
Milner Lecture, University of Edinburgh, 25 Sep 2012

Sensing everywhere:

on quantitative verification for
ubiquitous computing

Marta Kwiatkowska
University of Oxford

2

Where are computers?

3

Once upon a time, back in the 1980s…

4

Smartphones, tablets…

Sensor apps

GPS/GPRS tracking
Accelerometer
Air quality

Access to services
Personalised monitoring

5

House appliances, networked…

Fridge that
Tweets!

Home network
Internet-enabled
Remote control
Energy
management

6

Intelligent transport…

Look, no hands!

Self-parking cars
Traffic jam
assistance

Personalised
transport

7

Medical devices…

Wearable or
implantable
health monitoring

Heart rate
Breathing
Movement
Glucose…

8

Ubiquitous computing

• Computing without computers

• (also known as Pervasive Computing or Internet of Things

− enabled by wireless technology and cloud computing)

• Populations of sensor-enabled computing devices that are

− embedded in the environment, or even in our body

− sensors for interaction and control of the environment

− software controlled, can communicate

− operate autonomously, unattended

− devices are mobile, handheld or wearable

− miniature size, limited resources, bandwidth and memory

− organised into communities

• Unstoppable technological progress

− smaller and smaller devices, more and more complex
scenarios…

9

Perspectives on ubiquitous computing

• Technological: calm technology [Weiser 1993]

− “The most profound technologies are those that
disappear. They weave themselves into everyday
life until they are indistinguishable from it.”

• Usability: ‘everyware’ [Greenfield 2008]

− Hardware/software evolved into ‘everyware’:
household appliances that do computing

• Scientific: “Ubicomp can empower us, if we can
understand it” [Milner 2008]

− “What concepts, theories and tools are needed
to specify and describe ubiquitous systems,

their subsystems and their interaction?”

• This lecture: from theory to practice, for Ubicomp

− emphasis on practical, algorithmic techniques and
industrially-relevant tools

10

Software quality assurance

• Software is a critical component

− embedded software failure costly and life endangering

• Need quality assurance methodologies

− model-based development

− rigorous software engineering

− software product lines

• Use formal techniques to produce guarantees for:

− safety, reliability, performance, resource usage, trust, …

− (safety) “probability of failure to raise alarm is tolerably low”

− (reliability) “the smartphone will never execute the financial
transaction twice”

• Focus on automated, tool-supported methodologies

− automated verification via model checking

− quantitative verification

11

Rigorous software engineering

• Verification and validation

− Derive model, or extract from software artefacts

− Verify correctness, validate if fit for purpose

Model
Formal
specification

System
Validation

Verification

A
b

s
tr

a
c
t R

e
fin

e

F
o
rm

a
li
s
e

Simulation

Informal
requirements

12

Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models

13

Why quantitative verification?

• Real ubicomp software/systems are quantitative:

− Real-time aspects

• hard/soft time deadlines

− Resource constraints

• energy, buffer size, number of unsuccessful transmissions, etc

− Randomisation, e.g. in distributed coordination algorithms

• random delays/back-off in Bluetooth, Zigbee

− Uncertainty, e.g. communication failures/delays

• prevalence of wireless communication

• Analysis “quantitative” & “exhaustive”

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies

14

Quantitative properties

• Simple properties

− P≤0.01 [F “fail”] – “the probability of a failure is at most 0.01”

• Analysing best and worst case scenarios

− Pmax=? [F≤10 “outage”] – “worst-case probability of an outage
occurring within 10 seconds, for any possible scheduling of
system components”

− P=? [G≤0.02 !“deploy” {“crash”}{max}] - “the maximum
probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward/cost-based properties

− R{“time”}=? [F “end”] – “expected algorithm execution time”

− R{“energy”}max=? [C≤7200] – “worst-case expected energy
consumption during the first 2 hours”

15

Historical perspective

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking
[Kwiatkowska, Norman, Parker, …]

