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Where are computers?
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Once upon a time, back in the 1980s…
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Smartphones, tablets…

Access to Access to Access to Access to servicesservicesservicesservices:
Email, banking, shopping,
directions, …

Personalised monitoringPersonalised monitoringPersonalised monitoringPersonalised monitoring:
GPS/GPRS tracking
Accelerometer, pedometer, … 
Air quality
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Autonomous systems…

Intelligent Intelligent Intelligent Intelligent 
transporttransporttransporttransport:

Self-parking cars
Driverless cars
Search and rescue
Unmanned 
missions
…
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House appliances, networked…

Internet of ThingsInternet of ThingsInternet of ThingsInternet of Things

Home network
Internet-enabled
Remote control
Smart energy 
management
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House appliances, networked…

Internet of ThingsInternet of ThingsInternet of ThingsInternet of Things

Home network
Internet-enabled
Remote control
Energy 
management

Enabled by 
service-
based
systems…
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Ubiquitous computing

• Computing without computers

• (also known as Pervasive Computing or Internet of Things 

− enabled by wireless technology and cloud computing)

• Populations of sensor-enabled computing devices that are

− embedded in the environment, or even in our body

− sensors for interaction and control of the environment

− software controlled, can communicate

− operate autonomously, unattended

− devices are mobile, handheld or wearable

− miniature size, limited resources, bandwidth and memory

− organised into communities

• Unstoppable technological progress

− smaller and smaller devices, more and more complex 
scenarios…
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Perspectives on ubiquitous computing

• Technological: calm technology [Weiser 1993]

− “The most profound technologies are those that
disappear. They weave themselves into everyday 
life until they are indistinguishable from it.”

• Usability: ‘everyware’ [Greenfield 2008]

− Hardware/software evolved into ‘everyware’: 
household appliances that do computing

• Scientific: “Ubicomp can empower us, if we can 
understand it” [Milner 2008]

− “What concepts, theories and tools are needed 
to specify and describe ubiquitous systems, 

their subsystems and their interaction?”

• This lecture concerns verification methodology

− emphasises practical, algorithmic techniques and industrially-
relevant tools  
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Software quality assurance

• Software is a critical component

− embedded software failure costly and life endangering

• Need quality assurance methodologies

− model-based development

− rigorous software engineering

− software product lines

• Use formal techniques to produce guarantees for:

− safety, reliability, performance, resource usage, trust, …

− (safety) “probability of failure to raise alarm is tolerably low”

− (reliability) “the smartphone will never execute the financial 
transaction twice”

• Focus on automated, tool-supported methodologies

− automated verification via model checking

− quantitative verification
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Rigorous software engineering

• Verification and validation

− Derive model, or extract from software artefacts

− Verify correctness, validate if fit for purpose

ModelModelModelModel
FormalFormalFormalFormal
specificationspecificationspecificationspecification

SystemSystemSystemSystem
ValidationValidationValidationValidation

VerificationVerificationVerificationVerification
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Quantitative verification now

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification

e.g. PCTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [ F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative 
properties of probabilistic system models
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Why quantitative verification?

• Real Ubicomp software/systems are quantitative:

− Real-time aspects

• hard/soft time deadlines

− Resource constraints

• energy, buffer size, number of unsuccessful transmissions, etc

− Randomisation, e.g. in distributed coordination algorithms

• random delays/back-off in Bluetooth, Zigbee

− Uncertainty, e.g. communication failures/delays

• prevalence of wireless communication

• Analysis “quantitative” & “exhaustive” 

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies
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Historical perspective

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking 
[Kwiatkowska, Norman, Parker, …]

− ETMCC (now MRMC): model checking for continuous-time Markov 
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains, 
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols, 
biological systems, quantum cryptography, planning…

− genuine flaws found and corrected in real-world systems
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Quantitative probabilistic verification

• What’s involved

− specifying, extracting and building of quantitative models

− graph-based analysis: reachability + qualitative verification

− numerical solution, e.g. linear equations/linear programming

− typically computationally more expensive than the non-
quantitative case

• The state of the art

− fast/efficient techniques for a range of probabilistic models

− feasible for models of up to 107 states (1010 with symbolic)

− extension to probabilistic real-time systems 

− abstraction refinement (CEGAR) methods

− assume-guarantee compositional verification 

− statistical model checking

− tool support exists and is widely used, e.g. PRISM, MRMC
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Quantitative properties

• Probabilistic properties

− P≤0.01 [ F “fail” ] – “the probability of a failure is at most 0.01”

