
Modelling and verification of
probabilistic systems

Marta Kwiatkowska
School of Computer Science

www.cs.bham.ac.uk/~mzk
www.cs.bham.ac.uk/~dxp/prism

Lucent, 10th November 2004

Overview
• Motivation

• Probabilistic model checking
– The models
– Specification languages
– What does it involve?
– The PRISM model checker

• Case studies
– Self-stabilisation
– Dynamic power management
– IPv4 Zeroconf dynamic configuration protocol
– Root contention in IEEE 1394 FireWire

• Challenges for future

The future: ubiquitous computing

Mobile, wearable, wireless devices (WiFi, Bluetooth)
Ad hoc, dynamic, ubiquitous computing environment
Security, privacy, anonymity protection on the Internet
Self-configurable - no need for men/women in white coats!
Fast, responsive, power efficient, …

The Internet

Correct design
a challenge

for
formal methods?

Probability helps

• In distributed co-ordination algorithms
– As a symmetry breaker

• “leader election is eventually resolved with probability 1”
– In gossip-based routing and multicasting

• “the message will be delivered to all nodes with high probability”

• When modelling uncertainty in the environment
– To quantify failures, express soft deadlines, QoS

• “the chance of shutdown is at most 0.1%”
• “the probability of a frame delivered within 5ms is at least 0.91”

– To quantify environmental factors in decision support
• “the expected cost of reaching the goal is 100”

• When analysing system performance
– To quantify arrivals, service, etc, characteristics

• “in the long run, mean waiting time in a lift queue is 30 sec”

Verification via model checking…

The model

Model Checker

Temporal logic specification

send → ◊deliver

or

Error trace
Line 5: …
Line 21: …
Line 15: …

…
Line 27: …
Line 45: ...

or falsification?

Also refinement checking, equivalence checking, …

Probabilistic model checking…

Probabilistic
Model Checker

Probabilistic temporal
logic specification

send → P¸ 0.9(◊deliver)

or

The probability
State 5: 0.6789
State 6: 0.9789
State 7: 1.0

…
State 12: 0
State 13: 0.1245

or

in a nutshell

Probabilistic model

0.4
0.3

Probability elsewhere
• In performance modelling

– Pioneered by Erlang, in telecommunications, ca 1910
– Models: typically continuous time Markov chains
– Emphasis on steady-state and transient probabilities

• In stochastic planning
– Cf Bellman equations, ca 1950s
– Models: Markov decision processes
– Emphasis on finding optimum policies

• Our focus, probabilistic model checking
– Distinctive, on automated verification for probabilistic systems
– Temporal logic specifications, automata-theoretic techniques
– Shared models
– Exchanging techniques with the other two areas

Probabilistic models: discrete time
• Labelled transition systems

– Discrete time steps
– Labelling with atomic propositions

• Probabilistic transitions
– Move to state with given probability
– Represented as discrete probability

distribution

• Model types
– Discrete time Markov chains (DTMCs):

probabilistic choice only

– Markov decision processes (MDPs):
probabilistic choice and nondeterminism

. . .

∑i pi = 1

p1
p2

pn

Theory timeline: discrete models
Qualitative (with probability 1 or 0)

1983 Hart-Sharir-Pnueli
1985 Vardi
1988 Courcoubetis-Yannakakis

Quantitative (with arbitrary probability)
1991 Larsen-Skou (probab. bisimulation)
1994 Hansson-Jonsson (DTMC model checking)
1995 Bianco-de Alfaro (MDP model checking)
1995 Segala-Lynch (probab. simulation)
1997 Huth-Kwiatkowska [LICS] (probab. mu-calculus)
1997 Baier et al (DTMC model checking)
1998 Baier-Kwiatkowska (MDPs + fairness)
1999 Kwiatkowska-Norman-Segala-Sproston (PTAs)
2001 Kwiatkowska-Norman-Sproston (infinite state)

