
Analysing mobile ad hoc networks via 
probabilistic model checking

Marta Kwiatkowska
School of Computer Science

www.cs.bham.ac.uk/~mzk
www.cs.bham.ac.uk/~dxp/prism

MSR Redmond, April 2005



Overview
• Mobile ad hoc network protocols

– Probability - why needed, challenges
– Verification techniques and tools

• Probabilistic model checking
– The models
– Specification languages
– What does it involve?
– The PRISM model checker

• Case studies
– IPv4 Zeroconf dynamic configuration protocol
– Bluetooth device discovery

• Challenges for future



Ubiquitous computing: the trends…
• Devices, ever smaller

– Laptops, phones, PDAs, …
– Sensors, motes, …

• Networking, wireless, wired & global
– Mobile ad hoc
– Wireless everywhere 
– Internet everywhere
– Global connectivity

• Systems/software
– Decentralised
– Self-organising
– Self-configuring
– Autonomous
– Adaptive
– Context-aware



Ubiquitous computing: users expect…

• …assurance of
– safety
– correctness
– performance
– reliability

• For example: 
– Is my e-savings account secure?
– Can someone bluesnarf from my phone?
– How fast is the communication from my PDA to printer?
– Is my mobile phone energy efficient? 
– Is the protocol reliable?
– Can the laptop recover from faults with no effort on my part?



Probability helps

• In distributed (de-centralised) co-ordination algorithms
– As a symmetry breaker

• “leader election is eventually resolved with probability 1”
– In gossip-based routing and multicasting

• “the message will be delivered to all nodes with high probability”

• When modelling uncertainty in the environment
– To quantify failures, express soft deadlines, QoS

• “probability of frame being delivered within 5ms is at least 0.91”
– To quantify environmental factors in decision support

• “expected cost of reaching the goal is 100”

• When analysing system performance
– To quantify arrivals, service, etc. characteristics

• “in the long run, mean waiting time in a lift queue is 30 sec”



Real-world protocol examples
• Protocols featuring randomisation

– Randomised back-off schemes
• IEEE 802.11 (WiFi) Wireless LAN MAC protocol

– Random choice of waiting time
• Bluetooth, device discovery phase

– Random choice of routes to destination
• Crowds, anonymity protocol for internet routing

– Random choice of a timing delay
• Root contention in IEEE 1394 FireWire

– Random choice over a set of possible addresses
• IPv4 dynamic configuration (link-local addressing) 

– and more

• Continuous probability distribution needed to model network 
traffic, node mobility, random delays…



Verification via model checking…

The model

Model Checker

Temporal logic specification

send → ◊deliver 

or

Error trace
Line 5: …
Line 21: …
Line 15: …

…
Line 27: …
Line 45: ...

or falsification?



Probabilistic model checking…

Probabilistic
Model Checker

Probabilistic temporal 
logic specification

send → P¸ 0.9(◊deliver)

or

in a nutshell

Probabilistic model

0.4
0.3

The probability
State 5: 0.6789
State 6: 0.9789
State 7: 1.0

…
State 12: 0
State 13: 0.1245

or



Probability elsewhere
• In performance modelling

– Pioneered by Erlang, in telecommunications, ca 1910
– Models: typically continuous time Markov chains
– Emphasis on steady-state and transient probabilities

• In stochastic planning
– Cf Bellman equations, ca 1950s
– Models: Markov decision processes
– Emphasis on finding optimum policies

• Our focus, probabilistic model checking
– Distinctive, on automated verification for probabilistic systems
– Temporal logic specifications, automata-theoretic techniques
– Shared models
– Exchanging techniques with the other two areas



Probabilistic models: discrete time
• Labelled transition systems

– Discrete time steps
– Labelling with atomic propositions

• Probabilistic transitions
– Move to state with given probability
– Represented as discrete probability 

distribution

• Model types
– Discrete time Markov chains (DTMCs): 

probabilistic choice only

– Markov decision processes (MDPs): 
probabilistic choice and nondeterminism

. . .