− P=? [ G
≤0.02 !“deploy” {“crash”}{max} ] - “the maximum 

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward/cost-based properties

− R{“time”}=? [ F “end” ] – “expected algorithm execution time”

− R{“energy”}max=? [ C≤7200 ] – “worst-case expected energy 
consumption during the first 2 hours”

• Multi-objective properties

− P≤0.01 [ F “fail” ] ∧ R{“time”} ≤10 [ F “end” ] - “probability of failing 
is no greater than 0.01 and expected algorithm execution 
time is less or equal than 10s”
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Tool support: PRISM

• PRISM: Probabilistic symbolic model checker [CAV11]

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …

− properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

− New! strategy synthesis, stochastic game models (SMGs)  for 
collaborative protocols, parametric models

• See: http://www.prismmodelchecker.org/
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Quantitative verification in action

• Bluetooth device discovery protocol [STTT06]

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message  

• Microgrid demand management protocol [TACAS12]

− designed for households to actively manage 
demand while accessing a variety of energy 
sources

− found and fixed a flaw in the protocol, due to
lack of punishment for selfish behaviour

− implemented in PRISM-games
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The challenges of ubiquitous computing

• Autonomous behaviour: electronic agents make decisions and 
act independently of humans, e.g. search and rescue 

• Constrained resources: low power, processor speed and 
memory capacity, intermittent connectivity

• Adaptiveness: systems have to adapt to changing requirements 
in predictable fashion

• Communities of agents: need to model cooperation, 
competition and resource sharing, necessitating game-theoretic 
approaches

• Monitoring and control of physical processes (cyber-
physical systems): needed in autonomous transport, robotic 
planning, implantable medical devices such as pacemakers, etc

• Interfacing with the natural world: biosensing and 
DNA/molecular computation have important applications in 
disease detection and drug delivery
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This lecture…

• Show applications of quantitative verification in ubiquitous 
computing, highlighting new directions under development

• Majority of research to date has focused on 

− scalability and performance of verification algorithms

− extending expressiveness of models and logics

− industrially-relevant case studies

• In this lecture, we focus on three research questions:

1. How to guarantee correct autonomous behaviour?

2. How to handle constrained resources?

3. How to ensure predictable adaptation?
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From quantitative verification to synthesis

Parametric model
e.g. Markov chain

Probabilistic temporal
logic specification goal

e.g. PCTL

Result

Strategy

System

Parameters

System
require-
ments

P<0.01 [ F≤t fail]
0.5

0.3

0.4

Probabilistic
model checker

e.g. PRISM

Automatic synthesis of correct-by-construction strategies 
and models from quantitative properties/goals

0.5

x

0.4
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The focus of this lecture

Quantitative verification is not powerful enough!

1. How to guarantee correct autonomous behaviour?

− shift from verification to controller synthesis from quantitative 
temporal specifications

2. How to handle constrained resources?

− enable parametric models and determine values that ensure 
the satisfaction of a given property

3. How to ensure predictable adaptation?

− shift from offline to quantitative runtime verification

Aim to describe the above directions

− each employing PRISM, at Oxford or elsewhere

− formulating novel frameworks or algorithms
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1. Autonomous behaviour

• Research question:

− How to guarantee correct autonomous behaviour?

• Many Ubicomp scenarios!

− robotics

− search and rescue

− autonomous vehicles

− unmanned missions

• Approach

− Specify (quantitative) goals in temporal logic

− Derive controllers that guarantee the satisfaction of the goals

• In other words, verification meets robotics and control…
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The (simplified) setting

• Robotic motion 
planning 
[Belta et al]

• Partitioned (indoor) environment, hence a transition system

• Motion primitives: Go Left, Go Straight, …

• Specify goals in temporal logic: “Reach A while avoiding B”
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Quantitative goals

• Why probability?

− need to consider sensor noise, hence motion primitives may 
have probabilistic outcomes

− assume simplified setting of perfect information (achievable 
with RFID tags)

− obtain a discrete Markov decision process

− decorate with rewards, to also consider e.g. expected energy 
or time

• Specify goals in temporal logic PCTL with rewards

− P=max? [ (“S” ∨ (“R” ∧ “M”)) U “D” ] – reach “Destination” by 
driving through either “Safe” regions  or through “Relatively 
safe” regions only if “Medical supply” is available there

− R{“time”}=min? [ F “D” ] – eventually reach “Destination” while 
minimising time to get there

− also their combinations
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Quantitative controller synthesis

• The problem statement is as follows

− Given a Markov decision process and a PCTL formula φ, find 
the controller strategy that maximises the probability of 
satisfying φ

