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Where are computers?
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Once upon a time, back in the 1980s…
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Smartphones, tablets…

Sensor apps

GPS/GPRS tracking
Accelerometer
Air quality

Access to services
Personalised monitoring
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House appliances, networked…

Fridge that
Tweets!

Home network
Internet-enabled
Remote control
Energy
management
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Intelligent transport…

Look, no hands!

Self-parking cars
Traffic jam
assistance

Personalised
transport
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Medical devices…

Wearable or
implantable
health monitoring

Heart rate
Breathing
Movement
Glucose…
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Ubiquitous computing

• Computing without computers

• (also known as Pervasive Computing or Internet of Things

− enabled by wireless technology and cloud computing)

• Populations of sensor-enabled computing devices that are

− embedded in the environment, or even in our body

− sensors for interaction and control of the environment

− software controlled, can communicate

− operate autonomously, unattended

− devices are mobile, handheld or wearable

− miniature size, limited resources, bandwidth and memory

− organised into communities

• Unstoppable technological progress

− smaller and smaller devices, more and more complex 
scenarios…
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Perspectives on ubiquitous computing

• Technological: calm technology [Weiser 1993]

− “The most profound technologies are those that
disappear. They weave themselves into everyday
life until they are indistinguishable from it.”

• Usability: ‘everyware’ [Greenfield 2008]

− Hardware/software evolved into ‘everyware’: 
household appliances that do computing

• Scientific: “Ubicomp can empower us, if we can
understand it” [Milner 2008]

− “What concepts, theories and tools are needed 
to specify and describe ubiquitous systems,

their subsystems and their interaction?”

• This lecture: from theory to practice, for Ubicomp

− emphasis on practical, algorithmic techniques and 
industrially-relevant tools
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Software quality assurance

• Software is a critical component

− embedded software failure costly and life endangering

• Need quality assurance methodologies

− model-based development

− rigorous software engineering

− software product lines

• Use formal techniques to produce guarantees for:

− safety, reliability, performance, resource usage, trust, …

− (safety) “probability of failure to raise alarm is tolerably low”

− (reliability) “the smartphone will never execute the financial
transaction twice”

• Focus on automated, tool-supported methodologies

− automated verification via model checking

− quantitative verification
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Rigorous software engineering

• Verification and validation

− Derive model, or extract from software artefacts

− Verify correctness, validate if fit for purpose

Model
Formal
specification

System
Validation

Verification
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Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [ F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models
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Why quantitative verification?

• Real ubicomp software/systems are quantitative:

− Real-time aspects

• hard/soft time deadlines

− Resource constraints

• energy, buffer size, number of unsuccessful transmissions, etc

− Randomisation, e.g. in distributed coordination algorithms

• random delays/back-off in Bluetooth, Zigbee

− Uncertainty, e.g. communication failures/delays

• prevalence of wireless communication

• Analysis “quantitative” & “exhaustive”

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies
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Quantitative properties

• Simple properties

− P≤0.01 [ F “fail” ] – “the probability of a failure is at most 0.01”

• Analysing best and worst case scenarios

− Pmax=? [ F≤10 “outage” ] – “worst-case probability of an outage
occurring within 10 seconds, for any possible scheduling of
system components”

− P=? [ G≤0.02 !“deploy” {“crash”}{max} ] - “the maximum
probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward/cost-based properties

− R{“time”}=? [ F “end” ] – “expected algorithm execution time”

− R{“energy”}max=? [ C≤7200 ] – “worst-case expected energy
consumption during the first 2 hours”
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Historical perspective

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking 
[Kwiatkowska, Norman, Parker, …]

− ETMCC (now MRMC): model checking for continuous-time Markov 
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains, 
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols,
biological systems, quantum cryptography, planning…

− genuine flaws found and corrected in real-world systems
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Quantitative probabilistic verification

• What’s involved

− specifying, extracting and building of quantitative models

− graph-based analysis: reachability + qualitative verification

− numerical solution, e.g. linear equations/linear programming

− typically computationally more expensive than the non-
quantitative case

• The state of the art

− fast/efficient techniques for a range of probabilistic models

− feasible for models of up to 107 states (1010 with symbolic)

− extension to probabilistic real-time systems 

− abstraction refinement (CEGAR) methods

− probabilistic counterexample generation 

− assume-guarantee compositional verification 

− tool support exists and is widely used, e.g. PRISM, MRMC
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Tool support: PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, …