∑i pi = 1

p1
p2

pn



Discrete-Time Markov Chains (DTMCs)
• Features:

– Only probabilistic choice
in each state

• Formally, (S,s0,P,L): 
– S finite set of states
– s0 initial state
– P: S £ S ! [0,1] probability matrix, s.t. ∑s’ P(s,s’) = 1, all s
– L: S ! 2AP atomic propositions

• Unfold into infinite paths s0s1s2s3s4… s.t. P(si,si+1) > 0, all i

• Probability for finite paths, multiply along path
e.g. s0 s1 s1 s2 is 1 ¢ 0.01 ¢ 0.97 = 0.0097

s2

s0

s3

s1

1

1

0.01

0.02

0.97

1

init try

fail

succ



Probability space
• Intuitively:

– Sample space = infinite paths Paths from s
– Event = set of paths
– Basic event = cone

• Formally, (Paths, Ω, Pr)
– For finite path ω = ss1…sn, define probability 

P(ω) =

– Take Ω least σ-algebra containing cones 
C(ω) = { π 2 Paths | ω is prefix of π}

– Define Pr(C(ω)) = P(ω), all ω
– Pr extends uniquely to measure on Paths

ss1s2…sk

1 if ω has length one
P(s,s1) ¢ … ¢ P(sn-1,sn) otherwise



Markov Decision Processes (MDPs)
• Features:

– Nondeterministic choice
– Parallel composition

of DTMCs

• Formally, (S,s0,Steps,L): 
– S finite set of states
– s0 initial state
– Steps maps states s to sets of probability distributions µ over S
– L: S ! 2AP atomic propositions

• Unfold into infinite paths s0µ0s1 µ1s2µ2s3… s.t. µi(si,si+1) > 0, all i

• Probability space induced on Paths by adversary (policy) A 
mapping finite path s0µ0s1µ1…sn to a distribution from state sn

s2

s0

s3

s1

1

0.02

0.981

1

init try

fail

succ
1



The logic PCTL: syntax
• Probabilistic Computation Tree Logic [HJ94,BdA95,BK98]

– For DTMCs/MDPs
– New probabilistic operator, e.g. send → P¸ 0.9(◊deliver)

“whenever a message is sent, the probability that it is eventually 
delivered is at least 0.9”

• The syntax of state and path formulas of PCTL is:

φ ::= true | a | φ Æ φ | :φ | P» p(α)
α ::= X φ | φ U φ

where p 2 [0,1] is a probability bound and » 2 { <, >, … }

• Subsumes the qualitative variants [Var85,CY95] P=1(α), P> 0(α)

• Extension with cost/rewards and expectation operator E» c(φ)



The logic PCTL: semantics
• Semantics is parameterised by a class of adversaries Adv

– “under any scheduling, the probability bound is true at state s”
– reasoning about worst-case/best-case scenario

• The probabilistic operator is a quantitative analogue of 8, 9

s  ²Adv P» p(α) , PrA { π 2 PathA
s j π ²Adv α } » p

for all A 2 Adv

threshold level p
S

α-paths

< 1 - p

¸ p



PCTL semantics: summary
• Semantics of state formulas:

s ²Adv a , a 2 L(s) 
s ²Adv :φ , s ²Adv φ
s ²Adv φ1 Æ φ2 , s ²Adv φ1 and s ²Adv φ2  

• Semantics of path formulas:
π ²Adv X φ , π = s0L and s1 ²Adv φ
π ²Adv φ1 U φ2 , π = s0L and 9 k s.t.

sk ²Adv φ2 and 8 j < k . sj ²Adv φ1

• The probabilistic operator:

s  ²Adv P» p(α) , PrA { π 2 PathA
s j π ²Adv α } » p

for all A 2 Adv



The logic PCTL: model checking
• By induction on structure of formula, as for CTL

• For the probabilistic operator and Until, solve
– recursive linear equation for DTMCs
– linear optimisation problem (form of Bellman equation) for MDPs
– typically iterative solution methods

• Need to combine 
– conventional graph traversal
– numerical linear algebra and linear optimisation (value iteration)

• Qualitative properties (probability 1, 0) proceed by graph 
traversal [Var85,dAKNP97]



