
ICTAC 2013, Shanghai

Advances in Quantitative Advances in Quantitative Advances in Quantitative Advances in Quantitative
Verification for Verification for Verification for Verification for

Ubiquitous ComputingUbiquitous ComputingUbiquitous ComputingUbiquitous Computing

Marta Kwiatkowska
University of Oxford

2

Where are computers?

3

Once upon a time, back in the 1980s…

4

Smartphones, tablets…

Access to Access to Access to Access to servicesservicesservicesservices:
Email, banking, shopping,
directions, …

Personalised monitoringPersonalised monitoringPersonalised monitoringPersonalised monitoring:
GPS/GPRS tracking
Accelerometer, pedometer, …
Air quality

5

Autonomous systems…

Intelligent Intelligent Intelligent Intelligent
transporttransporttransporttransport:

Self-parking cars
Driverless cars
Search and rescue
Unmanned
missions
…

6

House appliances, networked…

Internet of ThingsInternet of ThingsInternet of ThingsInternet of Things

Home network
Internet-enabled
Remote control
Smart energy
management

7

House appliances, networked…

Internet of ThingsInternet of ThingsInternet of ThingsInternet of Things

Home network
Internet-enabled
Remote control
Energy
management

Enabled by
service-
based
systems…

8

Ubiquitous computing

• Computing without computers

• (also known as Pervasive Computing or Internet of Things

− enabled by wireless technology and cloud computing)

• Populations of sensor-enabled computing devices that are

− embedded in the environment, or even in our body

− sensors for interaction and control of the environment

− software controlled, can communicate

− operate autonomously, unattended

− devices are mobile, handheld or wearable

− miniature size, limited resources, bandwidth and memory

− organised into communities

• Unstoppable technological progress

− smaller and smaller devices, more and more complex
scenarios…

9

Perspectives on ubiquitous computing

• Technological: calm technology [Weiser 1993]

− “The most profound technologies are those that
disappear. They weave themselves into everyday
life until they are indistinguishable from it.”

• Usability: ‘everyware’ [Greenfield 2008]

− Hardware/software evolved into ‘everyware’:
household appliances that do computing

• Scientific: “Ubicomp can empower us, if we can
understand it” [Milner 2008]

− “What concepts, theories and tools are needed
to specify and describe ubiquitous systems,

their subsystems and their interaction?”

• This lecture concerns verification methodology

− emphasises practical, algorithmic techniques and industrially-
relevant tools

10

Software quality assurance

• Software is a critical component

− embedded software failure costly and life endangering

• Need quality assurance methodologies

− model-based development

− rigorous software engineering

− software product lines

• Use formal techniques to produce guarantees for:

− safety, reliability, performance, resource usage, trust, …

− (safety) “probability of failure to raise alarm is tolerably low”

− (reliability) “the smartphone will never execute the financial
transaction twice”

• Focus on automated, tool-supported methodologies

− automated verification via model checking

− quantitative verification

11

Rigorous software engineering

• Verification and validation

− Derive model, or extract from software artefacts

− Verify correctness, validate if fit for purpose

ModelModelModelModel
FormalFormalFormalFormal
specificationspecificationspecificationspecification

SystemSystemSystemSystem
ValidationValidationValidationValidation

VerificationVerificationVerificationVerification

A
b

s
tr

a
c
t

A
b

s
tr

a
c
t

A
b

s
tr

a
c
t

A
b

s
tr

a
c
t R

e
fin

e
R

e
fin

e
R

e
fin

e
R

e
fin

e

F
o
rm

a
li
s
e

F
o
rm

a
li
s
e

F
o
rm

a
li
s
e

F
o
rm

a
li
s
e

SimulationSimulationSimulationSimulation

Informal
requirements

12

Quantitative verification now

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification

e.g. PCTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models

13

Why quantitative verification?

