Modelling and verification of probabilistic systems

Marta Kwiatkowska
School of Computer Science

www.cs.bham.ac.uk/~mzk
www.cs.bham.ac.uk/~dxp/prism

Lucent, 10th November 2004
Overview

- **Motivation**

- **Probabilistic model checking**
 - The models
 - Specification languages
 - What does it involve?
 - The PRISM model checker

- **Case studies**
 - Self-stabilisation
 - Dynamic power management
 - IPv4 Zeroconf dynamic configuration protocol
 - Root contention in IEEE 1394 FireWire

- **Challenges for future**
The future: ubiquitous computing

Mobile, wearable, wireless devices (WiFi, Bluetooth)
Ad hoc, dynamic, ubiquitous computing environment
Security, privacy, anonymity protection on the Internet
Self-configurable - no need for men/women in white coats!
Fast, responsive, power efficient, ...

Correct design a challenge for formal methods?
Probability helps

- **In distributed co-ordination algorithms**
 - As a *symmetry breaker*
 “leader election is eventually resolved with probability 1”
 - In *gossip-based* routing and multicasting
 “the message will be delivered to all nodes with high probability”

- **When modelling uncertainty in the environment**
 - To *quantify failures, express soft deadlines, QoS*
 “the chance of shutdown is at most 0.1%”
 “the probability of a frame delivered within 5ms is at least 0.91”
 - To *quantify environmental factors* in decision support
 “the expected cost of reaching the goal is 100”

- **When analysing system performance**
 - To *quantify arrivals, service, etc, characteristics*
 “in the long run, mean waiting time in a lift queue is 30 sec”
Verification via model checking...

or falsification?

The model

Model Checker

send → ◊ deliver

Temporal logic specification

Also refinement checking, equivalence checking, ...

Line 5: ...
Line 21: ...
Line 15: ...
...
Line 27: ...
Line 45: ...
Probabilistic model checking...

in a nutshell

Probabilistic model

Probabilistic Model Checker

The probability

send $\rightarrow P_{0.9}(\Diamond \text{deliver})$

Probabilistic temporal logic specification

State 5: 0.6789
State 6: 0.9789
State 7: 1.0
...
State 12: 0
State 13: 0.1245
Probability elsewhere

• In performance modelling
 - Pioneered by Erlang, in telecommunications, ca 1910
 - Models: typically continuous time Markov chains
 - Emphasis on steady-state and transient probabilities

• In stochastic planning
 - Cf Bellman equations, ca 1950s
 - Models: Markov decision processes
 - Emphasis on finding optimum policies

• Our focus, probabilistic model checking
 - Distinctive, on automated verification for probabilistic systems
 - Temporal logic specifications, automata-theoretic techniques
 - Shared models
 - Exchanging techniques with the other two areas
Probabilistic models: discrete time

- **Labelled transition systems**
 - Discrete time steps
 - Labelling with atomic propositions

- **Probabilistic transitions**
 - Move to state with given probability
 - Represented as discrete probability distribution

- **Model types**
 - Discrete time Markov chains (DTMCs): probabilistic choice only
 - Markov decision processes (MDPs): probabilistic choice and nondeterminism

\[\sum_{i} p_i = 1 \]
Theory timeline: discrete models

Qualitative (with probability 1 or 0)
- 1983 Hart-Sharir-Pnueli
- 1985 Vardi
- 1988 Courcoubetis-Yannakakis

Quantitative (with arbitrary probability)
- 1991 Larsen-Skou (probab. bisimulation)
- 1994 Hansson-Jonsson (DTMC model checking)
- 1995 Bianco-de Alfaro (MDP model checking)
- 1995 Segala-Lynch (probab. simulation)
- 1997 Huth-Kwiatkowska [LICS] (probab. mu-calculus)
- 1997 Baier et al (DTMC model checking)
- 1998 Baier-Kwiatkowska (MDPs + fairness)
- 1999 Kwiatkowska-Norman-Segala-Sproston (PTAs)
- 2001 Kwiatkowska-Norman-Sproston (infinite state)
Discrete-Time Markov Chains (DTMCs)

- **Features:**
 - Only probabilistic choice in each state

- **Formally,** \((S, s_0, P, L)\):
 - \(S\) finite set of states
 - \(s_0\) initial state
 - \(P: S \rightarrow S \rightarrow [0,1]\) probability matrix, s.t. \(\sum_{s'} P(s, s') = 1\), all \(s\)
 - \(L: S \rightarrow 2^{AP}\) atomic propositions

