Markov chains

Part 1

13

Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• States

− discrete set of states representing possible configurations of
the system being modelled

• Transitions

− transitions between states occur
in discrete time-steps

• Probabilities

− probability of making transitions
between states is given by
discrete probability distributions

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

14

Discrete-time Markov chains

• Formally, a DTMC D is a tuple (S,sinit,P,L) where:

− S is a finite set of states (“state space”)

− sinit ∈ S is the initial state

− P : S × S → [0,1] is the transition probability matrix

where Σs’∈S P(s,s’) = 1 for all s ∈ S

− L : S → 2AP is function labelling states with atomic
propositions

• Note: no deadlock states

− i.e. every state has at least

one outgoing transition

− terminating behaviour represented
by adding self loops

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

15

Simple DTMC example

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

D = (S,sinit,P,L)

S = {s0, s1, s2, s3}
sinit = s0



















=

1000

0001

98.001.001.00

0010

P

AP = {try, fail, succ}
L(s0)=∅,
L(s1)={try},
L(s2)={fail},
L(s3)={succ}

15

16

DTMCs: An alternative definition

• Alternative definition… a DTMC is:

− a family of random variables { X(k) | k=0,1,2,… }

− where X(k) are observations at discrete time-steps

− i.e. X(k) is the state of the system at time-step k

− which satisfies…

• The Markov property (“memorylessness”)

− Pr(X(k)=sk | X(k-1)=sk-1, … , X(0)=s0)

= Pr(X(k)=sk | X(k-1)=sk-1)

− for a given current state, future states are independent of past

• This allows us to adopt the “state-based” view presented so
far (which is better suited to this context)

16

17

Other assumptions made here

• We consider time-homogenous DTMCs

− transition probabilities are independent of time

− P(sk-1,sk) = Pr(X(k)=sk | X(k-1)=sk-1)

− otherwise: time-inhomogenous

• We will (mostly) assume that the state space S is finite

− in general, S can be any countable set

• Initial state sinit ∈ S can be generalised…

− to an initial probability distribution sinit : S → [0,1]

• Transition probabilities are reals: P(s,s’) ∈ [0,1]

− but for algorithmic purposes, are assumed to be rationals

17

18

Paths and probabilities

• A (finite or infinite) path through a DTMC

− is a sequence of states s0s1s2s3… such that P(si,si+1) > 0 ∀i

− represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

• To reason (quantitatively) about this system

− need to define a probability space over paths

• Intuitively:

− sample space: Path(s) = set of all
infinite paths from a state s

− events: sets of infinite paths from s

− basic events: cylinder sets (or “cones”)

− cylinder set C(ω), for a finite path ω
= set of infinite paths with the common finite prefix ω

− for example: C(ss1s2)

s1 s2s

20

Probability space over paths

• Sample space Ω = Path(s)

set of infinite paths with initial state s

• Event set ΣPath(s)

− the cylinder set C(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }

− ΣPath(s) is the least σ-algebra on Path(s) containing C(ω) for all
finite paths ω starting in s

• Probability measure Prs

− define probability Ps(ω) for finite path ω = ss1…sn as:

• Ps(ω) = 1 if ω has length one (i.e. ω = s)

• Ps(ω) = P(s,s1) · … · P(sn-1,sn) otherwise

• define Prs(C(ω)) = Ps(ω) for all finite paths ω

− Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

• See [KSK76] for further details

• Can also derive the probability space for finite and infinite
sequences

21

Probability space - Example

• Paths where sending fails the first time

− ω = s0s1s2

− C(ω) = all paths starting s0s1s2…

− Ps0(ω) = P(s0,s1) · P(s1,s2)

= 1 · 0.01 = 0.01

− Prs0(C(ω)) = Ps0(ω) = 0.01

• Paths which are eventually successful and with no failures

− C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …

− Prs0(C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …)

= Ps0(s0s1s3) + Ps0(s0s1s1s3) + Ps0(s0s1s1s1s3) + …

= 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …

= 0.9898989898…

= 98/99

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

22

PCTL

• Temporal logic for describing properties of DTMCs

− PCTL = Probabilistic Computation Tree Logic [HJ94]

− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• Example

− send → P≥0.95 [true U≤10 deliver]

− “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

23

PCTL syntax

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− define F φ ≡ true U φ (eventually), G φ ≡ ¬(F ¬φ) (globally)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula

− path formulas only occur inside the P operator

“until”

ψ is true with
probability ~p

“bounded
until”

“next”

24

PCTL semantics for DTMCs

• PCTL formulas interpreted over states of a DTMC

− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s:

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Semantics of path formulas:

− for a path ω = s0s1s2… :

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U φ2 ⇔ ∃ i such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

25

PCTL semantics for DTMCs

• Semantics of the probabilistic operator P

− informal definition: s ⊨ P~p [ψ] means that “the probability,
from state s, that ψ is true for an outgoing path satisfies ~p”

− example: s ⊨ P<0.25 [X fail] ⇔ “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

− formally: s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p

− where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

− (sets of paths satisfying ψ are always measurable [Var85])

s

¬ψ

ψ Prob(s, ψ) ~ p ?

28

Quantitative properties

• Consider a PCTL formula P~p [ψ]

− if the probability is unknown, how to choose the bound p?

• When the outermost operator of a PTCL formula is P

− we allow the form P=? [ψ]

− “what is the probability that path formula ψ is true?”

• Model checking is no harder: compute the values anyway

• Useful to spot patterns, trends

• Example

− P=? [F err/total>0.1]

− “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

29

PCTL model checking for DTMCs

• Algorithm for PCTL model checking [CY88,HJ94,CY95]

− inputs: DTMC D=(S,sinit,P,L), PCTL formula φ

− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a DTMC D to satisfy a formula φ?

− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

− sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results

− e.g. compute result of P=? [F error]

− e.g. compute result of P=? [F≤k error] for 0≤k≤100

30

PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of φ

− example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

• For the non-probabilistic operators:

− Sat(true) = S

− Sat(a) = { s ∈ S | a ∈ L(s) }

− Sat(¬φ) = S \ Sat(φ)

− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ψ] operator

− need to compute the
probabilities Prob(s, ψ)
for all states s ∈ S

− focus here on “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succtry

31

PCTL until for DTMCs

• Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S

• First, identify all states where the probability is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2])

− Sno = Sat(P≤0 [φ1 U φ2])

• Then solve linear equation system for remaining states

• We refer to the first phase as “precomputation”

− two algorithms: Prob0 (for Sno) and Prob1 (for Syes)

− algorithms work on underlying graph (probabilities irrelevant)

• Important for several reasons

− reduces the set of states for which probabilities must be
computed numerically (which is more expensive)

− gives exact results for the states in Syes and Sno (no round-off)

− for P~p[·] where p is 0 or 1, no further computation required

32

PCTL until - Linear equations

• Probabilities Prob(s, φ1 U φ2) can now be obtained as the
unique solution of the following set of linear equations:

− can be reduced to a system in |S?| unknowns instead of |S|
where S? = S \ (Syes ∪ Sno)

• This can be solved with (a variety of) standard techniques

− direct methods, e.g. Gaussian elimination

− iterative methods, e.g. Jacobi, Gauss-Seidel, …
(preferred in practice due to scalability)

− PRISM works with a compact MTBDD-based matrix

Prob(s, φ1 U φ2) =

1

0

P(s,s')⋅ Prob(s', φ1 U φ2)
s'∈S

∑













if s ∈ Syes

if s ∈ Sno

otherwise

33

PCTL until - Example

• Example: P>0.8 [¬a U b]

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

10.1

0.5

34

PCTL until - Example

• Example: P>0.8 [¬a U b]
Sno =

Sat(P≤0 [¬a U b])

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b])

0.1

0.5

35

PCTL until - Example

• Example: P>0.8 [¬a U b]

• Let xs = Prob(s, ¬a U b)

• Solve:

x4 = x5 = 1

x1 = x3 = 0

x0 = 0.1x1+0.9x2 = 0.8

x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]

Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =

Sat(P≤0 [¬a U b])

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b])

0.1

0.5

36

PCTL model checking - Summary

• Computation of set Sat(Φ) for DTMC D and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear equation system, at most |S| variables, O(|S|3)