− ETMCC (now MRMC): model checking for continuous-time Markov
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains,
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols,
biological systems, quantum cryptography, planning…

− genuine flaws found and corrected in real-world systems

16

Quantitative probabilistic verification

• What’s involved

− specifying, extracting and building of quantitative models

− graph-based analysis: reachability + qualitative verification

− numerical solution, e.g. linear equations/linear programming

− typically computationally more expensive than the non-
quantitative case

• The state of the art

− fast/efficient techniques for a range of probabilistic models

− feasible for models of up to 107 states (1010 with symbolic)

− extension to probabilistic real-time systems

− abstraction refinement (CEGAR) methods

− probabilistic counterexample generation

− assume-guarantee compositional verification

− tool support exists and is widely used, e.g. PRISM, MRMC

17

Tool support: PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, …

− properties: PCTL, CSL, LTL, PCTL*, costs/rewards, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

• Many import/export options, tool connections

− in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

− out: Matlab, MRMC, INFAMY, PARAM, …

• See: http://www.prismmodelchecker.org/

18

Quantitative verification in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message

• Fibroblast Growth Factor (FGF) pathway

− complex biological cell signalling pathway,
key roles e.g. in healing, not yet fully understood

− model checking (PRISM) & simulation (stochastic π-calculus),
in collaboration with Biosciences at Birmingham

− “in-silico” experiments: systematic removal of components

− behavioural predictions later validated by lab experiments

19

The challenge of ubiquitous computing

• Quantitative verification is not powerful enough!

• Necessary to model communities and cooperation

− add self-interest and ability to form coalitions

• Need to monitor and control physical processes

− extend models with continuous flows

• In future important to interface to biological systems

− consider computation at the molecular scale…

• In this lecture, focus on the above directions

− each demonstrating transition from theory to practice

− formulating novel verification algorithms

− resulting in new software tools

20

Focus on…

Cooperation

•Self-interest

•Autonomy

Physical processes

•Monitoring

•Control

Natural world

•Biosensing

•Molecular programming

21

Modelling cooperation

• Ubicomp systems are organised into communities

− self-interested agents, goal driven

− need to cooperate, e.g. in order to share bandwidth

− possibly opposing goals, hence competititive behaviour

− incentives to increase motivation and discourage selfishness

• Many typical scenarios

− e.g. user-centric networks, energy management or sensor
network co-ordination

• Natural to adopt a game-theoretic view

− widely used in computer science, economics, …

− here, distinctive focus on algorithms, automated verification

• Research question: can we automatically verify cooperative
and competitive behaviour?

22

Energy management for the future?

• Microgrid: proposed model for future energy markets

− localised energy management

• Neighbourhoods use and
store electricity generated
from local sources

− wind, solar, …

• Needs: demand-side
management

− active management
of demand by users

− to avoid peaks

− autonomous
operation

23

Microgrid demand-side management

• New protocols proposed, here consider demand-side
management algorithm of [Hildmann/Saffre’11]

− N households, connected to energy distribution supplier

− households submit tasks requiring power

− task submission probabilistic, realistic daily demand curve

− aim to maximise value V per household, while minimising
total energy cost

• Simple probabilistic algorithm:

− upon task submission, if cost is below an agreed limit,
execute it, otherwise only execute with probability Pstart

• Analysis of [Hildmann/Saffre’11]

− simulation-based analysis shows reduction in peak demand
and total energy cost reduced, with good expected value V

− (providing all households stick to algorithm)

24

Stochastic multi-player games

• Stochastic multi-player game (SMGs)

− probability + nondeterminism + multiple players

• A (turn-based) SMG is a tuple (Π, S, Si i∈Π, A, Δ, L):