- Unfold into infinite paths \(s_0 s_1 s_2 s_3 s_4 \ldots\) s.t. \(P(s_i, s_{i+1}) > 0\), all \(i\)

- Probability for finite paths, multiply along path
 - e.g. \(s_0 s_1 s_1 s_2\) is \(1 \cdot 0.01 \cdot 0.97 = 0.0097\)
Probability space

- **Intuitively:**
 - Sample space = infinite paths Path_s from s
 - Event = set of paths
 - Basic event = cone

- **Formally, (Path_s, Ω, Pr)**
 - For finite path ω = ss_1...s_n, define probability
 \[
 P(ω) = \begin{cases}
 1 & \text{if } ω \text{ has length one} \\
 P(s, s_1) \land ... \land P(s_{n-1}, s_n) & \text{otherwise}
 \end{cases}
 \]
 - Take Ω least σ-algebra containing cones
 \[
 C(ω) = \{ π : \text{2 Path_s} \mid ω \text{ is prefix of } π \}
 \]
 - Define \(Pr(C(ω)) = P(ω) \), all ω
 - \(Pr \) extends uniquely to measure on Path_s
Markov Decision Processes (MDPs)

- **Features:**
 - Nondeterministic choice
 - Parallel composition of DTMCs

- Formally, \((S, s_0, \text{Steps}, L)\):
 - \(S\) finite set of states
 - \(s_0\) initial state
 - \(\text{Steps}\) maps states \(s\) to sets of probability distributions \(\mu\) over \(S\)
 - \(L: S \rightarrow 2^{AP}\) atomic propositions

- Unfold into infinite paths \(s_0 \mu_0 s_1 \mu_1 s_2 \mu_2 s_3 \ldots\) s.t. \(\mu_i(s_i, s_{i+1}) > 0\), all \(i\)

- Probability space induced on \(\text{Paths}_s\) by adversary (policy) \(A\) mapping finite path \(s_0 \mu_0 s_1 \mu_1 \ldots s_n\) to a distribution from state \(s_n\)
The logic PCTL: syntax

- **Probabilistic Computation Tree Logic** [HJ94,BdA95,BK98]
 - For DTMCs/MDPs
 - New probabilistic operator, e.g. \(send \rightarrow P_{0.9}(\Diamond \text{deliver}) \)
 “whenever a message is sent, the probability that it is eventually delivered is at least 0.9”

- The syntax of state and path formulas of PCTL is:

\[
\phi ::= \text{true} \mid a \mid \phi \land \phi \mid :\phi \mid P_{p}(\alpha)
\]
\[
\alpha ::= X \phi \mid \phi U \phi
\]

where \(p \in [0,1] \) is a probability bound and \(\in \{<, >, \ldots \} \)

- Subsumes the qualitative variants [Var85,CY95] \(P_{\geq 1}(\alpha) \), \(P_{> 0}(\alpha) \)
- Extension with cost/rewards and expectation operator \(E_{c}(\phi) \)
Semantics is parameterised by a class of adversaries Adv
- “under any scheduling, the probability bound is true at state s”
- reasoning about worst-case/best-case scenario

The probabilistic operator is a quantitative analogue of 8, 9

$$s \overset{2}{\text{Adv}} P \overset{p(\alpha)}{\to} \Pr^A \{ \pi \text{2 Path}^A_s \mid \pi \overset{2}{\text{Adv}} \alpha \} \to p$$
for all $A \in \text{Adv}$
PCTL semantics: summary

• Semantics of state formulas:
 \[s^{2_{Adv}} a \] , \[a \ 2 \ L(s) \]
 \[s^{2_{Adv}} \phi \] , \[s^{2_{Adv}} \phi \]
 \[s^{2_{Adv}} \phi_1 \lor \phi_2 \] , \[s^{2_{Adv}} \phi_1 \text{ and } s^{2_{Adv}} \phi_2 \]

• Semantics of path formulas:
 \[\pi^{2_{Adv}} X \phi \] , \[\pi = s_0 \ldots \text{ and } s_1^{2_{Adv}} \phi \]
 \[\pi^{2_{Adv}} \phi_1 \lor \phi_2 \] , \[\pi = s_0 \ldots \text{ and } 9 \ k \ \text{s.t.} \]
 \[s_k^{2_{Adv}} \phi_2 \text{ and } 8 \ j < k \ . s_j^{2_{Adv}} \phi_1 \]