• Complexity:

− linear in |Φ| and polynomial in |S|

37

Reward-based properties

• We augment DTMCs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− allow a wide range of quantitative measures of the system

− basic notion: expected value of rewards (or costs)

− formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties

− the expected value of the reward at some time point

• Cumulative properties

− the expected cumulated reward over some period

38

Rewards in the PRISM language

(instantaneous, state rewards) (cumulative, state rewards)

(cumulative, state/trans. rewards)
(up = num. operational components,

wake = action label)

(cumulative, transition rewards)
(q = queue size, q_max = max.

queue size, receive = action label)

rewards “total_queue_size”
true : queue1+queue2;

endrewards

rewards “time”
true : 1;

endrewards

rewards “power”
sleep=true : 0.25;
sleep=false : 1.2 * up;
[wake] true : 3.2;

endrewards

rewards "dropped"
[receive] q=q_max : 1;

endrewards

39

DTMC reward structures

• For a DTMC (S,sinit,P,L), a reward structure is a pair (ρ,ι)

− ρ : S → ℝ≥0 is the state reward function (vector)

− ι : S × S → ℝ≥0 is the transition reward function (matrix)

• Example (for use with instantaneous properties)

− “size of message queue”: ρ maps each state to the number of
jobs in the queue in that state, ι is not used

• Examples (for use with cumulative properties)

− “time-steps”: ρ returns 1 for all states and ι is zero

(equivalently, ρ is zero and ι returns 1 for all transitions)

− “number of messages lost”: ρ is zero and ι maps transitions

corresponding to a message loss to 1

− “power consumption”: ρ is defined as the per-time-step

energy consumption in each state and ι as the energy cost of

each transition

40

PCTL and rewards

• Extend PCTL to incorporate reward-based properties

− add an R operator, which is similar to the existing P operator

− φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [F φ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r”

“reachability”

expected
reward is ~r

“cumulative”“instantaneous”

42

Reward formula semantics

• Formal semantics of the three reward operators

− based on random variables over (infinite) paths

• Recall:

− s ⊨ P~p [ψ] ⇔ Prs { ω ∈ Path(s) | ω ⊨ ψ } ~ p

• For a state s in the DTMC (see [KNP07a] for full definition):

− s ⊨ R~r [I=k] ⇔ Exp(s, XI=k) ~ r

− s ⊨ R~r [C≤k] ⇔ Exp(s, XC≤k) ~ r

− s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) → ℝ≥0 with respect to the probability measure Prs

43

Reward formula semantics

• Definition of random variables:

− for an infinite path ω= s0s1s2…

− where kφ =min{ j | sj ⊨ φ }

 otherwise

0k if

)s,s()s(ρ

0
)ω(X 1k

0i 1iii
kC

=

+



=
∑

−

= +
≤ ι

)s(ρ)ω(X kkI ==

otherwise

 0i all for)φSat(s if

)φSat(s if

)s,s()s(ρ

0

)ω(X i

0

1-k

0i 1iii

φF

φ

≥∉

∈

+

∞










=

∑ = +ι

44

Model checking reward properties

• Instantaneous: R~r [I=k]

• Cumulative: R~r [C≤k]

− variant of the method for computing bounded until
probabilities (not discussed)

− solution of recursive equations

• Reachability: R~r [F φ]

− similar to computing until probabilities

− precomputation phase (identify infinite reward states)

− then reduces to solving a system of linear equation

• For more details, see e.g. [KNP07a]

− complexity not increased wrt classical PCTL

Markov decision processes

Part 2

46

Recap: Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• Formally: DTMC D = (S, sinit, P, L) where:

− S is a set of states and sinit ∈ S is the initial state

− P : S × S → [0,1] is the transition probability matrix

− L : S → 2AP labels states with atomic propositions

− define a probability space Prs over paths Paths

• Properties of DTMCs

− can be captured by the logic PCTL

− e.g. send → P≥0.95 [F deliver]

− key question: what is the probability
of reaching states T ⊆ S from state s?