− (similar for minimisation and expected rewards)

• Solution

− compute the maximum probability by e.g. linear programming 
or value iteration

− ‘read off’ the optimal strategy

− more complicated when strategies are history dependent…

• In [Belta et al], applied to compute controllers for iRobot 
and safe vehicle control

− PRISM used for simple (single formula) goals, and otherwise 
algorithms extended

− guarantees validated experimentally
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Autonomous urban driving

• Inspired by DARPA challenge, in [QEST13][MFCS13] we 
consider a more general problem

− represent map data as a stochastic 
game, with environment able to
select hazards 

− express goals as conjunctions of 
probabilistic and reward properties

− e.g. “maximise probability of 
avoiding hazards and minimise time
to reach destination”

• Solution (PRISM-games)

− synthesise a probabilistic strategy
to achieve the multi-objective goal

− enable the exploration of trade-offs between subgoals

• Applied to synthesise driving strategies for English villages

− being developed in PRISM-games
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2. Constrained resources

• Research question

− How to handle constrained resources, such as low power, 
memory and processor capacity of processors, RFIDs, etc?

• Aims

− develop a sound understanding of the impact of constrained 
resources on performance of critical functions of mobile 
devices

− find optimal parameter values

• Approach

− Devise generic/parametric models and analyse their 
performance wrt realistic parameter values

− Synthesise (optimal) parameter values to guarantee that the 
property is satisfied
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Motivating example

• Quantitative analysis of a Certified Email Delivery (CEMD) 
protocol of [Basagiannis et al]

• Smartphones increasingly often used to access sensitive 
services

− cryptographic protocols necessary

− yet low power/capacity processors used in HSDPA (High Speed 
Downlink Packet Access) mobile environments

− variable Bit Error Rate, hence noise affects transmissions

• Need to consider impact of the setting on critical functions

− duthors derive generic continuous-time Markov chain model

− analyse performance wrt realistic parameters, showing 
considerable impact on reliability

• Proposed methodological enhancement (new in PRISM): 

− devise a parametric model, then obtain optimal parameter 
values given reliability goals
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Parametric models in PRISM

• Can specify models in parametric form [TASE13]

− parameters expressed as unevaluated constants

− e.g. const double x;

− transition probabilities specified as expressions over 

parameters, e.g. 0.5 + x

• Properties are given in PCTL, with parameter constants

− new construct constfilter (min, x1*x2, prop)

− filters over parameter values, rather than states

• Determine parameter valuations to guarantee satisfaction 
of given properties

• Two methods implemented in PRISM (‘explicit’ engine)

− constraints-based approach is a reimplementation of PARAM 
2.0 [Hahn et al]

− sampling-based approaches are new implementation
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Case study: parametric models

Checking if minimal exp. number of attacks >= 20

Property constfilter(min,…,R{“attacks”}>=20 [ F “end”])

Model (network virus) has 809 states, ε = 0.05

Optimal value found in 2mins, showing optimal parameter 
values



33

3. Adaptiveness

• Research question

− How to ensure predictable adaptation?

• Service-based systems, e.g. cloud computing,
are essential for Ubicomp

− online commerce, healthcare, banking, …

• Predictability needed in presence of 

− component failure

− environmental uncertainty

− changing requirements

• Approach

− Monitor , verify and enforce at runtime

− Steer computation away from danger states
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Offline quantitative verification

• Derive quantitative formal models:

− probabilistic, annotated with time, energy cost, …

• Use temporal logics to specify:

− reliability, performance, 
resource usage, …

• Apply quantitative/
probabilistic verification 
tools at design time

− offline, to ensure 
correctness before 
deployment

• As good as ability to 
anticipate problems…

• What if requirements 
change at runtime?
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Online quantitative verification…

… for adaptive systems, to capture failure and uncertainty

37
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Online quantitative verification 

• Implemented in QoSMOS framework [TSE2011]

− enables natural language specification, runtime monitoring and 
enforcement, and learning from history

− uses PRISM to select optimal services

− incremental model construction and verification techniques, i.e. 
re-using previous results [DSN11][RV12]

38
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Summing up…

• Brief overview of three new directions in quantitative 
verification

− highlighted a growing shift from automated verification to 
correct-by-construction synthesis

− demonstrated usefulness of quantitative verification 
methodology, particularly as implemented in PRISM

− new techniques and frameworks

• Many challenges remain

− scalability of the techniques

− synthesis of models

− more expressive models, e.g. cyber-physical systems

• More challenges not covered in this lecture

− implantable medical devices, collaboration and competition, 
biosensing, … 
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