• The probabilistic operator:
 \[s^{2_{Adv}} P \succ_p (\alpha) \] , \[Pr^A \{ \pi \ 2 \ Path^A s_j \ pi^{2_{Adv}} \alpha \} \succ_p \]
 for all \(A \ 2 \ Adv \)
The logic PCTL: model checking

- By induction on structure of formula, as for CTL

- For the probabilistic operator and Until, solve
 - recursive linear equation for DTMCs
 - linear optimisation problem (form of Bellman equation) for MDPs
 - typically iterative solution methods

- Need to combine
 - conventional graph traversal
 - numerical linear algebra and linear optimisation (value iteration)

- Qualitative properties (probability 1, 0) proceed by graph traversal [Var85,dAKNP97]
PCTL model checking for DTMCs

- By induction on structure of formula
- For the probabilistic operator
 \[- \text{Sat}(P \cdot P(X \phi)) , \{ s \in S | \sum_{s'} \text{Sat}(\phi) P(s,s') \geq p \} \]
 \[- \text{Sat}(P \cdot P(\phi_1 U \phi_2)) , \{ s \in S | x_s \geq p \} \]

where x_s, $s \in S$, are obtained from the recursive linear equation

$$x_s = \begin{cases}
0 & \text{if } s \in S^{no} \\
1 & \text{if } s \in S^{yes} \\
\sum_{s'} P(s,s') x_{s'} & \text{if } s \in S^{no} \{ S^{yes} \}
\end{cases}$$

and

- S^{yes} - states that satisfy $\phi_1 U \phi_2$ with probability exactly 1
- S^{no} - states that satisfy $\phi_1 U \phi_2$ with probability exactly 0
PCTL model checking for DTMCs

- For the remaining formulas standard:

\[
\begin{align*}
 \text{Sat}(a) &= L(a) \\
 \text{Sat}(\phi) &= S\setminus\text{Sat}(\phi) \\
 \text{Sat}(\phi_1 \land \phi_2) &= \text{Sat}(\phi_1) \setminus \text{Sat}(\phi_2)
\end{align*}
\]

- \text{Syes}, \text{Sno} can be precomputed by graph traversal [Var85] (or BDD fixed point computation)

- Need to combine
 - Conventional graph-theoretic traversal
 - Numerical linear algebra
Probabilistic models: continuous

- **Assumptions on time and probability**
 - Continuous passage of time
 - Continuous randomly distributed delays
 - Continuous space

- **Model types**
 - Continuous time Markov chains (CTMCs): exponentially distributed delays, discrete space, no nondeterminism
 - Probabilistic Timed Automata (PTAs): dense time, (usually) discrete probability, admit nondeterminism
 - (not considered) Labelled Markov Processes (LMPs): continuous space/time, no nondeterminism

\[\int_{s_0}^{s_1} f(x) \, dx = 1 \]
Theory timeline: continuous models

Continuous distributions
- **1991** Alur-Courcoubetis-Dill (GSMPs)
- **1996** Aziz-Sanwal-Singhal-Brayton (logic CSL)
- **1998** de Alfaro (long-run average)
- **1999** Baier, Katoen, Hermanns (CTMC model checking)
- **2000** Baier, Haverkort, Hermanns, Katoen (uniformis.)
- **2000** Kwiatkowska-Norman-Segala-Sproston (cont. PTAs)

Continuous space, approximation
- **1997** Blute-Desharnais-Edalat-Panangaden [LICS] (bisim. LMPs)
- **1998** Desharnais-Edalat-Panangaden (logic LMPs)
- **1999** Desharnais-Gupta-Jagadeesan-Panangaden [CONCUR] (metric)
- **2000** Desharnais-Gupta-Jagadeesan-Panangaden [LICS] (approx. LMPs)
Continuous Time Markov Chains (CTMCs)

- **Features:**
 - Discrete states and real time
 - Exponentially distributed random delays

- **Formally:**
 - Set of states S plus rates $R(s,s') > 0$ of moving from s to s'
 - Probability of moving from s to s' by time $t > 0$ is $1 - e^{-R(s,s')t}$
 - Transition rate matrix $S \cdot R \cdot S^T > 0$