• Features:
– Only probabilistic choice

in each state

• Formally, (S,s0,P,L):
– S finite set of states
– s0 initial state
– P: S £ S ! [0,1] probability matrix, s.t. ∑s’ P(s,s’) = 1, all s
– L: S ! 2AP atomic propositions

• Unfold into infinite paths s0s1s2s3s4… s.t. P(si,si+1) > 0, all i

• Probability for finite paths, multiply along path
e.g. s0 s1 s1 s2 is 1 ¢ 0.01 ¢ 0.97 = 0.0097

Discrete-Time Markov Chains (DTMCs)

s2

s0

s3

s1

1

1

0.01

0.02

0.97

1

init try

fail

succ

• Intuitively:
– Sample space = infinite paths Paths from s
– Event = set of paths
– Basic event = cone

• Formally, (Paths, Ω, Pr)
– For finite path ω = ss1…sn, define probability

P(ω) =

– Take Ω least σ-algebra containing cones
C(ω) = { π 2 Paths | ω is prefix of π}

– Define Pr(C(ω)) = P(ω), all ω
– Pr extends uniquely to measure on Paths

Probability space

ss1s2…sk

1 if ω has length one
P(s,s1) ¢ … ¢ P(sn-1,sn) otherwise

• Features:
– Nondeterministic choice
– Parallel composition

of DTMCs

• Formally, (S,s0,Steps,L):
– S finite set of states
– s0 initial state
– Steps maps states s to sets of probability distributions μ over S
– L: S ! 2AP atomic propositions

• Unfold into infinite paths s0μ0s1 μ1s2μ2s3… s.t. μi(si,si+1) > 0, all i

• Probability space induced on Paths by adversary (policy) A
mapping finite path s0μ0s1μ1…sn to a distribution from state sn

Markov Decision Processes (MDPs)

s2

s0

s3

s1

1

0.02

0.98
init try

fail

succ1

1
1

The logic PCTL: syntax
• Probabilistic Computation Tree Logic [HJ94,BdA95,BK98]

– For DTMCs/MDPs
– New probabilistic operator, e.g. send → P¸ 0.9(◊deliver)

“whenever a message is sent, the probability that it is eventually
delivered is at least 0.9”

• The syntax of state and path formulas of PCTL is:

φ ::= true | a | φ Æ φ | :φ | P» p(α)
α ::= X φ | φ U φ

where p 2 [0,1] is a probability bound and » 2 { <, >, … }

• Subsumes the qualitative variants [Var85,CY95] P=1(α), P> 0(α)

• Extension with cost/rewards and expectation operator E» c(φ)

• Semantics is parameterised by a class of adversaries Adv
– “under any scheduling, the probability bound is true at state s”
– reasoning about worst-case/best-case scenario

• The probabilistic operator is a quantitative analogue of 8, 9

s ²Adv P» p(α) , PrA { π 2 PathA
s j π ²Adv α } » p

for all A 2 Adv

threshold level p
S

α-paths

The logic PCTL: semantics

< 1 - p

¸ p

• Semantics of state formulas:
s ²Adv a , a 2 L(s)
s ²Adv :φ , s ²Adv φ
s ²Adv φ1 Æ φ2 , s ²Adv φ1 and s ²Adv φ2

• Semantics of path formulas:
π ²Adv X φ , π = s0L and s1 ²Adv φ
π ²Adv φ1 U φ2 , π = s0L and 9 k s.t.

sk ²Adv φ2 and 8 j < k . sj ²Adv φ1

• The probabilistic operator:

s ²Adv P» p(α) , PrA { π 2 PathA
s j π ²Adv α } » p

for all A 2 Adv

PCTL semantics: summary

• By induction on structure of formula, as for CTL

• For the probabilistic operator and Until, solve
– recursive linear equation for DTMCs
– linear optimisation problem (form of Bellman equation) for MDPs
– typically iterative solution methods

• Need to combine
– conventional graph traversal
– numerical linear algebra and linear optimisation (value iteration)