− Π is a set of n players

− S is a (finite) set of states

− Si i∈Π is a partition of S

− A is a set of action labels

− Δ : S × A → Dist(S) is a (partial)

transition probability function

− L : S → 2AP is a labelling with

atomic propositions from AP

• NB

− players can prevent player
from reaching ✓with probability ≥⅓

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

25

Stochastic multi-player games

• Stochastic multi-player game (SMGs)

− probability + nondeterminism + multiple players

• A (turn-based) SMG is a tuple (Π, S, Si i∈Π, A, Δ, L):

− Π is a set of n players

− S is a (finite) set of states

− Si i∈Π is a partition of S

− A is a set of action labels

− Δ : S × A → Dist(S) is a (partial)

transition probability function

− L : S → 2AP is a labelling with

atomic propositions from AP

• NB

− players can prevent player
from reaching ✓with probability ≥⅓

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

26

Property specification: rPATL

• New temporal logic rPATL

− probabilistic & reward extension of alternating temporal logic

− CTL, extended with:

• coalition operator ⟨⟨C⟩⟩ of ATL

• probabilistic and reward operators P, R of PCTL/PRISM

• Examples (simplifying the reachability operator F)

− {1,2} P<0.01 [F≤10 “error”]

− “players 1 and 2 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.1,
regardless of the strategies of other players”

− C R=? [F “stable”]

− “the minimum expected energy that coalition C can conserve
to reach a stable state, no matter what the other players do”

27

rPATL semantics

• SMGs have multiple (>2) players

• Fix coalition C for each analysis (assuming independence of
strategies)

• Model check by reduction to a stochastic 2-player game

• Coalition game GC for SMG G and coalition C⊆Π

− 2-player SMG where C and Π\C collapse to players 1 and 2

• C P<q[F “end”] is true in state s of G iff:

− in coalition game GC:

− ∃ strategy σ1∈Σ1 of player 1 such that ∀ strategies σ2∈Σ2 of
player 2 the probability of reaching ‘end’ is less than q

• Semantics for R operator defined similarly…

28

Microgrid demand-side management

• The model

− SMG with N players (one per household)

− analyse 3-day period, using piecewise
approximation of daily demand curve

− add rewards for value V

• Built/analysed models

− for N=2,…,7 households

• Step 1: assume all households
follow algorithm of [HS’11] (MDP)

− obtain optimal value for Pstart

• Step 2: introduce competitive behaviour (SMG)

− allow coalition C of households to deviate from algorithm

N States Transitions

5 743,904 2,145,120

6 2,384,369 7,260,756

7 6,241,312 19,678,246

29

Results: Competitive behaviour

• The original algorithm does not discourage selfish
behaviour…

All follow alg.

No use of alg.

Deviations of
varying size

Strong
incentive to
deviate

30

Results: Competitive behaviour

• Algorithm fix: simple punishment mechanism

− distribution manager can cancel some tasks

All follow alg.

Deviations of
varying size

Better to
collaborate
(with all)

31

Tool support: PRISM-games

• Model checking P and R operators for rPATL

− complexity: NP ∩ coNP (except one case, else NEXP ∩ coNEXP)

− compared to, e.g., P for Markov decision processes

− proceeds by evaluation of numerical fixed points (similar to
“value iteration”)

• Prototype model checker for stochastic games

− integrated into PRISM model checker

− PRISM modelling and property specification languages
extended, adding SMG to the repertoire of models

• Further case studies

− e.g. team formation protocols, collective decision making for
sensor networks

• Available now:

− http://www.prismmodelchecker.org/games/

32

Focus on…

Cooperation

•Self-interest

•Autonomy

Physical processes

•Monitoring

•Control

Natural world

•Biosensing

•Molecular programming

33

Monitoring physical processes

• Ubicomp systems monitor and control physical processes

− electrical signal, velocity, distance, chemical concentration, …

− often modelled by non-linear differential equations

− necessary to extend models with continuous flows

• Many typical scenarios

− e.g. smart energy meters, automotive control, closed loop
medical devices

• Natural to adopt hybrid system models, which combine
discrete mode switches and continuous variables

− widely used in embedded systems, control engineering …

− probabilistic extensions needed to model failure

• Research question: can we apply quantitative verification to
establish correctness of implantable cardiac pacemakers?