- **Unfold into infinite paths** $s_0 \uparrow s_1 \uparrow s_2 \uparrow s_3 \ldots$
 - $\text{prob}_s (s')$, probability of being in s' in the long-run, starting in s
 - $\text{prob}_s (s',t)$, probability of being in s' at time instant t

- **But:** no nondeterminism
The logic CSL: syntax

- **Continuous Stochastic Logic [ASSB96,BKH99]**
 - For CTMCs, based on PCTL, for example
 - \(P_{<0.85}(<15 \text{ full}) \), probability operator
 "the probability of queue becoming full within 15 secs is < 0.85"
 - \(S_{<0.01} \text{(down)} \), steady-state operator
 "in the long run, the probability the system is down is less than 1%"

- The syntax of state and path formulas of CSL is:

\[
\phi ::= \text{true} \mid a \mid \phi \land \phi \mid :\phi \mid S_{\geq p}(\phi) \mid P_{\geq p}(\alpha)
\]

\[
\alpha ::= X \phi \mid \phi U^+ \phi \mid \phi U \phi
\]

where \(p \in [0,1] \) is a probability bound, \(t \in \mathbb{R}_{\geq 0} \) and \(\geq \{ <, >, \ldots \} \)

- Extension with time intervals for until, cost/rewards and expectation operator \(E_{\geq c}(\phi) \)
CSL semantics

• Semantics of bounded until:
 \[\pi^2 \phi_1 U^t \phi_2 \]
 iff \(\phi_2 \) satisfied at time instant \(t \) along \(\pi = s_0 \cdots \) and \(\phi_1 \) satisfied at all preceding time instants

• The added operators:
 \[s^2 S_p(\phi) \]
 \[s^2 P_p(\alpha) \]
 \[\Sigma_{s'} \phi \text{ prob}_{s}(s') \gg p \]
 \[\Pr \{ \pi^2 \text{ Path}_s j \pi^2 \alpha \} \gg p \]
 where \(\text{prob}_{s}(s') \) is prob. of being in \(s' \) in the long-run, having started in \(s \)
 where \(\Pr \) is probability measure on paths as for PCTL

• Semantics of remaining formulas as for PCTL
The logic CSL: model checking

• By induction on structure of formula, as for PCTL except for
 - $S_p(\phi)$ and $P_p(\phi_1 \cup^t \phi_2)$

• The steady-state operator
 - Requires computation of steady-state probabilities
 - Reduces to graph traversal and (iterative) solution of linear equation system

• The time-bounded until
 - Reduces to transient analysis
 - Transform CTMC by removing all outgoing transitions from states satisfying ϕ_2 or ϕ_1
 - Then $Pr \{ \pi \phi \text{Paths}_s | \pi \phi U^t \phi \} = \sum_{s',t} \phi_2 \text{prob}_s(s',t)$
 - Computed by using uniformisation
 - More efficient and stable, iterative computation
Probabilistic model checking in practice

- **Model construction**: probability matrices
 - **Enumerative**
 - Manipulation of *individual* states
 - Size of state space main limitation
 - **Symbolic**
 - Manipulation of *sets* of states
 - Compact representation possible in case of regularity

- **Temporal logic** model checking: currently limited to
 - discrete probability/space models
 - CTMCs
 - Simulation admits more general distributions

- **Probabilistic Symbolic Model Checker** PRISM
The PRISM tool: overview

• Functionality
 - Direct support for models: DTMCs, MDPs and CTMCs
 - Extension with costs/rewards, expectation operator
 - PTAs with digital clocks by manual translation
 - Connection from KRONOS to PRISM for PTAs
 - Experimental implementation using DBMs/DDDs for PTAs

• Input languages
 - System description
 • probabilistic extension of reactive modules [Alur and Henzinger]
 - Probabilistic temporal logics: PCTL and CSL

• Implementation
 - Symbolic model construction (MTBDDs), uses CUDD [Somenzi]
 - Three numerical computation engines
 - Written in Java and C++
The PRISM tool: implementation

- **Numerical engines**
 - **Symbolic**, MTBDD based
 - Fast construction, reachability analysis
 - Very large models if regularity
 - **Enumerative**, sparse-matrix based
 - Generally fast numerical computation
 - Model size up to millions
 - **Hybrid**
 - Speed comparable to sparse matrices for numerical calculations
 - Limited by size of vector