PCTL model checking for DTMCs
• By induction on structure of formula
• For the probabilistic operator

– Sat( P» p(X φ) ) , {s 2 S | ∑s’ 2 Sat(φ) P(s,s’) » p}

– Sat( P» p(φ1 U φ2) ) , {s 2 S | xs » p}

where xs, s 2 S, are obtained from the recursive linear equation

0 if s 2 Sno

xs = 1 if s 2 Syes

∑s’ 2 S P(s,s’) ¢ xs’ if s 2 Sn(Sno [ Syes)
and 

Syes – states that satisfy φ1 U φ2 with probability exactly 1 
Sno - states that satisfy φ1 U φ2 with probability exactly 0 



PCTL model checking for DTMCs
• For the remaining formulas standard:

Sat(a) = L(a) 
Sat(:φ) = S\Sat(φ)
Sat(φ1 Æ φ2) = Sat(φ1) \ Sat(φ2 )

• Syes, Sno can be precomputed by graph traversal [Var85] (or 
BDD fixed point computation)

• Need to combine 
– Conventional graph-theoretic traversal
– Numerical linear algebra



PCTL model checking for MDPs
• Syes, Sno can also be precomputed by graph traversal (BDD 

fixed point) [dAKNP97]

• The linear equation generalises to linear optimisation 
problems solvable iteratively, e.g.

Sat( P¸ p(φ1 U φ2) ) , {s 2 S | xs ¸ p}

0 if s 2 Sno

xs = 1 if s 2 Syes

minµ 2 Steps(s) ∑s’ 2 S µ(s’) ¢ xs’ if s 2 Sn(Sno [ Syes) 

• Need to combine 
– Conventional graph-theoretic traversal
– Linear optimisation (simplified value iteration)



Probabilistic models: continuous
• Assumptions on time and probability

– Continuous passage of time
– Continuous randomly distributed 

delays
– Continuous space

• Model types
– Continuous time Markov chains 

(CTMCs): exponentially distributed 
delays, discrete space, no
nondeterminism

– Probabilistic Timed Automata 
(PTAs): dense time, (usually) discrete 
probability, admit nondeterminism 

– (not considered) Labelled Markov 
Processes (LMPs): continuous 
space/time, no nondeterminism

time

s0
+1 f(x)dx = 1



Probabilistic model checking in practice
• Model construction: probability/rate matrices

– Enumerative
• Manipulation of individual states
• Size of state space main limitation

– Symbolic
• Manipulation of sets of states
• Compact representation possible in case of regularity

• Temporal logic model checking: currently limited to 
– discrete probability/space models
– CTMCs
– Simulation admits more general distributions 

• Probabilistic Symbolic Model Checker PRISM



The PRISM project
• History 

– First public release September 2001, ~7 years development
– Connection with other software tools: KRONOS, PEPA, 

CSP/FDR2, APMC, YMER
– Forthcoming: BioCHAM, CADP, Probmela

• Staff
– Core: Kwiatkowska, RFs (EPSRC): Parker, Norman, Zhang
– PhD students: Honore (mobility), Tymchyshyn (biology)
– Key collaborators: Younes (CMU), Shmatikov (SRI/Texas), Segala

(Verona), Katoen (Twente/Aachen), Baier (Bonn), Shukla (VT), 
Gilmore (Edinburgh), Goldsmith (Formal Sys), and more

• Users
– 2000 downloads, Unix/Linux, Windows and Apple Mac
– 30+ case studies, 70 papers featuring PRISM
– Taught at Stanford, Austin Texas, KTH, Rome



The PRISM tool: overview
• Functionality

– Direct support for models: DTMCs, MDPs and CTMCs 
– Extension with costs/rewards, expectation operator
– PTAs with digital clocks by manual translation
– Connection from KRONOS to PRISM for PTAs
– Experimental implementation using DBMs/DDDs for PTAs

• Input languages
– System description

• probabilistic extension of reactive modules [Alur and Henzinger]
– Probabilistic temporal logics: PCTL and CSL 