34

Function of the heart

• Maintains blood circulation by contracting the atria and
ventricles

− spontaneously generates electrical signal (action potential)

− conducted through cellular pathways into atrium, causing
contraction of atria then ventricles

− repeats, maintaining 60-100 beats per minute

− a real-time system, and natural pacemaker

• Abnormalities in
electrical
conduction

− missed/slow
heart beat

− can be corrected by
by implantable
pacemakers

35

Implantable pacemaker

• How it works

− reads electrical (action potential) signals through sensors
placed in the right atrium and right ventricle

− monitors the timing of heart beats
and local electrical activity

− generates artificial pacing signal
as necessary

• Embedded software

• Widely used, replaced
every few years

• Unfortunately…

− 600,000 devices recalled
during 1990-2000

− 200,000 due to
firmware problems

36

Closed-loop pacemaker testing

FPGA-based system developed at PRECISE Centre, Upenn [Jiang et al]

Real pacemaker devices, patient specific, but testing/validation only
(various cardiac rhythms)

37

Quantitative verification for pacemakers?

• Pacemaker model

− various approaches exist, e.g. Simulink, Z and theorem
proving, not suitable for quantitative verification

− here, adopt the timed automata model of [Jiang et al]

• What does correctness mean?

− the rhythm depends on the patient

− faulty pacemaker may induce undesirable heart behaviour

• Seek realistic heart models for verification

− adopt synthetic ECG model (non-linear ODE) [Clifford et al]

− reflects chest surface measurements, map to action potential

− probabilistic, can encode various diseases and can be learnt
from patient data

• Properties

− expressible as timed automata or MTL (Metric Temporal Logic)

− more generally, reward properties for energy usage

38

Quantitative verification for pacemakers

• Model the pacemaker and the heart, compose and verify

39

Quantitative verification for pacemakers

40

Quantitative verification for pacemakers

41

Correction of Bradycardia

Purple lines original (slow) heart beat, green are induced (correcting)

42

Tool support: PRISM & MATLAB

• Developed and implemented a framework based on (I/O)
synchronised composition of

− discretised heart model (Runge-Kutta)

− PRISM digital clock models of the pacemaker

• Support for probabilistic analysis

− probabilistic switching between diseases, can be learnt from
patient data

− undersensing (faulty sensor leads)

− expected energy usage

• Prototype toolset

− implemented in MATLAB and PRISM

• Wireless glucose monitors present a greater challenge

• See

http://www.prismmodelchecker.org/bibitem.php?key=CDKM12b

43

Focus on…

Cooperation

•Self-interest

•Autonomy

Physical processes

•Monitoring

•Control

Natural world

•Biosensing

•Molecular programming

44

Interacting with the natural world

• Ubicomp systems need to sense and control biological
processes

− programmable identification of substance, targeted delivery,
movement

− directly at the molecular level

• Many typical scenarios

− e.g. drug delivery directly into the blood stream, implantable
continuous monitoring devices

• Natural to adopt the molecular programming approach

− here, focus on DNA computation, which aims to devise
computing devices using DNA molecules

− not synthetic biology, but shared techniques and tools

• Research question: can we apply (quantitative) verification
to DNA programming?

45

Digital circuits

• Logic gates realised in silicon

• 0s and 1s are represented as low and high voltage

• Hardware verification indispensable as design methodology

46

DNA programming

2nm

DNA origami

• “Computing with soup” (The Economist 2012)

− DNA strands are mixed together in a test tube

− single strands are inputs and outputs

− computation proceeds autonomously

• Can we transfer verification to this new application domain?

− stochasticity essential!