- **Experimental results**
 - Several large scale examples: $10^{10} - 10^{30}$ states
 - No engine wins overall
 - See www.cs.bham.ac.uk/~dxp/prism
PRISM real-world case studies

- **MDPs/DTMCs**
 - Bluetooth device discovery [ISOLA’04]
 - Crowds anonymity protocol (by Shmatikov) [JSC 2003]
 - Randomised consensus [CAV’01, FORTE’02]
 - NAND multiplexing for nanotechnology (with Shukla) [VLSI’04]
 - Self-stabilising protocols

- **CTMCs**
 - Dynamic Power Management (with Shukla and Gupta) [HLDVT’02]
 - Dependability of embedded controller [INCOM’04]

- **PTAs**
 - IPv4 Zeroconf dynamic configuration [FORMATS’03]
 - Root contention in IEEE 1394 FireWire [FAC 2003, STTT 2004]
 - IEEE 802.11 (WiFi) Wireless LAN MAC protocol [PROBMIV’02]
PRISM Modelling Language

- **Simple, state-based** language for DTMCs/CTMCs/MDPs
 - based on Reactive Modules [Alur/Henzinger]
- **Basic components:**
 - modules (system components, parallel composition)
 - variables (finite-state, typed)
 - guarded commands (probabilistic, action-labelled)

\[
\begin{align*}
\text{[send]} & (s=2) \rightarrow p_{\text{loss}} : (s'=3) & (\text{lost}'=\text{lost}+1) + (1-p_{\text{loss}}) : (s'=4);
\end{align*}
\]
PRISM Modelling Language...

- **Other features:**
 - Synchronisation on action labellings
 - Process algebra style specifications
 - Parallel composition: $P_1 ||| P_2$, $P_1 |[a,b]| P_2$, $P_1 || P_2$
 - Action hiding/renaming: $P/\{a\}$, $P\{a<b\}$
 - Import of PEPA models
 - State-dependent probabilities/rates
 - Global variables, macros, ...
PRISM Property Specifications

- Temporal logics: **PCTL/CSL**
 - probabilistic extensions of **CTL**
- Examples:
 - \(P \geq 1 \text{ [true U terminate] } \)
 “the algorithm eventually terminates successfully with probability 1”
 - \(P < 0.001 \text{ [true U} \leq 100 \text{ error] } \)
 “the probability of the system reaching an error state within 100 time units is less than 0.001”
PRISM Property Specifications

More examples:

- **down => P>0.75 [!fail U[1,2.5] up]**
 “when a shutdown occurs, the probability of system recovery being completed in between 1 and 2.5 hours, without further failures occurring, is greater than 0.75”

- **S<0.01 [num_sensors < min]**
 “in the long-run, the probability that an inadequate number of sensors are operational is less than 0.01”
 (CSL only)
PRISM Property Specifications...

- Can write query formulae:
 - $P=? \left[\text{true} \cup \leq 10 \text{ terminate} \right]$

 "What is the probability that the algorithm terminates successfully within 10 time units?"

- Can automate model checking with experiments:
 - $P=? \left[\text{true} \cup \leq T \text{ terminate} \right]$

 "What is the probability that the algorithm terminates successfully within time T?" for $T=0,\ldots,1000$
Adding Costs/Rewards

- Augment states and transitions of model with real-valued rewards

- Instantaneous rewards
 - state-based
 - e.g. "queue size", "concentration of reactant"

- Cumulative rewards
 - state- and transition-based
 - e.g. "time taken", "power consumed", "messages lost"
Properties - Instantaneous

- $R = ? \ [I = T]$
 Expected reward at time instant T?

- $R = ? \ [S]$
 Expected long-run reward?
Properties - Cumulative

- \(R = ? \ [F \ A] \)
 Expected reward to reach \(A \)?

- \(R = ? \ [C \leq T] \)
 Expected reward by time \(T \)?