• Real Ubicomp software/systems are quantitative:

− Real-time aspects

• hard/soft time deadlines

− Resource constraints

• energy, buffer size, number of unsuccessful transmissions, etc

− Randomisation, e.g. in distributed coordination algorithms

• random delays/back-off in Bluetooth, Zigbee

− Uncertainty, e.g. communication failures/delays

• prevalence of wireless communication

• Analysis “quantitative” & “exhaustive”

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies

14

Historical perspective

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking
[Kwiatkowska, Norman, Parker, …]

− ETMCC (now MRMC): model checking for continuous-time Markov
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains,
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols,
biological systems, quantum cryptography, planning…

− genuine flaws found and corrected in real-world systems

15

Quantitative probabilistic verification

• What’s involved

− specifying, extracting and building of quantitative models

− graph-based analysis: reachability + qualitative verification

− numerical solution, e.g. linear equations/linear programming

− typically computationally more expensive than the non-
quantitative case

• The state of the art

− fast/efficient techniques for a range of probabilistic models

− feasible for models of up to 107 states (1010 with symbolic)

− extension to probabilistic real-time systems

− abstraction refinement (CEGAR) methods

− assume-guarantee compositional verification

− statistical model checking

− tool support exists and is widely used, e.g. PRISM, MRMC

16

Quantitative properties

• Probabilistic properties

− P≤0.01 [F “fail”] – “the probability of a failure is at most 0.01”

− P=? [G
≤0.02 !“deploy” {“crash”}{max}] - “the maximum

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward/cost-based properties

− R{“time”}=? [F “end”] – “expected algorithm execution time”

− R{“energy”}max=? [C≤7200] – “worst-case expected energy
consumption during the first 2 hours”

• Multi-objective properties

− P≤0.01 [F “fail”] ∧ R{“time”} ≤10 [F “end”] - “probability of failing
is no greater than 0.01 and expected algorithm execution
time is less or equal than 10s”

17

Tool support: PRISM

• PRISM: Probabilistic symbolic model checker [CAV11]

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …

− properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

− New! strategy synthesis, stochastic game models (SMGs) for
collaborative protocols, parametric models

• See: http://www.prismmodelchecker.org/

18

Quantitative verification in action

• Bluetooth device discovery protocol [STTT06]

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message

• Microgrid demand management protocol [TACAS12]

− designed for households to actively manage
demand while accessing a variety of energy
sources

− found and fixed a flaw in the protocol, due to
lack of punishment for selfish behaviour

− implemented in PRISM-games

19

The challenges of ubiquitous computing

• Autonomous behaviour: electronic agents make decisions and
act independently of humans, e.g. search and rescue

• Constrained resources: low power, processor speed and
memory capacity, intermittent connectivity

• Adaptiveness: systems have to adapt to changing requirements
in predictable fashion

• Communities of agents: need to model cooperation,
competition and resource sharing, necessitating game-theoretic
approaches

• Monitoring and control of physical processes (cyber-
physical systems): needed in autonomous transport, robotic
planning, implantable medical devices such as pacemakers, etc

• Interfacing with the natural world: biosensing and
DNA/molecular computation have important applications in
disease detection and drug delivery

20

This lecture…

• Show applications of quantitative verification in ubiquitous
computing, highlighting new directions under development

• Majority of research to date has focused on

− scalability and performance of verification algorithms

− extending expressiveness of models and logics

− industrially-relevant case studies

• In this lecture, we focus on three research questions:

1. How to guarantee correct autonomous behaviour?

2. How to handle constrained resources?

3. How to ensure predictable adaptation?

21

From quantitative verification to synthesis

Parametric model
e.g. Markov chain

Probabilistic temporal
logic specification goal

e.g. PCTL

Result

Strategy

System

Parameters

System
require-
ments

P<0.01 [F≤t fail]
0.5

0.3

0.4

Probabilistic
model checker

e.g. PRISM

Automatic synthesis of correct-by-construction strategies
and models from quantitative properties/goals

0.5

x

0.4

22

The focus of this lecture

Quantitative verification is not powerful enough!

1. How to guarantee correct autonomous behaviour?

− shift from verification to controller synthesis from quantitative
temporal specifications

2. How to handle constrained resources?

− enable parametric models and determine values that ensure
the satisfaction of a given property

3. How to ensure predictable adaptation?

− shift from offline to quantitative runtime verification

Aim to describe the above directions

− each employing PRISM, at Oxford or elsewhere

− formulating novel frameworks or algorithms

23

1. Autonomous behaviour

• Research question:

− How to guarantee correct autonomous behaviour?

• Many Ubicomp scenarios!

− robotics

− search and rescue

− autonomous vehicles

− unmanned missions

• Approach

− Specify (quantitative) goals in temporal logic

− Derive controllers that guarantee the satisfaction of the goals

• In other words, verification meets robotics and control…

24

The (simplified) setting

• Robotic motion
planning
[Belta et al]

• Partitioned (indoor) environment, hence a transition system

• Motion primitives: Go Left, Go Straight, …

• Specify goals in temporal logic: “Reach A while avoiding B”

25

Quantitative goals

• Why probability?