• Implementation
– Symbolic model construction (MTBDDs), uses CUDD [Somenzi]
– Three numerical computation engines
– Written in Java and C++



The PRISM tool: implementation
• Numerical engines

– Symbolic, MTBDD based
• Fast construction, reachability analysis
• Very large models if regularity

– Enumerative, sparse-matrix based
• Generally fast numerical computation
• Model size up to millions

– Hybrid
• Speed comparable to sparse matrices for numerical calculations
• Limited by size of vector

• Experimental results
– Several large scale examples: 1010 - 1030 states
– No engine wins overall
– See www.cs.bham.ac.uk/~dxp/prism



PRISM real-world case studies
• MDPs/DTMCs

– Self-stabilising algorithms (based on Hermann and others)
– Bluetooth device discovery [ISOLA’04]
– Crowds anonymity protocol (by Shmatikov) [CSFW’02, JSC 2003]
– Randomised consensus [CAV’01,FORTE’02]
– Contract signing protocols (by Norman & Shmatikov) [FASEC’02]
– NAND multiplexing for nano (with Shukla) [VLSI’04,TCAD 2005]

• CTMCs
– Molecular reactions (based on Regev & Shapiro)
– Eukaryotic cell cycle control (based on Lecca & Priami)
– Dependability of embedded controller [INCOM’04]
– Dynamic power management [HLDVT’02, FAC 2005] 

• PTAs
– IPv4 ZeroConf dynamic configuration [FORMATS’03]
– Root contention in IEEE 1394 FireWire [FAC 2003, STTT 2004]
– IEEE 802.11 (WiFi) Wireless LAN MAC [PROBMIV’02, CAV’05]



PRISM technicalities
• Augment states and transitions with real-valued rewards

– Instantaneous rewards, e.g. “concentration of reactant”
– Cumulative rewards, state- and transition-based, e.g. “power 

consumed”, “messages lost”

• Support for “experiments”
– e.g.  P=? [true U<=T error] for N=1..5,T=1..100 

• GUI implementation
– integrated editor for PRISM language
– automatic graph plotting

• (Ongoing) Simulator and sampling-based model checking
– allows to “excute” the model step-by-step or randomly
– avoids state-space explosion, trading off accuracy



Screenshot: Text editor



Screenshot: Graphs



Ongoing developments

• Graphical
modelling
language

• Simulator,
sampling
methods

• Parallel 
engine

• Grid engine



Case Study: Self-stabilization
• Self-stabilizing protocol for a network of processes

– starts from possibly illegal start state
– returns to a legal (stable) state 

• without any outside intervention
• within some finite number of steps

• Network: synchronous or asynchronous ring of N processes
– Illegal states: more than on process is privileged (has a token)
– Stable states: exactly one process is privileged (has a token)
– Properties

• From any state, a stable state is reached with probability 1
• Expected time to reach a stable state
• Interested in worst-case time to reach stable state (unproven 

conjecture about Hermann’s ring of McIver & Morgan)



Herman’s self-stabilising protocol
• Synchronous ring of N (N odd) processes (DTMC)

– Each process has a local boolean variable xi 
– Token in place i if xi=xi+1
– Basic step of process i:

• if xi = xi+1 make a uniform random choice as to the next value of xi
• otherwise set xi to the current value of xi+1

– Allow to start in any state (MDP)

– In the PRISM language:
module process1

x1 : bool;
[step] x1=x2     -> 0.5 : x1’=0 + 0.5 : x1’=1;
[step]   !(x1=x2)  -> x1’=x2;

endmodule

module process2 = process1 [x1=x2, x2=x3] endmodule
M M

module processN = process1 [x1=xN, x2=x1] endmodule



Results: Herman’s protocol
• P¸ 1 (◊stable): min probability of reaching a stable state is 1
• E· ? (stable): max expected time (number of steps) to reach a 

stable state, assuming initially K tokens and N processes:



Israeli-Jalfon’s self-stabilising protocol
• Asynchronous ring of N processes (MDP)
• Each process has a local boolean variable qi 