• Qualitative properties (probability 1, 0) proceed by graph
traversal [Var85,dAKNP97]

The logic PCTL: model checking

• By induction on structure of formula
• For the probabilistic operator

– Sat(P» p(X φ)) , {s 2 S | ∑s’ 2 Sat(φ) P(s,s’) » p}

– Sat(P» p(φ1 U φ2)) , {s 2 S | xs » p}

where xs, s 2 S, are obtained from the recursive linear equation

0 if s 2 Sno

xs = 1 if s 2 Syes

∑s’ 2 S P(s,s’) ¢ xs’ if s 2 Sn(Sno [Syes)
and

Syes – states that satisfy φ1 U φ2 with probability exactly 1
Sno - states that satisfy φ1 U φ2 with probability exactly 0

PCTL model checking for DTMCs

• For the remaining formulas standard:

Sat(a) = L(a)
Sat(:φ) = S\Sat(φ)
Sat(φ1 Æ φ2) = Sat(φ1) \ Sat(φ2)

• Syes, Sno can be precomputed by graph traversal [Var85] (or
BDD fixed point computation)

• Need to combine
– Conventional graph-theoretic traversal
– Numerical linear algebra

PCTL model checking for DTMCs

Probabilistic models: continuous
• Assumptions on time and probability

– Continuous passage of time
– Continuous randomly distributed

delays
– Continuous space

• Model types
– Continuous time Markov chains

(CTMCs): exponentially distributed
delays, discrete space, no
nondeterminism

– Probabilistic Timed Automata
(PTAs): dense time, (usually) discrete
probability, admit nondeterminism

– (not considered) Labelled Markov
Processes (LMPs): continuous
space/time, no nondeterminism

time

s0
+1 f(x)dx = 1

Theory timeline: continuous models
Continuous distributions

1991 Alur-Courcoubetis-Dill (GSMPs)
1996 Aziz-Sanwal-Singhal-Brayton (logic CSL)
1998 de Alfaro (long-run average)
1999 Baier, Katoen, Hermanns (CTMC model checking)
2000 Baier, Haverkort, Hermanns, Katoen (uniformis.)
2000 Kwiatkowska-Norman-Segala-Sproston (cont. PTAs)

Continuous space, approximation
1997 Blute-Desharnais-Edalat-Panangaden [LICS] (bisim. LMPs)
1998 Desharnais-Edalat-Panangaden (logic LMPs)
1999 Desharnais-Gupta-Jagadeesan-Panangaden [CONCUR]

(metric)
2000 Desharnais-Gupta-Jagadeesan-Panangaden [LICS]

(approx. LMPs)

Continuous Time Markov Chains (CTMCs)
• Features:

– Discrete states and
real time

– Exponentially
distributed random delays

• Formally:
– Set of states S plus rates R(s,s’) > 0 of moving from s to s’
– Probability of moving from s to s’ by time t > 0 is 1 - e-R(s,s’)¢ t

– Transition rate matrix S £ S ! R¸0

• Unfold into infinite paths s0t0s1t1s2t2s3…
– probs (s’), probability of being in s’ in the long-run, starting in s
– probs (s’,t), probability of being in s’ at time instant t

• But: no nondeterminism

empty full

1

33

44 4

3

2 30

The logic CSL: syntax
• Continuous Stochastic Logic [ASSB96,BKH99]

– For CTMCs, based on PCTL, for example
• P< 0.85(}<15 full), probability operator

“the probability of queue becoming full within 15 secs is < 0.85”
• S< 0.01(down), steady-state operator

“in the long run, the probability the system is down is less than 1%”

• The syntax of state and path formulas of CSL is:

φ ::= true | a | φ Æ φ | :φ | S» p(φ) | P» p(α)
α ::= X φ | φ U· t φ | φ U φ

where p 2 [0,1] is a probability bound, t 2 R¸0 and » 2 { <, >, … }

• Extension with time intervals for until, cost/rewards and
expectation operator E» c(φ)