- \(R = ? \ [S] \)
 Expected long-run reward per unit time?
Case Study: Molecular Reactions

- Time until a reaction occurs is given by an **exponential distribution** [Gillespie 1977]
 - model reactions using **continuous time Markov chains**
- Rate of reaction determined by:
 - base rate (empirically determined constant)
 - concentration of reactants (number of each type of molecule that takes part in the reaction)
- This case study: $\text{Na} + \text{Cl} \leftrightarrow \text{Na}^+ + \text{Cl}^-$
 - forward base rate 100
 - backwards base rate 10
 - initially N_1 Na molecules and N_2 Cl molecules
Results: Molecular Reactions

- $P_{\approx ?} (true \ U^{[T,T]} Na=i)$ ‘probability i Na molecules at time T’
Results: Molecular Reactions

- $R_{\text{Na}}(I=T)$ 'expected percentage of Na molecules at time T'
Results: Molecular Reactions

- $R_{\pm} (S)$ ‘expected percentage of Na molecules in the long run’
Case Study: Power management

- **Power Management**
 - controls *power consumption* in battery-operated devices
 - savings in *power usage* translate to *extended battery life*
 - important for portable, mobile and handheld electronic devices

- **System level power management**
 - Manages various system devices for *power optimisation*
 - System components manufactured with several *power modes*
 - e.g. disk drive has: active, idle, standby, sleep, ...
 - Modes can be changed by the operating system through *APIs*
 - Exploits application characteristics
 - Needs to be implemented at the O/S level
Dynamic Power Management (DPM)

- **DPM** make *optimal decisions* at runtime based on:
 - Dynamically changing system state
 - Workload
 - Performance constraints

- **Stochastic optimal control strategies** for **DPM**
 - Construct a mathematical model of the system in PRISM
 - transition times modelled with exponential distributions
 - Model is CTMC or DTMC depending on time domain
 - Formulate stochastic optimisation problems
 - e.g. “optimise average energy usage while average delay below k”
 - Create stochastic strategies by solving optimisation problem
 - Exported to Maple for solution externally
 - Analyse optimal stochastic strategies directly in PRISM
DPM: The System Model

- **Service requester (SR)** (generates the service requests)
- **Service provider (SP)** (provides service to the requests)
- **Service queue (SQ)** (buffers the requests)
- **Power manager (PM)** (monitors the states of the SR, SP and SQ and issues state-transition commands to the SP)
DPM Case Study: Fujitsu Disk Drive

- **4 state** Fujitsu disk drive: busy, idle, standby and sleep
 - Modelled as CTMC
- **Policies:**
 - *Minimize:* average power consumption
 - *Constraint:* average queue size
- **Properties** checked with PRISM:
 - Average power consumption/queue size
 - Average number of lost customers
 - Expected power consumption/queue size by time t
 - Expected number of lost customers by time t
 - Probability n requests lost by time t
 - Probability a request gets lost/served by time t

- See **PRISM web site** for further details
DPM Results: Fujitsu Disk Drive
DPM Results: Fujitsu Disk Drive
Case study: IPv4 Zeroconf protocol

- IPv4 ZeroConf protocol [Cheshire, Adoba, Guttman'02]
 - New IETF standard for dynamic network self-configuration
 - Link-local (no routers within the interface)
 - No need for an active DHCP server
 - Aimed at home networks, wireless ad-hoc networks, hand-held devices
 - “Plug and play”

- Self-configuration
 - Performs assignment of IP addresses
 - Symmetric, distributed protocol
 - Uses random choice and timing delays
IPv4 Zeroconf Standard

- Select an IP address out of 65024 at random
- Send a probe querying if address in use, and listen for 2 seconds
 - If positive reply received, restart
 - Otherwise, continue sending probes and listening (2 seconds)
- If K probes sent with no reply, start using the IP number
 - Send 2 packets, at 2 second intervals, asserting IP address is being used
 - If a conflicting assertion received, either:
 - defend (send another asserting packet)
 - defer (stop using the IP address and restart)
Will it work?

- **Possible problem...**
 - IP number chosen may be already in use, but:
 - Probes or replies may get lost or delayed (host too busy)

- **Issues:**
 - Self-configuration delays may become unacceptable
 - Would you wait 8 seconds to self-configure your PDA?
 - No justification for parameters
 - for example $K=4$ in the standard

- **Case studies:**
 - DTMC and Markov reward models, analytical [BvdSHV03,AK03]
 - TA model using UPPAAL [ZV02]
 - PTA model with digital clocks using PRISM [KNS03]
The IPv4 Zeroconf protocol model

• Modelled using Probabilistic Timed Automata (with digital clocks)

• Parallel composition of two PTAs:
 - one (joining) host, modelled in detail
 - environment (communication medium + other hosts)

• Variables:
 - \(K \) (number of probes sent before the IP address is used)
 - the probability of message loss
 - the number of other hosts already in the network
Modelling the host
Modelling the environment
Expected costs

- Compute minimum/maximum expected cost accumulated before obtaining a valid IP address?