– token in place i if qi=true
– process is active if and only if has a token 
– basic step of (active) process: uniform random choice as to 

whether to move the token to the left or right

– In the PRISM language:

global q1 : [0..1]; … global qN : [0..1]; 
module process1

s1 : bool; // dummy variable
[] (q1=1) -> 0.5 : (q1'=0) & (qN'=1) + 0.5 : (q1'=0) & (q2'=1);

endmodule

module process2 = process1 [s1=s2, q1=q2, q2=q3 , qN=q1] endmodule
M M

module processN = process1 [s1=sN, q1=qN, q2=q1 , qN=qN-1] endmodule



Results: Israeli-Jalfon’s protocol
• P¸ 1 (◊stable): min probability of reaching a stable state is 1
• E· ? (stable): max expected time (number of steps) to reach a 

stable state, assuming initially K tokens and N processes:



Beauquier, Gradinariu and Johnen’s
self-stabilising protocol

• Asynchronous ring of N (N odd) processes (MDP)
– Each process has two boolean variables: di and pi where: 

• if di=di-1 process i is said to have a deterministic token
• if pi=pi-1 process i is said to have a probabilistic token
• stable states are those where there is only one probabilistic token
• process is active if and only if has a deterministic token

– Basic step of (active) process i: 
• negate di and if pi=pi-1, then set pi uniformly at random

– In the PRISM language:

module process1
d1 : bool; p1 : bool; 
[] d1=d3 & p1=p3 -> 0.5 : (d1'=!d1) & (p1'=p1) + 0.5 : (d1'=!d1) & (p1'=!p1); 
[] d1=d3 & !p1=p3 -> (d1'=!d1); 

endmodule

module process2 = process1 [d1=d2, d2=d3, p1=p2, p2=p3] endmodule
M M

module processN = process1 [d1=dN, d2=d1, p1=pN, p2=p1] endmodule



Results: Beauquier, Gradinariu and 
Johnen’s protocol

• P¸ 1 (◊stable): min probability of reaching a stable state is 1
• E· ? (stable): max expected time (number of steps) to reach a 

stable state, assuming initially K tokens and N processes:



Case study: IPv4 Zeroconf protocol
• IPv4 ZeroConf protocol [Cheshire,Adoba,Guttman’02]

– New IETF standard for dynamic network self-configuration
– Link-local (no routers within the interface)
– No need for an active DHCP server
– Aimed at home networks, wireless ad-hoc networks, hand-held 

devices
– “Plug and play”

• Self-configuration
– Performs assignment of IP addresses 
– Symmetric, distributed protocol
– Uses random choice and timing delays



IPv4 Zeroconf Standard 

The Internet

• Select an IP address out of 65024 at random
• Send a probe querying if address in use, and listen for 2 seconds

– If positive reply received, restart
– Otherwise, continue sending probes and listening (2 seconds)

• If K probes sent with no reply, start using the IP number
– Send 2 packets, at 2 second intervals, asserting IP address is being used
– If a conflicting assertion received, either:

• defend (send another asserting packet)
• defer (stop using the IP address and restart)

57064?57064?



Will it work?
• Possible problem…

– IP number chosen may be already in use, but:
• Probes or replies may get lost or delayed (host too busy)

• Issues:
– Self-configuration delays may become unacceptable

• Would you wait 8 seconds to self-configure your PDA?
– No justification for parameters

• for example K=4 in the standard

• Case studies:
– DTMC and Markov reward models, analytical [BvdSHV03,AK03]
– TA model using UPPAAL [ZV02]
– PTA model with digital clocks using PRISM [KNS03]



The IPv4 Zeroconf protocol model
• Modelled using Probabilistic Timed Automata (with digital 

clocks)

• Parallel composition of two PTAs:
– one (joining) host, modelled in detail
– environment (communication medium + other hosts)

• Variables:
– K (number of probes sent before the IP address is used)
– the probability of message loss
– the number of other hosts already in the network



Modelling the host



Modelling the environment



Expected costs
• Compute minimum/maximum expected cost accumulated 

before obtaining a valid IP address?