− reduces to graph analysis + linear equation system

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

47

Nondeterminism

• Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

• Concurrency - scheduling of parallel components

− e.g. randomised distributed algorithms - multiple
probabilistic processes operating asynchronously

• Underspecification - unknown model parameters

− e.g. a probabilistic communication protocol designed for
message propagation delays of between dmin and dmax

• Unknown environments - unknown inputs

− e.g. probabilistic security protocols - unknown adversary

48

Markov decision processes

• Markov decision processes (MDPs)

− extension of DTMCs which allow nondeterministic choice

• Like DTMCs:

− discrete set of states representing possible configurations of
the system being modelled

− transitions between states occur in discrete time-steps

• Probabilities and nondeterminism

− in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

49

Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,α,δ,L) where:

− S is a set of states (“state space”)

− sinit ∈ S is the initial state

− α is an alphabet of action labels

− δ ⊆ S × α × Dist(S) is the transition
probability relation, where Dist(S) is the set
of all discrete probability distributions over S

− L : S → 2AP is a labelling with atomic propositions

• Notes:

− we also abuse notation and use δ as a function

− i.e. δ : S → 2α×Dist(S) where δ(s) = { (a,µ) | (s,a,µ) ∈ δ }

− we assume δ (s) is always non-empty, i.e. no deadlocks

− MDPs, here, are identical to probabilistic automata [Segala]

• usually, MDPs take the form: δ : S × α → Dist(S)

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

50

Simple MDP example

• A simple communication protocol

− after one step, process starts trying to send a message

− then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

− if the latter, with probability 0.99 send successfully and stop

− and with probability 0.01, message sending fails, restart

s1s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}

start
send

stop

wait

restart

51

Example - Parallel composition

1 1 1

s0 s0 t0 s0 t1 s0 t2

s1 t0

s2 t0

s1 t1

s2 t1

s1 t2

s2 t2

s1

s2

t0 t1 t2

0.5

1

1

1

1

1 0.51 0.51
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

1

0.5
0.5

0.5 0.5 0.5

0.51

0.5

1

Asynchronous parallel
composition of two

3-state DTMCs

Action labels
omitted here

52

Paths and strategies

• A (finite or infinite) path through an MDP

− is a sequence (s0...sn) of (connected)
states

− represents an execution of the system

− resolves both the probabilistic and
nondeterministic choices

• A strategy σ (aka. “adversary” or “policy”) of an MDP

− is a resolution of nondeterminism only

− is (formally) a mapping from finite paths to distributions on
action-distribution pairs

− induces a fully probabilistic model

− i.e. an (infinite-state) Markov chain over finite paths

− on which we can define a probability space over infinite paths

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

53

Classification of strategies

• Strategies are classified according to

• randomisation:

− σ is deterministic (pure) if σ(s0...sn) is a point distribution, and
randomised otherwise

• memory:

− σ is memoryless (simple) if σ(s0...sn) = σ(sn) for all s0...sn

− σ is finite memory if there are finitely many modes such as
σ(s0...sn) depends only on sn and the current mode, which is
updated each time an action is performed

− otherwise, σ is infinite memory

• A strategy σ induces, for each state s in the MDP:

− a set of infinite paths Pathσ (s)

− a probability space Prσ
s over Pathσ (s)

54

Example strategy

• Fragment of induced Markov chain for strategy which picks
b then c in s1

finite-memory,
deterministic

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s30.5
s0s1

0.7
s0s1s0

s0s1s1

0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

55

PCTL

• Temporal logic for properties of MDPs (and DTMCs)

− extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• Example: send → P≥0.95 [true U≤10 deliver]

56

PCTL semantics for MDPs

• Semantics of the probabilistic operator P

− can only define probabilities for a specific strategy σ

− s ⊨ P~p [ψ] means “the probability, from state s, that ψ is
true for an outgoing path satisfies ~p for all strategies σ”

− formally s ⊨ P~p [ψ] ⇔ Prs
σ(ψ) ~ p for all strategies σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

s

¬ψ

ψ Prs
σ(ψ) ~ p

57

Minimum and maximum probabilities

• Letting:

− Prs
max(ψ) = supσ Prs

σ(ψ)

− Prs
min(ψ) = infσ Prs

σ(ψ)

• We have:

− if ~ ∈ {≥,>}, then s ⊨ P~p [ψ] ⇔ Prs
min(ψ) ~ p

− if ~ ∈ {<,≤}, then s ⊨ P~p [ψ] ⇔ Prs
max(ψ) ~ p

• Model checking P~p[ψ] reduces to the computation over all
strategies of either:

− the minimum probability of ψ holding

− the maximum probability of ψ holding

• Crucial result for model checking PCTL until on MDPs

− memoryless strategies suffice, i.e. there are always
memoryless strategies σmin and σmax for which:

− Prs
σmin(ψ) = Prs

min(ψ) and Prs
σmax(ψ) = Prs

min(ψ)

58

Quantitative properties

• For PCTL properties with P as the outermost operator

− quantitative form (two types): Pmin=? [ψ] and Pmax=? [ψ]

− i.e. “what is the minimum/maximum probability (over all
adversaries) that path formula ψ is true?”

− corresponds to an analysis of best-case or worst-case
behaviour of the system

− model checking is no harder since compute the values of
Prs

min(ψ) or Prs
max(ψ) anyway

− useful to spot patterns/trends

• Example: CSMA/CD protocol

− “min/max probability

that a message is sent

within the deadline”

59

PCTL model checking for MDPs

• Algorithm for PCTL model checking [BdA95]

− inputs: MDP M=(S,sinit,α,δ,L), PCTL formula φ

− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• Basic algorithm same as PCTL model checking for DTMCs

− proceeds by induction on parse tree of φ

− non-probabilistic operators (true, a, ¬, ∧) straightforward

• Only need to consider P~p [ψ] formulas

− reduces to computation of Prs
min(ψ) or Prs

max(ψ) for all s ∈ S

− dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

− these slides cover the case Prs
min(φ1 U φ2), i.e. ~ ∈ {≥,>}

− case for maximum probabilities is very similar

60

PCTL until for MDPs

• Computation of probabilities Prs
min(φ1 U φ2) for all s ∈ S

• First identify all states where the probability is 1 or 0

− “precomputation” algorithms, yielding sets Syes, Sno

• Then compute (min) probabilities for remaining states (S?)

− either: solve linear programming problem

− or: approximate with an iterative solution method

− or: use policy iteration

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Example:

P≥p [F a]

≡

P≥p [true U a]

61

PCTL until - Precomputation

• Identify all states where Prs
min(φ1 U φ2) is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2]), Sno = Sat(¬ P>0 [φ1 U φ2])

• Two graph-based precomputation algorithms:

− algorithm Prob1A computes Syes

• for all strategies the probability of satisfying φ1 U φ2 is 1

− algorithm Prob0E computes Sno

• there exists a strategy for which the probability is 0

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(P≥1 [F a])

Sno = Sat(¬P>0 [F a])

Example:

P≥p [F a]

62

Method 1 - Linear programming

• Probabilities Prs
min(φ1 U φ2) for remaining states in the set

S? = S \ (Syes ∪ Sno) can be obtained as the unique solution
of the following linear programming (LP) problem:

• Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

maximize xs subject to the constraints :
s∈ S ?∑

xs ≤ µ(s')⋅ xs' +

s'∈S ?

∑ µ(s')
s'∈S yes

∑

for all s ∈ S? and for all (a, µ) ∈ δ(s)

63

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5

● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

64

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0

x1

0
0

1

12/3
x0

x1

0
0

1

1

0.8

x0

x1

0
0

1

1

x0 ≤ x1

x0 ≤ 2/3 x1 ≤ 0.2·x0

+ 0.8

65

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Solution:

(x0, x1)

=

(2/3, 14/15)

66

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Two memoryless
adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3

67

Method 2 – Value iteration

• For probabilities Prs
min(φ1 U φ2) it can be shown that:

− Prs
min(φ1 U φ2) = limn→∞ xs

(n) where:

• This forms the basis for an (approximate) iterative solution

− iterations terminated when solution converges sufficiently

xs

(n)

=

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0

min(a,µ)∈Steps(s) µ(s')⋅ xs'

(n−1)

s'∈S

∑



 




  if s ∈ S? and n > 0















68

Example - PCTL until (value iteration)