− properties: PCTL, CSL, LTL, PCTL*, costs/rewards, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

• Many import/export options, tool connections

− in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

− out: Matlab, MRMC, INFAMY, PARAM, …

• See: http://www.prismmodelchecker.org/
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Quantitative verification in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message

• Fibroblast Growth Factor (FGF) pathway

− complex biological cell signalling pathway,
key roles e.g. in healing, not yet fully understood

− model checking (PRISM) & simulation (stochastic π-calculus),
in collaboration with Biosciences at Birmingham

− “in-silico” experiments: systematic removal of components

− behavioural predictions later validated by lab experiments
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The challenge of ubiquitous computing

• Quantitative verification is not powerful enough!

• Necessary to model communities and cooperation

− add self-interest and ability to form coalitions

• Need to monitor and control physical processes

− extend models with continuous flows

• In future important to interface to biological systems

− consider computation at the molecular scale…

• In this lecture, focus on the above directions

− each demonstrating transition from theory to practice

− formulating novel verification algorithms

− resulting in new software tools
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Focus on…

Cooperation

•Self-interest

•Autonomy

Physical processes

•Monitoring

•Control

Natural world

•Biosensing

•Molecular programming
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Modelling cooperation

• Ubicomp systems are organised into communities

− self-interested agents, goal driven

− need to cooperate, e.g. in order to share bandwidth

− possibly opposing goals, hence competititive behaviour

− incentives to increase motivation and discourage selfishness

• Many typical scenarios

− e.g. user-centric networks, energy management or sensor 
network co-ordination

• Natural to adopt a game-theoretic view

− widely used in computer science, economics, …

− here, distinctive focus on algorithms, automated verification

• Research question: can we automatically verify cooperative
and competitive behaviour?
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Energy management for the future?

• Microgrid: proposed model for future energy markets

− localised energy management

• Neighbourhoods use and
store electricity generated
from local sources

− wind, solar, …

• Needs: demand-side
management

− active management
of demand by users

− to avoid peaks

− autonomous
operation
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Microgrid demand-side management

• New protocols proposed, here consider demand-side
management algorithm of [Hildmann/Saffre’11]

− N households, connected to energy distribution supplier

− households submit tasks requiring power

− task submission probabilistic, realistic daily demand curve

− aim to maximise value V per household, while minimising
total energy cost

• Simple probabilistic algorithm:

− upon task submission, if cost is below an agreed limit,
execute it, otherwise only execute with probability Pstart

• Analysis of [Hildmann/Saffre’11]

− simulation-based analysis shows reduction in peak demand 
and total energy cost reduced, with good expected value V

− (providing all households stick to algorithm)
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Stochastic multi-player games

• Stochastic multi-player game (SMGs)

− probability + nondeterminism + multiple players

• A (turn-based) SMG is a tuple (Π, S, Si i∈Π, A, Δ, L):

− Π is a set of n players

− S is a (finite) set of states

− Si i∈Π is a partition of S

− A is a set of action labels

− Δ : S × A → Dist(S) is a (partial)

transition probability function

− L : S → 2AP is a labelling with

atomic propositions from AP

• NB

− players         can prevent player     
from reaching ✓with probability ≥⅓
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Property specification: rPATL

• New temporal logic rPATL

− probabilistic & reward extension of alternating temporal logic

− CTL, extended with:

• coalition operator ⟨⟨C⟩⟩ of ATL

• probabilistic and reward operators P, R of PCTL/PRISM

• Examples (simplifying the reachability operator F)

− {1,2} P<0.01 [ F≤10 “error” ]

− “players 1 and 2 have a strategy to ensure that the probability 
of an error occurring within 10 steps is less than 0.1,
regardless of the strategies of other players”

− C R=? [ F “stable” ]

− “the minimum expected energy that coalition C can conserve 
to reach a stable state, no matter what the other players do”



27

rPATL semantics

• SMGs have multiple (>2) players

• Fix coalition C for each analysis (assuming independence of
strategies)

• Model check by reduction to a stochastic 2-player game

• Coalition game GC for SMG G and coalition C⊆Π

− 2-player SMG where C and Π\C collapse to players 1 and 2

• C P<q[F “end”] is true in state s of G iff:

− in coalition game GC:

− ∃ strategy σ1∈Σ1 of player 1 such that ∀ strategies σ2∈Σ2 of
player 2 the probability of reaching ‘end’ is less than q

• Semantics for R operator defined similarly…
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Microgrid demand-side management

• The model

− SMG with N players (one per household)

− analyse 3-day period, using piecewise
approximation of daily demand curve

− add rewards for value V

• Built/analysed models

− for N=2,…,7 households

• Step 1: assume all households
follow algorithm of [HS’11] (MDP)

− obtain optimal value for Pstart

• Step 2: introduce competitive behaviour (SMG)

− allow coalition C of households to deviate from algorithm

N States Transitions

5 743,904 2,145,120

6 2,384,369 7,260,756

7 6,241,312 19,678,246
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Results: Competitive behaviour

• The original algorithm does not discourage selfish
behaviour…

All follow alg.

No use of alg.

Deviations of
varying size

Strong
incentive to
deviate
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Results: Competitive behaviour

• Algorithm fix: simple punishment mechanism

− distribution manager can cancel some tasks

All follow alg.

Deviations of
varying size

Better to
collaborate
(with all)
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Tool support: PRISM-games

• Model checking P and R operators for rPATL

− complexity: NP ∩ coNP (except one case, else NEXP ∩ coNEXP)

− compared to, e.g., P for Markov decision processes

− proceeds by evaluation of numerical fixed points (similar to
“value iteration”)

• Prototype model checker for stochastic games

− integrated into PRISM model checker

− PRISM modelling and property specification languages
extended, adding SMG to the repertoire of models

• Further case studies

− e.g. team formation protocols, collective decision making for 
sensor networks

• Available now:

− http://www.prismmodelchecker.org/games/
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Focus on…

Cooperation

•Self-interest

•Autonomy

Physical processes

•Monitoring

•Control

Natural world

•Biosensing

•Molecular programming
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Monitoring physical processes

• Ubicomp systems monitor and control physical processes

− electrical signal, velocity, distance,  chemical concentration, …

− often modelled by non-linear differential equations

− necessary to extend models with continuous flows

• Many typical scenarios

− e.g. smart energy meters, automotive control, closed loop 
medical devices

• Natural to adopt hybrid system models, which combine
discrete mode switches and continuous variables

− widely used in embedded systems, control engineering …

− probabilistic extensions needed to model failure

• Research question: can we apply quantitative verification to
establish correctness of implantable cardiac pacemakers?
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Function of the heart

• Maintains blood circulation by contracting the atria and
ventricles

− spontaneously generates electrical signal (action potential)

− conducted through cellular pathways into atrium, causing 
contraction of atria then ventricles

− repeats, maintaining 60-100 beats per minute

− a real-time system, and natural pacemaker

• Abnormalities in
electrical
conduction

− missed/slow 
heart beat

− can be corrected by 
by implantable
pacemakers
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Implantable pacemaker

• How it works

− reads electrical (action potential) signals through sensors
placed in the right atrium and right ventricle

− monitors the timing of heart beats
and local electrical activity

− generates artificial pacing signal
as necessary

• Embedded software

• Widely used, replaced
every few years

• Unfortunately…

− 600,000 devices recalled 
during 1990-2000

− 200,000 due to 
firmware problems
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Closed-loop pacemaker testing

FPGA-based system developed at PRECISE Centre, Upenn [Jiang et al]

Real pacemaker devices, patient specific, but testing/validation only
(various cardiac rhythms)
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Quantitative verification for pacemakers?

• Pacemaker model

− various approaches exist, e.g. Simulink, Z and theorem 
proving, not suitable for quantitative verification

− here, adopt the timed automata model of [Jiang et al]

• What does correctness mean?