• Costs:
– Time should be costly: the host should obtain a valid IP address 

as soon as possible
– Using an IP address that is already in use should be very costly:

minimise probability of error

• Cost pair: (r,e)
– r=1 (t time units elapsing corresponds to a cost of t)
– e=1012 for the event corresponding to using an address which is 

already in use 
– e=0 for all other events



Results for IPv4 Zeroconf

Prob. of
message 
loss 
= 0.001

Prob. of
message 
loss 
= 0.01

• Sending a high number of probes increases the cost
– increases delay before a fresh IP address can be used

• Sending a low number of probes increases the cost
– increases probability of using an IP address already in use

• Similar results to the simpler model of [BvdSHV03]



Case Study: Bluetooth protocol
• Short-range low-power wireless protocol

– Personal Area Networks (PANs)
– Open standard, versions 1.1 and 1.2
– Widely available in phones, PDAs, laptops, …

• Uses frequency hopping scheme
– To avoid interference (uses unregulated 2.4GHz band)
– Pseudo-random frequency selection over 32 of 79 frequencies
– Inquirer hops faster
– Must synchronise hopping frequencies

• Network formation
– Piconets (1 master, up to 7 slaves)
– Self-configuring: devices discover themselves
– Master-slave roles



States of a Bluetooth device

• Master looks for device, slave listens for master
• Standby: default operational state
• Inquiry: device discovery
• Page: establishes connection
• Connected: device ready to communicate in a piconet



Why focus on device discovery?
• Performance of device discovery crucial

– No communication before initialisation
– First mandatory step: device discovery

• Device discovery
– Exchanges information about slave clock times, which can 

be used in later stages 
– Has considerably higher power consumption
– Determines the speed of piconet formation 



Frequency hopping

• Clock CLK, 28 bit free-running, ticks every 312.5µs
• Inquiring device (master) broadcasts inquiry packets on two 

consecutive frequencies, then listens on the same two (plus 
margin)

• Potential slaves want to be discovered, scan for messages
• Frequency sequence determined by formula, dependent on 

bits of clock CLK (k defined on next slide): 

freq = [CLK16-12+k+ (CLK4-2,0-CLK16-12) mod 16] mod 32



Frequency hopping sequence

freq = [CLK16-12+k+ (CLK4-2,0-
CLK16-12) mod 16] mod 32

• Two trains (=lines)
• k is offset that 

determines which train
• Swaps between trains 

every 2.56 sec
• Each line repeated 128 

times 



Sending and receiving in Bluetooth

• Sender: broadcasts inquiry packets, sending according to the 
frequency hopping sequence, then listens, and repeats

• Receiver: follows the frequency hopping sequence, own clock

• Listens continuously on one frequency
• If hears message sent by the sender, then replies on the 

same frequency
• Random wait to avoid collision if two receivers hear on same 

frequency



Bluetooth modelling
• Very complex interaction

– Genuine randomness, probabilistic modelling essential
– Devices make contact only if listen on the right frequency at 

the right time!
– Sleep/scan periods unbreakable, much longer than listening 
– Cannot scale constants (approximate results)
– Cannot omit subactivities, otherwise oversimplification

• Huge model, even for one sender and one receiver!
– Initial configurations dependent on 28 bit clock
– Cannot fix start state of receiver, clock value could be 

arbitrary
– 17,179,869,184 possible initial states

• But is a realistic future ubiquitous computing scenario!



What about other approaches?
• Indeed, others have tried…

– network simulation tools (BlueHoc)
– analytical approaches

• But 
– simulations obtain averaged results, in contrast to best/worst

case analysis performed here
– analytical approaches require simplifications to the model
– it is easy to make incorrect probabilistic assumptions, as we can 

demonstrate

• There is a case for all types of analyses, or their 
combinations…



Lessons learnt…
• Must optimise/reduce model

– Assume negligible clock drift, obtain a DTMC
– Manual abstractions, combine transitions, etc
– Divide into 32 separate cases
– Success (exhaustive analysis) with one/two replies

• Observations
– Work with realistic constants, as in the standard 
– Analyse v1.2 and 1.1, confirm 1.1 slower
– Show best/worst case values, can pinpoint scenarios which give 

rise to them
– Also obtain power consumption analysis

• Performance of device discovery crucial
– No communication before initialisation
– First mandatory step: device discovery