• Semantics of bounded until:
π ² φ1 U· t φ2 , iff φ2 satisfied at time instant t

along π = s0L and φ1 satisfied at
all preceding time instants

• The added operators:

s ² S» p(φ) , Σs’ ² φ probs (s’) » p
where probs (s’) is prob. of being in
s’ in the long-run, having started in s

s ² P» p(α) , Pr { π 2 Paths j π ² α } » p
where Pr is probability measure on
paths as for PCTL

• Semantics of remaining formulas as for PCTL

CSL semantics

• By induction on structure of formula, as for PCTL except for
– S» p(φ) and P» p(φ1 U· t φ2)

• The steady-state operator
– Requires computation of steady-state probabilities
– Reduces to graph traversal and (iterative) solution of linear

equation system

• The time-bounded until
– Reduces to transient analysis
– Transform CTMC by removing all outgoing transitions from

states satisfying φ2 or :φ1
– Then Pr { π 2 Paths j π ² φ U· t φ } = Σs’ ² φ2 probs (s’,t)
– Computed by using uniformisation
– More efficient and stable, iterative computation

The logic CSL: model checking

Probabilistic model checking in practice
• Model construction: probability matrices

– Enumerative
• Manipulation of individual states
• Size of state space main limitation

– Symbolic
• Manipulation of sets of states
• Compact representation possible in case of regularity

• Temporal logic model checking: currently limited to
– discrete probability/space models
– CTMCs
– Simulation admits more general distributions

• Probabilistic Symbolic Model Checker PRISM

The PRISM tool: overview
• Functionality

– Direct support for models: DTMCs, MDPs and CTMCs
– Extension with costs/rewards, expectation operator
– PTAs with digital clocks by manual translation
– Connection from KRONOS to PRISM for PTAs
– Experimental implementation using DBMs/DDDs for PTAs

• Input languages
– System description

• probabilistic extension of reactive modules [Alur and Henzinger]
– Probabilistic temporal logics: PCTL and CSL

• Implementation
– Symbolic model construction (MTBDDs), uses CUDD [Somenzi]
– Three numerical computation engines
– Written in Java and C++

The PRISM tool: implementation
• Numerical engines

– Symbolic, MTBDD based
• Fast construction, reachability analysis
• Very large models if regularity

– Enumerative, sparse-matrix based
• Generally fast numerical computation
• Model size up to millions

– Hybrid
• Speed comparable to sparse matrices for numerical calculations
• Limited by size of vector

• Experimental results
– Several large scale examples: 1010 - 1030 states
– No engine wins overall
– See www.cs.bham.ac.uk/~dxp/prism

PRISM real-world case studies
• MDPs/DTMCs

– Bluetooth device discovery [ISOLA’04]
– Crowds anonymity protocol (by Shmatikov) [JSC 2003]
– Randomised consensus [CAV’01,FORTE’02]
– NAND multiplexing for nanotechnology (with Shukla) [VLSI’04]
– Self-stabilising protocols

• CTMCs
– Dynamic Power Management (with Shukla and Gupta) [HLDVT’02]
– Dependability of embedded controller [INCOM’04]

• PTAs
– IPv4 Zeroconf dynamic configuration [FORMATS’03]
– Root contention in IEEE 1394 FireWire [FAC 2003, STTT 2004]
– IEEE 802.11 (WiFi) Wireless LAN MAC protocol [PROBMIV’02]

PRISM Modelling Language

• Simple, state-based language for DTMCs/CTMCs/MDPs
– based on Reactive Modules [Alur/Henzinger]

• Basic components:
– modules (system components, parallel composition)
– variables (finite-state, typed)
– guarded commands (probabilistic, action-labelled)

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

PRISM Modelling Language...
• Other features:

– synchronisation on action labellings
– process algebra style specifications

• parallel composition: P1 ||| P2, P1 |[a,b]| P2, P1 || P2
• action hiding/renaming: P/{a}, P{a<-b}

– import of PEPA models
– state-dependent probabilities/rates
– global variables, macros, ...