Compute: Prsi
min(F a)

Syes = {x2}, S
no ={x3}, S

? = {x0, x1}

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0, 0, 1, 0]

n=1: [min(0,0.25·0+0.5),

0.1·0+0.5·0+0.4, 1, 0]

= [0, 0.4, 1, 0]

n=2: [min(0.4,0.25·0+0.5),

0.1·0+0.5·0.4+0.4, 1, 0]

= [0.4, 0.6, 1, 0]

n=3: …

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

69

Example - PCTL until (value iteration)

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0.000000, 0.000000, 1, 0]

n=1: [0.000000, 0.400000, 1, 0]

n=2: [0.400000, 0.600000, 1, 0]

n=3: [0.600000, 0.740000, 1, 0]

n=4: [0.650000, 0.830000, 1, 0]

n=5: [0.662500, 0.880000, 1, 0]

n=6: [0.665625, 0.906250, 1, 0]

n=7: [0.666406, 0.919688, 1, 0]

n=8: [0.666602, 0.926484, 1, 0]

n=9: [0.666650, 0.929902, 1, 0]

…

n=20: [0.666667, 0.933332, 1, 0]

n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

70

Example - Value iteration + LP

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0.000000, 0.000000, 1, 0]

n=1: [0.000000, 0.400000, 1, 0]

n=2: [0.400000, 0.600000, 1, 0]

n=3: [0.600000, 0.740000, 1, 0]

n=4: [0.650000, 0.830000, 1, 0]

n=5: [0.662500, 0.880000, 1, 0]

n=6: [0.665625, 0.906250, 1, 0]

n=7: [0.666406, 0.919688, 1, 0]

n=8: [0.666602, 0.926484, 1, 0]

n=9: [0.666650, 0.929902, 1, 0]

…

n=20: [0.666667, 0.933332, 1, 0]

n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

x0

x1

0
0

2/3

1

71

Method 3 - Policy iteration

• Value iteration:

− iterates over (vectors of) probabilities

• Policy iteration:

− iterates over strategies (“policies”)

• 1. Start with an arbitrary (memoryless) strategy σ

• 2. Compute the reachability probabilities Prσ (F a) for σ

• 3. Improve the strategy in each state

• 4. Repeat 2/3 until no change in strategy

• Termination:

− finite number of memoryless strategies

− improvement in (minimum) probabilities each time

72

Method 3 - Policy iteration

• 1. Start with an arbitrary (memoryless) strategy σ

− pick an element of δ(s) for each state s ∈ S

• 2. Compute the reachability probabilities Prσ(F a) for σ

− probabilistic reachability on a DTMC

− i.e. solve linear equation system

• 3. Improve the strategy in each state

• 4. Repeat 2/3 until no change in strategy

σ' (s) = argmin µ(s') ⋅ Prs'
σ(F a)

s'∈S

∑ | (a,µ) ∈ δ(s)




 





 

73

Example - Policy iteration

Arbitrary strategy σ:

Compute: Prσ(F a)

Let xi = Prsi
σ(F a)

x2=1, x3=0 and:

• x0 = x1

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ(F a) = [1, 1, 1, 0]

Refine σ in state s0:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}

= min{1, 0.75} = 0.75

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

74

Example - Policy iteration

Refined strategy σ’:

Compute: Prσ’(F a)

Let xi = Prsi
σ’(F a)

x2=1, x3=0 and:

• x0 = 0.25·x0 + 0.5

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ’(F a) = [2/3, 14/15, 1, 0]

This is optimal

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

75

Example - Policy iteration

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

σx1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3

σ’

76

PCTL model checking - Summary

• Computation of set Sat(Φ) for MDP M and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear programming problem, polynomial in |S|
(assuming use of linear programming)

• Complexity:

− linear in |Φ| and polynomial in |S|

− S is states in MDP, assume |δ(s)| is constant

77

Costs and rewards for MDPs

• We can augment MDPs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit

• Extend logic PCTL with R operator, for “expected reward”

− as for PCTL, either R~r […], Rmin=? […] or Rmax=? […]

• Some examples:

− Rmin=? [I=90], Rmax=? [C≤60], Rmax=? [F “end”]