Costs:
 - *Time* should be *costly*: the host should obtain a valid IP address as soon as possible
 - Using an IP address that is *already in use* should be *very costly*: minimise probability of error

Cost pair:
 - $r=1$ (t time units elapsing corresponds to a cost of t)
 - $e=10^{12}$ for the event corresponding to using an address which is already in use
 - $e=0$ for all other events
Results for IPv4 Zeroconf

- Sending a high number of probes increases the cost
 - increases delay before a fresh IP address can be used
- Sending a low number of probes increases the cost
 - increases probability of using an IP address already in use
- Similar results to the simpler model of [BvdSHV03]
Successes so far

- **Fully automatic, no expert knowledge needed for**
 - Probabilistic reachability and temporal logic properties
 - Expected time/cost

- **Tangible results!**
 - 5 cases of “unusual behaviour” found, over 20 case studies
 - Greater level of detail, may expose obscure dependencies

- **PRISM tool robust**
 - Simple model description language
 - Broad class of models
 - Large, realistic models often possible
 - Flexible property language
 - Choice of engines
Comparison of model checking engines

- Tandem queueing network
 - “first station becomes fully occupied within t time units”

<table>
<thead>
<tr>
<th>States:</th>
<th>MTBDD (sec)</th>
<th>Sparse (sec)</th>
<th>Hybrid (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32,640</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>130,816</td>
<td>0.06</td>
<td>0.15</td>
<td>0.23</td>
</tr>
<tr>
<td>523,776</td>
<td>0.10</td>
<td>0.71</td>
<td>0.99</td>
</tr>
<tr>
<td>2,096,128</td>
<td>0.23</td>
<td>-</td>
<td>3.89</td>
</tr>
<tr>
<td>33,550,336</td>
<td>0.66</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(450 MHz workstation, 500 MB memory)
Comparison of model checking engines

- Kanban manufacturing system
 - Computation of steady-state probabilities

<table>
<thead>
<tr>
<th>States:</th>
<th>MTBDD</th>
<th>Sparse</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>58,400</td>
<td>41.7</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>454,475</td>
<td>-</td>
<td>0.44</td>
<td>0.50</td>
</tr>
<tr>
<td>2,546,432</td>
<td>-</td>
<td>2.76</td>
<td>3.15</td>
</tr>
<tr>
<td>11,261,376</td>
<td>-</td>
<td>-</td>
<td>14.8</td>
</tr>
<tr>
<td>41,644,800</td>
<td>-</td>
<td>-</td>
<td>58.9</td>
</tr>
</tbody>
</table>

(450 MHz workstation, 1 GB memory)
• Models monolithic and finite-state only
 - Emphasis on efficiency
 - No decomposition, abstraction
 - No data reduction

• State-space explosion has not gone away...
 - Heuristics for MTBDDs/BDDs sometimes fail
 - Parallelise? Disk-based?

• Limited expressiveness
 - Only PCTL plus extensions (LTL in progress)
 - Only exponential distributions
 - No direct support for PTAs (work in progress, [FORMATS'04])
 - No continuous space models
 - No mobility
Challenges for future

• Exploiting structure
 - Abstraction, data/equivalence quotient, (de)compositionality...
 - Parametric probabilistic verification?

• Proof assistant for probabilistic verification?

• Approximation methods?

• Efficient methods for continuous models
 - Continuous PTAs? Continuous time MDPs? LMPs?

• More expressive specifications
 - Probabilistic LTL/PCTL*/mu-calculus?

• Real software, not models!

• More applications
 - Quantum cryptographic protocols
 - Mobile ad hoc network protocols
For more information...

J. Rutten, M. Kwiatkowska, G. Norman and D. Parker

Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems

P. Panangaden and F. van Breugel (editors), CRM Monograph Series, vol. 23, AMS
March 2004

www.cs.bham.ac.uk/~dxp/prism/

- Case studies, statistics, group publications
- Download, version 2.1 (900 users)
- Publications by others and courses that feature PRISM...
PRISM Contributors