PRISM Property Specifications

• Temporal logics: PCTL/CSL
– probabilistic extensions of CTL

• Examples:
– P≥1 [true U terminate]

“the algorithm eventually terminates successfully with
probability 1”

– P<0.001 [true U≤100 error]
“the probability of the system reaching an error state
within 100 time units is less than 0.001”

PRISM Property Specifications

• More examples:
– down => P>0.75 [!fail U[1,2.5] up]

“when a shutdown occurs, the probability of system recovery
being completed in between 1 and 2.5 hours, without further
failures occurring, is greater than 0.75”

– S<0.01 [num_sensors < min]
“in the long-run, the probability that an inadequate number
of sensors are operational is less than 0.01”
(CSL only)

PRISM Property Specifications...

• Can write query formulae:
– P=? [true U≤10 terminate]

“what is the probability that the algorithm terminates
successfully within 10 time units?”

• Can automate model checking with experiments:
– P=? [true U≤T terminate]

“what is the probability that the algorithm terminates
successfully within time T?” for T=0,...,1000

Adding Costs/Rewards

• Augment states and transitions of model
with real-valued rewards

• Instantaneous rewards
– state-based
– e.g. “queue size”, “concentration of reactant”

• Cumulative rewards
– state- and transition-based
– e.g. “time taken”, “power consumed”, “messages lost”

Properties - Instantaneous

• R=? [I=T]
Expected reward at time instant T?

• R=? [S]
Expected long-run reward?

Properties - Cumulative

• R=? [F A]
Expected reward to reach A?

• R=? [C<=T]
Expected reward by time T?

• R=? [S]
Expected long-run reward per unit time?

Case Study: Molecular Reactions

• Time until a reaction occurs is given by an
exponential distribution [Gillespie 1977]
– model reactions using continuous time Markov chains

• Rate of reaction determined by:
– base rate (empirically determined constant)
– concentration of reactants (number of each type of

molecule that takes part in the reaction)
• This case study: Na + Cl ↔ Na+ + Cl-

– forward base rate 100
– backwards base rate 10
– initially N1 Na molecules and N2 Cl molecules

Results: Molecular Reactions
• P=? (true U[T,T] Na=i) ‘probability i Na molecules at time T’

Results: Molecular Reactions
• R=? (I=T) ‘expected percentage of Na molecules at time T’

Results: Molecular Reactions
• R=? (S) ‘expected percentage of Na molecules in the long run’

Case Study: Power management
• Power Management

– controls power consumption in battery-operated devices
– savings in power usage translate to extended battery life
– important for portable, mobile and handheld electronic devices

• System level power management
– Manages various system devices for power optimisation
– System components manufactured with several power modes

e.g. disk drive has: active, idle, standby, sleep, …
– Modes can be changed by the operating system through APIs
– Exploits application characteristics
– Needs to be implemented at the O/S level

Dynamic Power Management (DPM)
• DPM make optimal decisions at runtime based on:

– Dynamically changing system state
– Workload
– Performance constraints

• Stochastic optimal control strategies for DPM
– Construct a mathematical model of the system in PRISM

• transition times modelled with exponential distributions
• Model is CTMC or DTMC depending on time domain

– Formulate stochastic optimisation problems
• e.g. “optimise average energy usage while average delay below k”

– Create stochastic strategies by solving optimisation problem
• Exported to Maple for solution externally

– Analyse optimal stochastic strategies directly in PRISM

DPM: The System Model

– Service requester (generates the service requests)
– Service provider (provides service to the requests)
– Service queue (buffers the requests)
– Power manager (monitors the states of the SR, SP and

SQ and issues state-transition commands to the SP)

Power manager (PM)

state observations commands

Service queue
(SQ) Service provider (SP)

Service
requester

(SR)

DPM Case Study: Fujitsu Disk Drive
• 4 state Fujitsu disk drive: busy, idle, standby and sleep)