− the rhythm depends on the patient

− faulty pacemaker may induce undesirable heart behaviour

• Seek realistic heart models for verification

− adopt synthetic ECG model (non-linear ODE) [Clifford et al]

− reflects chest surface measurements, map to action potential

− probabilistic, can encode various diseases and can be learnt
from patient data

• Properties

− expressible as timed automata or MTL (Metric Temporal Logic)

− more generally, reward properties for energy usage
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Quantitative verification for pacemakers

• Model the pacemaker and the heart, compose and verify
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Quantitative verification for pacemakers
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Quantitative verification for pacemakers
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Correction of Bradycardia

Purple lines original (slow) heart beat, green are induced (correcting)
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Tool support: PRISM & MATLAB

• Developed and implemented a framework based on (I/O)
synchronised composition of

− discretised heart model (Runge-Kutta)

− PRISM digital clock models of the pacemaker

• Support for probabilistic analysis

− probabilistic switching between diseases, can be learnt from 
patient data

− undersensing (faulty sensor leads)

− expected energy usage

• Prototype toolset

− implemented  in MATLAB and PRISM

• Wireless glucose monitors present a greater challenge

• See

http://www.prismmodelchecker.org/bibitem.php?key=CDKM12b
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Focus on…

Cooperation

•Self-interest

•Autonomy

Physical processes

•Monitoring

•Control

Natural world

•Biosensing

•Molecular programming
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Interacting with the natural world

• Ubicomp systems need to sense and control biological
processes

− programmable identification of substance, targeted delivery,
movement

− directly at the molecular level

• Many typical scenarios

− e.g. drug delivery directly into the blood stream, implantable 
continuous monitoring devices

• Natural to adopt the molecular programming approach

− here, focus on DNA computation, which aims to devise
computing devices using DNA molecules

− not synthetic biology, but shared techniques and tools

• Research question: can we apply (quantitative) verification
to DNA programming?
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Digital circuits

• Logic gates realised in silicon

• 0s and 1s are represented as low and high voltage

• Hardware verification indispensable as design methodology
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DNA programming

2nm

DNA origami

• “Computing with soup” (The Economist 2012)

− DNA strands are mixed together in a test tube

− single strands are inputs and outputs

− computation proceeds autonomously

• Can we transfer verification to this new application domain?

− stochasticity essential!
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DNA circuits

Pop quiz, hotshot: what's
the square root of 13?
Science Photo Library/Alamy

[Qian, Winfree,
Science 2012]

• Techniques exist for designing
DNA circuits

• (DNA Strand Displacement)

• Circuit of 130 strands computes
square root of 4 bit number,
rounded down

• 10 hours, but it’s a first…
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DNA Strand Displacement

• Design (simplified) logic gates in DNA

− double strands with nicks (interruptions) in the top strand

− and single strands consisting of one (short) toehold domain  t 
and one recognition domain x

− “toehold exchange”: branch migration of strand <t^ x> 
leading to displacement of strand <x t^>

• DSD process algebra semantics due to Cardelli

• DSD programming environment due to Phillips (Microsoft)

[Cardelli’10] Two-Domain DNA Strand Displacement. DCM’10
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Example: Transducer

• Transducer: converts input <t^ x> into output <t^ y>
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Computation in DNA

http://lucacardelli.name/
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Example: Transducer

• Transducer: full reaction list

input output
unreactive structures
(no exposed toeholds)
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Transducer flaw

• Unwanted deadlock!

− OK for one, fails for two copies of the 
gates

• PRISM identifies a 5-step trace

− problem  caused by “crosstalk”
(interference) between DSD species

− previously found manually  [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

output
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Transducers: Quantitative properties

• We can also use PRISM to study the kinetics of the pair of
(faulty) transducers:

− P=? [ F[T,T] "deadlock" ]

− P=? [ F[T,T] "deadlock" & !"all_done" ]

− P=? [ F[T,T] "deadlock" & "all_done" ]
success/error
equally likely
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Tool support: DSD & PRISM

• Developed a framework incorporating DSD and PRISM

− DSD designs automatically translated to PRISM via SBML

• Model checking as for molecular signalling networks

− reduction to CTMC model

− reuse existing PRISM algorithms

• Achievements

− first ever (quantitative) verification of a DNA circuit

− demonstrated bugs can be found automatically

− but scalability major challenge, can only deal with small 
designs

• Further case studies

− Approximate Majority population protocol

• Available now:

http://research.microsoft.com/en-us/projects/dna/
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Summing up…

• Brief overview of three directions of particular importance
to ubiquitous computing

− demonstrating first successes and usefulness of quantitative
verification methodology

− and resulting in new techniques and tools

• Many challenges remain

− for cooperation, addressing more general quantitative goals

− incorporation of quantitative verification in pacemaker 
development environments, and

− scalability of verification for molecular programming models

• More challenges not covered in this lecture

− controller synthesis, code generation, runtime verification, 
approximate methods, more expressive models and logics,
new application domains, …
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