− “the minimum expected queue size after exactly 90 seconds”

− “the maximum expected power consumption over one hour”

− the maximum expected time for the algorithm to terminate

7878

Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity

− essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

• More expressive logics can be used, for example:

− LTL [Pnu77] - the non-probabilistic linear-time temporal logic

− PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL

− both allow path operators to be combined

• In PCTL, temporal operators always appear inside P~p […]

− (and, in CTL, they always appear inside A or E)

− in LTL (and PCTL*), temporal operators can be combined

7979

LTL + probabilities

• Same idea as PCTL: probabilities of sets of path formulae

− for a state s of a DTMC and an LTL formula ψ:

− Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

− all such path sets are measurable (see later)

• For MDPs, we can again consider lower/upper bounds

− pmin(s, ψ) = infσ∈Adv Probσ(s, ψ)

− pmax(s, ψ) = supσ∈Adv Probσ(s, ψ)

− (for LTL formula ψ)

• For DTMCs or MDPs, an LTL specification often comprises
an LTL (path) formula and a probability bound

− e.g. P>0.99 [F (req ∧ X ack)]

8080

LTL model checking for DTMCs

• Model check LTL specification P~p [ψ] against DTMC D

• 1. Generate a deterministic Rabin automaton (DRA) for ψ

− build nondeterministic Büchi automaton (NBA) for ψ [VW94]

− convert the NBA to a DRA [Saf88]

• 2. Construct product DTMC D⊗A

• 3. Identify accepting BSCCs of D⊗A

• 4. Compute probability of reaching accepting BSCCs

− from all states of the D⊗A

• 5. Compare probability for (s, qs) against p for each s

• Qualitative LTL model checking - no probabilities needed

8181

PCTL* model checking

• PCTL* syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]

− ψ ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ

• Example:

− P>p [GF (send → P>0 [F ack])]

• PCTL* model checking algorithm

− bottom-up traversal of parse tree for formula (like PCTL)

− to model check P~p [ψ]:

• replace maximal state subformulae with atomic propositions

• (state subformulae already model checked recursively)

• modified formula ψ is now an LTL formula

• which can be model checked as for LTL

8282

LTL model checking for MDPs

• Model check LTL specification P~p [ψ] against MDP M

• 1. Convert problem to one needing maximum probabilities

− e.g. convert P>p [ψ] to P<1-p [¬ψ]

• 2. Generate a DRA for ψ (or ¬ψ)

− build nondeterministic Büchi automaton (NBA) for ψ [VW94]

− convert the NBA to a DRA [Saf88]

• 3. Construct product MDP M⊗A

• 4. Identify accepting end components (ECs) of M⊗A

• 5. Compute max. probability of reaching accepting ECs

− from all states of the D⊗A

• 6. Compare probability for (s, qs) against p for each s

8383

Complexity

• Complexity of model checking LTL formula ψ on DTMC D

− is doubly exponential in |ψ| and polynomial in |D|

• Converting LTL formula ψ to DRA A

− for some LTL formulae of size n, size of smallest DRA is

• In total: O(poly(|D|,|A|))

• In practice: |ψ| is small and |D| is large

• Can be reduced to single exponential in |ψ|

− see e.g. [CY88,CY95]

• Complexity of model checking LTL formula ψ on MDP M

− is doubly exponential in |ψ| and polynomial in |M|

− unlike DTMCs, this cannot be improved upon

n22

Probabilistic programs as MDPs

Part 3

85

Probabilistic software

• Consider sequential ANSI C programs

− support functions, pointers, arrays, but not dynamic memory
allocation, unbounded recursion, floating point operations

• Add function bool coin(double p) for probabilistic choice

− for modelling e.g. failures, randomisation

• Add function int ndet(int n) for nondeterministic choice

− for modelling e.g. user input, unspecified function calls

• Aim: verify software with failures, e.g. wireless protocols

− extract models as Markov decision processes

− properties: maximum probability of unsuccessful data
transmission, minimum expected number of packets sent

• Develop abstraction-refinement framework [VMCAI09]

86

Example – sample target program

Φ: “what is the
minimum/maximum probability of
the program
terminating with fail being true?”