– Modelled as CTMC
• Policies:

– Minimize: average power consumption
– Constraint: average queue size

• Properties checked with PRISM:
– Average power consumption/queue size
– Average number of lost customers
– Expected power consumption/queue size by time t
– Expected number of lost customers by time t
– Probability n requests lost by time t
– Probability a request gets lost/served by time t

• See PRISM web site for further details

DPM Results: Fujitsu Disk Drive

DPM Results: Fujitsu Disk Drive

Case study: IPv4 Zeroconf protocol
• IPv4 ZeroConf protocol [Cheshire,Adoba,Guttman’02]

– New IETF standard for dynamic network self-configuration
– Link-local (no routers within the interface)
– No need for an active DHCP server
– Aimed at home networks, wireless ad-hoc networks, hand-held

devices
– “Plug and play”

• Self-configuration
– Performs assignment of IP addresses
– Symmetric, distributed protocol
– Uses random choice and timing delays

IPv4 Zeroconf Standard

The Internet

• Select an IP address out of 65024 at random
• Send a probe querying if address in use, and listen for 2 seconds

– If positive reply received, restart
– Otherwise, continue sending probes and listening (2 seconds)

• If K probes sent with no reply, start using the IP number
– Send 2 packets, at 2 second intervals, asserting IP address is being used
– If a conflicting assertion received, either:

• defend (send another asserting packet)
• defer (stop using the IP address and restart)

57064?57064?

Will it work?
• Possible problem…

– IP number chosen may be already in use, but:
• Probes or replies may get lost or delayed (host too busy)

• Issues:
– Self-configuration delays may become unacceptable

• Would you wait 8 seconds to self-configure your PDA?
– No justification for parameters

• for example K=4 in the standard

• Case studies:
– DTMC and Markov reward models, analytical [BvdSHV03,AK03]
– TA model using UPPAAL [ZV02]
– PTA model with digital clocks using PRISM [KNS03]

The IPv4 Zeroconf protocol model
• Modelled using Probabilistic Timed Automata (with digital

clocks)

• Parallel composition of two PTAs:
– one (joining) host, modelled in detail
– environment (communication medium + other hosts)

• Variables:
– K (number of probes sent before the IP address is used)
– the probability of message loss
– the number of other hosts already in the network

Modelling the host

Modelling the environment

Expected costs
• Compute minimum/maximum expected cost accumulated

before obtaining a valid IP address?

• Costs:
– Time should be costly: the host should obtain a valid IP address

as soon as possible
– Using an IP address that is already in use should be very costly:

minimise probability of error

• Cost pair: (r,e)
– r=1 (t time units elapsing corresponds to a cost of t)
– e=1012 for the event corresponding to using an address which is

already in use
– e=0 for all other events

Results for IPv4 Zeroconf

• Sending a high number of probes increases the cost
– increases delay before a fresh IP address can be used

• Sending a low number of probes increases the cost
– increases probability of using an IP address already in use

• Similar results to the simpler model of [BvdSHV03]

Prob. of
message
loss
= 0.001

Prob. of
message
loss
= 0.01

Successes so far
• Fully automatic, no expert knowledge needed for

– Probabilistic reachability and temporal logic properties
– Expected time/cost

• Tangible results!
– 5 cases of “unusual behaviour” found, over 20 case studies
– Greater level of detail, may expose obscure dependencies

• PRISM tool robust
– Simple model description language
– Broad class of models
– Large, realistic models often possible
– Flexible property language
– Choice of engines

Comparison of model checking engines

(450 MHz workstation, 500 MB memory)

Time per iteration (sec):States:
MTBDD Sparse Hybrid

32,640 0.04 0.05 0.05
130,816 0.06 0.15 0.23
523,776 0.10 0.71 0.99

2,096,128 0.23 - 3.89
33,550,336 0.66 - -

• Tandem queueing network
– “first station becomes fully occupied within t time units”

Comparison of model checking engines

(450 MHz workstation, 1 GB memory)