Time to hear 1 reply

• Max time to hear is 2.5716sec, in 921,600 possible initial 
states, (Min 635µs)

• Cumulative: assume uniform distribution on states when 
receiver first starts to listen



Time to hear 2 replies

• Max time to hear is 5.177sec (16,565 slots), in 444 possible 
initial states

• Cumulative (derived): assumes time to reply to 2nd message is 
independent of time to reply to 1st (incorrect, compare with 
exact curve obtained from model checking)



Case Study: FireWire Protocol

• FireWire (IEEE 1394)
– one of fastest standards, high data rate
– multimedia data
– originally by Apple, mid-90s
– winner of 2001 PrimeTime Emmy Engineering Award
– no requirement for a single PC (acyclic topology, not tree)
– “plug and play”

• Initial configuration
– involves leader election
– symmetric, distributed protocol
– uses electronic coin tossing and timing delays: PTA model



Typical FireWire Configuration



FireWire Initial Configuration

R



FireWire Root Contention

Root
contention



FireWire Root Contention

Root
contention

Root
contentionR



FireWire Analysis
• Real-time properties

– analysed by Vandraager and Stoelinga
– used the UPPAAL model checker
– shown correct wires longer than standard

• Probabilistic analysis 
– used UPPAAL & PRISM model checkers [KNS03, DNK02]
– timing delays taken from standard
– established that root contention resolved with probability 1
– also considered expected time to root contention
– a peculiarity found… (conjectured by Stoelinga)

• Further analyses at various levels of abstraction, see special 
issue on FireWire

Formal Aspects of Computing (2003) 14: 295-318



FireWire: Analysis Results



Unfair coin gives advantage!

0

50000

100000

0 0.5 1

Probability of flipping "tails"

Ex
pe

ct
ed

 t
im

e

3575

3675

3775

3875

0.42 0.5 0.58 0.66

Probability of flipping "tails"

Ex
pe

ct
ed

 t
im

e



Related projects
• FORWARD (this case study, see ISOLA’04)

– Performance modelling of MAC layer of Bluetooth
– Security analysis of Bluetooth

• Modelling and verification of mobile ad hoc network 
protocols
– Modelling language with mobility and randomisation
– Model checking algorithms & techniques
– Tool development & implementation
– Modelling timing properties of AODV [FMOODS’05]

• Modelling biological processes
– Biochemical reactions: eukaryotic cell cycle, ERK pathway, FGF 

pathway
– Integrative Biology: modelling cancer, crypt development in 

colorectal cancer



Extending PRISM with mobility
• Models in PRISM

– are described in reactive modules 
:: extend with  mobility, dynamic topology
:: extend with geographical positioning
:: extend with context-awareness

– are finite-state, static and often huge
:: verification support for compositionality, abstraction
:: techniques for infinite state systems
:: combine with simulation-based methods

• Specifications
– are temporal logic based: 

:: add location-awareness
:: more expressive logics?



Challenges for future
• Exploiting structure

– Abstraction, data/equivalence quotient, (de)compositionality…
– Parametric probabilistic verification?

• Proof assistant for probabilistic verification?
• Approximation methods?
• Efficient methods for continuous models

– Continuous PTAs? Continuous time MDPs? LMPs? 
• More expressive specifications

– Probabilistic LTL/PCTL*/mu-calculus?
• Real software, not models!

• More applications
– Quantum cryptographic protocols
– Mobile ad hoc network protocols



For more information…

www.cs.bham.ac.uk/~dxp/prism/
• Case studies, statistics, group publications 
• Download, version 2.1 (2000 downloads)
• Unix/Linux, Windows, Apple platforms
• Publications by others and courses that 

feature PRISM…

J. Rutten, M. Kwiatkowska, G. Norman and 
D. Parker
Mathematical Techniques for Analyzing 
Concurrent and Probabilistic Systems
P. Panangaden and F. van Breugel (editors), 
CRM Monograph Series, vol. 23, AMS
March 2004 

http://www.cs.bham.ac.uk/~dxp/prism/
http://www.ams.org/bookstore?fn=20&arg1=crmmseries&item=CRMM-23
http://www.cs.bham.ac.uk/~dxp/prism/