47

DNA circuits

Pop quiz, hotshot: what's
the square root of 13?
Science Photo Library/Alamy

[Qian, Winfree,
Science 2012]

• Techniques exist for designing
DNA circuits

• (DNA Strand Displacement)

• Circuit of 130 strands computes
square root of 4 bit number,
rounded down

• 10 hours, but it’s a first…

48

DNA Strand Displacement

• Design (simplified) logic gates in DNA

− double strands with nicks (interruptions) in the top strand

− and single strands consisting of one (short) toehold domain t
and one recognition domain x

− “toehold exchange”: branch migration of strand <t^ x>
leading to displacement of strand <x t^>

• DSD process algebra semantics due to Cardelli

• DSD programming environment due to Phillips (Microsoft)

[Cardelli’10] Two-Domain DNA Strand Displacement. DCM’10

49

Example: Transducer

• Transducer: converts input <t^ x> into output <t^ y>

50

Computation in DNA

http://lucacardelli.name/

51

Example: Transducer

• Transducer: full reaction list

input output
unreactive structures
(no exposed toeholds)

52

Transducer flaw

• Unwanted deadlock!

− OK for one, fails for two copies of the
gates

• PRISM identifies a 5-step trace

− problem caused by “crosstalk”
(interference) between DSD species

− previously found manually [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

output

53

Transducers: Quantitative properties

• We can also use PRISM to study the kinetics of the pair of
(faulty) transducers:

− P=? [F[T,T] "deadlock"]

− P=? [F[T,T] "deadlock" & !"all_done"]

− P=? [F[T,T] "deadlock" & "all_done"]
success/error
equally likely

54

Tool support: DSD & PRISM

• Developed a framework incorporating DSD and PRISM

− DSD designs automatically translated to PRISM via SBML

• Model checking as for molecular signalling networks

− reduction to CTMC model

− reuse existing PRISM algorithms

• Achievements

− first ever (quantitative) verification of a DNA circuit

− demonstrated bugs can be found automatically

− but scalability major challenge, can only deal with small
designs

• Further case studies

− Approximate Majority population protocol

• Available now:

http://research.microsoft.com/en-us/projects/dna/

55

Summing up…

• Brief overview of three directions of particular importance
to ubiquitous computing

− demonstrating first successes and usefulness of quantitative
verification methodology

− and resulting in new techniques and tools

• Many challenges remain

− for cooperation, addressing more general quantitative goals

− incorporation of quantitative verification in pacemaker
development environments, and

− scalability of verification for molecular programming models

• More challenges not covered in this lecture

− controller synthesis, code generation, runtime verification,
approximate methods, more expressive models and logics,
new application domains, …

56

References

• Cooperation

− T. Chen, V. Forejt, M. Kwiatkowska, D. Parker and A. Simaitis.
Automatic Verification of Competitive Stochastic Systems. TACAS
2012: 315-330.

• Pacemaker

− T. Chen, M. Diciolla, M. Kwiatkowska and A. Mereacre. Quantitative
Verification of Implantable Cardiac Pacemakers. RTSS 2012.

− See also Jiang et al: Modeling and Verification of a Dual Chamber
Implantable Pacemaker. TACAS 2012: 188-203.

• DNA programming

− M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska and A. Phillips. Design
and Analysis of DNA Strand Displacement Devices using Probabilistic
Model Checking. J R Soc Interface, 9(72), 1470-1485, 2012.

• See also

− M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. CAV 2011: 585-591.

57

Acknowledgements

• My group and collaborators in this work

− Luca Cardelli, Taolue Chen, Marco Diciolla, Vojtech Forejt,
Matthew Lakin, Alexandru Mereacre, Gethin Norman, Dave
Parker, Andrew Phillips, Aistis Simajtis

• Collaborators who contributed to theoretical and practical
PRISM development

• External users of and contributors to PRISM

• Project funding

− ERC, EPSRC LSCITS

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org