Time per iteration (sec):States:
MTBDD Sparse Hybrid

58,400 41.7 0.04 0.05
454,475 - 0.44 0.50

2,546,432 - 2.76 3.15
11,261,376 - - 14.8
41,644,800 - - 58.9

• Kanban manufacturing system
– Computation of steady-state probabilities

But…
• Models monolithic and finite-state only

– Emphasis on efficiency
– No decomposition, abstraction
– No data reduction

• State-space explosion has not gone away…
– Heuristics for MTBDDs/BDDs sometimes fail
– Parallelise? Disk-based?

• Limited expressiveness
– Only PCTL plus extensions (LTL in progress)
– Only exponential distributions
– No direct support for PTAs (work in progress, [FORMATS’04])
– No continuous space models
– No mobility

Challenges for future
• Exploiting structure

– Abstraction, data/equivalence quotient, (de)compositionality…
– Parametric probabilistic verification?

• Proof assistant for probabilistic verification?
• Approximation methods?
• Efficient methods for continuous models

– Continuous PTAs? Continuous time MDPs? LMPs?
• More expressive specifications

– Probabilistic LTL/PCTL*/mu-calculus?
• Real software, not models!

• More applications
– Quantum cryptographic protocols
– Mobile ad hoc network protocols

For more information…

www.cs.bham.ac.uk/~dxp/prism/
• Case studies, statistics, group publications
• Download, version 2.1 (900 users)
• Publications by others and courses that

feature PRISM…

J. Rutten, M. Kwiatkowska, G. Norman and
D. Parker
Mathematical Techniques for Analyzing
Concurrent and Probabilistic Systems
P. Panangaden and F. van Breugel (editors),
CRM Monograph Series, vol. 23, AMS
March 2004

http://www.cs.bham.ac.uk/~dxp/prism/
http://www.ams.org/bookstore?fn=20&arg1=crmmseries&item=CRMM-23
http://www.cs.bham.ac.uk/~dxp/prism/

PRISM Contributors

	Modelling and verification of probabilistic systems
	Overview
	The future: ubiquitous computing
	Probability helps
	Verification via model checking…
	Probabilistic model checking…
	Probability elsewhere
	Probabilistic models: discrete time
	Theory timeline: discrete models
	Discrete-Time Markov Chains (DTMCs)
	Probability space
	Markov Decision Processes (MDPs)
	The logic PCTL: syntax
	The logic PCTL: semantics
	PCTL semantics: summary
	The logic PCTL: model checking
	PCTL model checking for DTMCs
	PCTL model checking for DTMCs
	Probabilistic models: continuous
	Theory timeline: continuous models
	Continuous Time Markov Chains (CTMCs)
	The logic CSL: syntax
	CSL semantics
	The logic CSL: model checking
	Probabilistic model checking in practice
	The PRISM tool: overview
	The PRISM tool: implementation
	PRISM real-world case studies
	PRISM Modelling Language
	PRISM Modelling Language...
	PRISM Property Specifications
	PRISM Property Specifications
	PRISM Property Specifications...
	Adding Costs/Rewards
	Properties - Instantaneous
	Properties - Cumulative
	Case Study: Molecular Reactions
	Results: Molecular Reactions
	Results: Molecular Reactions
	Results: Molecular Reactions
	Case Study: Power management
	Dynamic Power Management (DPM)
	DPM: The System Model
	DPM Case Study: Fujitsu Disk Drive
	DPM Results: Fujitsu Disk Drive
	DPM Results: Fujitsu Disk Drive
	Case study: IPv4 Zeroconf protocol
	IPv4 Zeroconf Standard
	Will it work?
	The IPv4 Zeroconf protocol model
	Modelling the host
	Modelling the environment
	Expected costs
	Results for IPv4 Zeroconf
	Successes so far
	Comparison of model checking engines
	Comparison of model checking engines
	But…
	Challenges for future
	For more information…
	PRISM Contributors