PRISM collaborators worldwide



Collaborators, contributors – thanks!
Rajeev Alur, Christel Baier, Roberto Barbuti, Muffy Calder, 
Stefano Cataudella, Stefano Cattani, Ed Clarke, Sadie Creese, 
Pedro D’Argenio, Conrado Daws, Luca de Alfaro, Marie Duflot,
Amani El-Rayes, Wan Fokkink, Laurent Fribourg, Stephen 
Gilmore, Michael Goldsmith, Rajeesh Gupta, Vicky Hartonas-
Garmhausen, Boudewijn Haverkort, Thomas Herault, Holger 
Hermanns, Ulrich Herzog, Andrew Hinton, Joe Hurd, Michael 
Huth, Jane Hillston, Jane Jayaputera, Bertrand Jeannet, 
Thomas Herault, Joost-Pieter Katoen, Matthias Kuntz, Kim 
Larsen, Richard Lassaigne, Andrea Maggiolo-Schettini, Annabelle 
McIver, Rashid Mehmood, Stephane Messika, Paolo Milazzo, 
Carroll Morgan, Gethin Norman, Colin O’Halloran, Antonio 
Pacheco, Prakash Panangaden, Dave Parker, Sylvain Peyronnet, 
Claudine Picaronny, Mark Ryan, Roberto Segala, Vitaly Shmatikov, 
Sandeep Shukla, Markus Siegle, Jeremy Sproston, Tran Manh Ha 
Tran, Angelo Troina, Moshe Vardi, Fuzhi Wang, Hakan Younes


	Analysing mobile ad hoc networks via probabilistic model checking
	Overview
	Ubiquitous computing: the trends…
	Ubiquitous computing: users expect…
	Probability helps
	Real-world protocol examples
	Verification via model checking…
	Probabilistic model checking…
	Probability elsewhere
	Probabilistic models: discrete time
	Discrete-Time Markov Chains (DTMCs)
	Probability space
	Markov Decision Processes (MDPs)
	The logic PCTL: syntax
	The logic PCTL: semantics
	PCTL semantics: summary
	The logic PCTL: model checking
	PCTL model checking for DTMCs
	PCTL model checking for DTMCs
	PCTL model checking for MDPs
	Probabilistic models: continuous
	Probabilistic model checking in practice
	The PRISM project
	The PRISM tool: overview
	The PRISM tool: implementation
	PRISM real-world case studies
	PRISM technicalities
	Screenshot: Text editor
	Screenshot: Graphs
	Ongoing developments
	Case Study: Self-stabilization
	Herman’s self-stabilising protocol
	Results: Herman’s protocol
	Israeli-Jalfon’s self-stabilising protocol
	Results: Israeli-Jalfon’s protocol
	Beauquier, Gradinariu and Johnen’s self-stabilising protocol
	Results: Beauquier, Gradinariu and Johnen’s protocol
	Case study: IPv4 Zeroconf protocol
	IPv4 Zeroconf Standard
	Will it work?
	The IPv4 Zeroconf protocol model
	Modelling the host
	Modelling the environment
	Expected costs
	Results for IPv4 Zeroconf
	Case Study: Bluetooth protocol
	States of a Bluetooth device
	Why focus on device discovery?
	Frequency hopping
	Frequency hopping sequence
	Sending and receiving in Bluetooth
	Bluetooth modelling
	What about other approaches?
	Lessons learnt…
	Time to hear 1 reply
	Time to hear 2 replies
	Case Study: FireWire Protocol
	Typical FireWire Configuration
	FireWire Initial Configuration
	FireWire Root Contention
	FireWire Root Contention
	FireWire Analysis
	FireWire: Analysis Results
	Unfair coin gives advantage!
	Related projects
	Extending PRISM with mobility
	Challenges for future
	For more information…
	PRISM collaborators worldwide
	Collaborators, contributors – thanks!