bool fail = false;

int c = 0;

int main ()

{

// nondeterministic

c = num_to_send ();

while (! fail && c > 0)

{

// probabilistic

fail = send_msg ();

c --;

}

}

87

Example – simplified

Φ: “what is the
minimum/maximum probability of
the program
terminating with fail being true?”

bool fail = false;

int c = 0;

int main ()

{

// nondeterministic

c = ndet (3);

while (! fail && c > 0)

{

// probabilistic

fail = coin (0.1);

c --;

}

}

input
nondeterminism

Bernoulli
distribution

88

Abstraction-refinement loop

• Model extraction: extension of goto-cc

− function inlining, constant/invariant
propagation, side-effect free expressions,
points-to analysis, etc.

• Probabilistic program

− probabilistic control flow graph

− Markov decision process (MDP) semantics

[error<ε]

Boolean
probabilistic

program

Bounds and
strategies

[error≥ε]

model
checking

refinement

Predicates

Return
bounds

Abstraction
(game)

Probabilistic
program

ANSI-C
program

SAT
-based
abstraction

model
construction

model
extraction

89

Back to example

Probabilistic programbool fail = false;

int c = 0;

int main ()

{

// nondeterministic

c = ndet (3);

while (! fail && c > 0)

{

// probabilistic

fail = coin (0.1);

c --;

}

}

90

Probabilistic program as MDP

Probabilistic program MDP semantics

minimum/maximum probability of
the program terminating with fail
being true is 0 and 0.19,
respectively

91

Experimental results

• Successfully applied to several Linux network utilities:

− TFTP (file-transfer protocol client)

− 1 KLOC of non-trivial ANSI-C code

− Loss of packets modelled by probabilistic choice

− Linux kernel calls modelled by nondeterministic choice

• Example properties

− “maximum probability of establishing a write request”

− “maximum expected amount of data that is sent before
timeout”

− “maximum expected number of echo requests required to
establish connectivity”

• Implemented through extension of CProver and PRISM

PRISM

Part 4

93

Tool support: PRISM

• PRISM: Probabilistic symbolic model checker [CAV11]

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …

− properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

− New! strategy synthesis, stochastic game models (SMGs) ,
multiobjective verification, parametric models

• See: http://www.prismmodelchecker.org/

94

PRISM GUI: Editing a model

95

PRISM GUI: The Simulator

96

PRISM GUI: Model checking and graphs

97

Probabilistic verification in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message, 2.5 seconds

• FireWire root contention

− wired protocol, uses randomisation

− model checking using PRISM

− optimum probability of leader election
by time T for various coin biases

− demonstrated that a biased coin can improve performance

98

Probabilistic verification in action

• DNA transducer gate [Lakin et al, 2012]

− DNA computing with a restricted
class of DNA strand displacement
structures

− transducer design due to Cardelli

− automatically found and fixed
design error, using Microsoft’s DSD and PRISM

• Microgrid demand management protocol [TACAS12,FMSD13]

− designed for households to actively manage
demand while accessing a variety of energy
sources

− found and fixed a flaw in the protocol, due to
lack of punishment for selfish behaviour

− implemented in PRISM-games

99

Summary

• Overview of probabilistic model checking

− discrete-time Markov chains and Markov decision processes

− property specifications in temporal logics

− model checking methods combine graph-theoretic
techniques, automata-based methods, numerical equation
solving and optimisation

• Ongoing work (not discussed)

− further models (stochastic games, probabilistic timed/hybrid
automata)

− controller/strategy synthesis

− runtime verification

− multiobjective verification and synthesis

− sampling-based exploration

• Potential for connections to probabilistic programming

− integrate with probabilistic inference

100

Further material

• Reading

− [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.
Automated Verification Techniques for Probabilistic Systems.
LNCS vol 6659, p53-113, Springer 2011.

− [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic
Model Checking. LNCS vol 4486, p220-270, Springer 2007.

− [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and
Katoen, MIT Press 2008

• See also

− 20 lecture course taught at Oxford

− http://www.prismmodelchecker.org/lectures/pmc/

• PRISM website www.prismmodelchecker.org