− need to consider sensor noise, hence motion primitives may
have probabilistic outcomes

− assume simplified setting of perfect information (achievable
with RFID tags)

− obtain a discrete Markov decision process

− decorate with rewards, to also consider e.g. expected energy
or time

• Specify goals in temporal logic PCTL with rewards

− P=max? [(“S” ∨ (“R” ∧ “M”)) U “D”] – reach “Destination” by
driving through either “Safe” regions or through “Relatively
safe” regions only if “Medical supply” is available there

− R{“time”}=min? [F “D”] – eventually reach “Destination” while
minimising time to get there

− also their combinations

26

Quantitative controller synthesis

• The problem statement is as follows

− Given a Markov decision process and a PCTL formula φ, find
the controller strategy that maximises the probability of
satisfying φ

− (similar for minimisation and expected rewards)

• Solution

− compute the maximum probability by e.g. linear programming
or value iteration

− ‘read off’ the optimal strategy

− more complicated when strategies are history dependent…

• In [Belta et al], applied to compute controllers for iRobot
and safe vehicle control

− PRISM used for simple (single formula) goals, and otherwise
algorithms extended

− guarantees validated experimentally

27

Autonomous urban driving

• Inspired by DARPA challenge, in [QEST13][MFCS13] we
consider a more general problem

− represent map data as a stochastic
game, with environment able to
select hazards

− express goals as conjunctions of
probabilistic and reward properties

− e.g. “maximise probability of
avoiding hazards and minimise time
to reach destination”

• Solution (PRISM-games)

− synthesise a probabilistic strategy
to achieve the multi-objective goal

− enable the exploration of trade-offs between subgoals

• Applied to synthesise driving strategies for English villages

− being developed in PRISM-games

28

2. Constrained resources

• Research question

− How to handle constrained resources, such as low power,
memory and processor capacity of processors, RFIDs, etc?

• Aims

− develop a sound understanding of the impact of constrained
resources on performance of critical functions of mobile
devices

− find optimal parameter values

• Approach

− Devise generic/parametric models and analyse their
performance wrt realistic parameter values

− Synthesise (optimal) parameter values to guarantee that the
property is satisfied

29

Motivating example

• Quantitative analysis of a Certified Email Delivery (CEMD)
protocol of [Basagiannis et al]

• Smartphones increasingly often used to access sensitive
services

− cryptographic protocols necessary

− yet low power/capacity processors used in HSDPA (High Speed
Downlink Packet Access) mobile environments

− variable Bit Error Rate, hence noise affects transmissions

• Need to consider impact of the setting on critical functions

− duthors derive generic continuous-time Markov chain model

− analyse performance wrt realistic parameters, showing
considerable impact on reliability

• Proposed methodological enhancement (new in PRISM):

− devise a parametric model, then obtain optimal parameter
values given reliability goals

30

Parametric models in PRISM

• Can specify models in parametric form [TASE13]

− parameters expressed as unevaluated constants

− e.g. const double x;

− transition probabilities specified as expressions over

parameters, e.g. 0.5 + x

• Properties are given in PCTL, with parameter constants

− new construct constfilter (min, x1*x2, prop)

− filters over parameter values, rather than states

• Determine parameter valuations to guarantee satisfaction
of given properties

• Two methods implemented in PRISM (‘explicit’ engine)

− constraints-based approach is a reimplementation of PARAM
2.0 [Hahn et al]

− sampling-based approaches are new implementation

32

Case study: parametric models

Checking if minimal exp. number of attacks >= 20

Property constfilter(min,…,R{“attacks”}>=20 [F “end”])

Model (network virus) has 809 states, ε = 0.05

Optimal value found in 2mins, showing optimal parameter
values

33

3. Adaptiveness

• Research question

− How to ensure predictable adaptation?

• Service-based systems, e.g. cloud computing,
are essential for Ubicomp

− online commerce, healthcare, banking, …

• Predictability needed in presence of

− component failure

− environmental uncertainty

− changing requirements

• Approach

− Monitor , verify and enforce at runtime

− Steer computation away from danger states

34

Offline quantitative verification

• Derive quantitative formal models:

− probabilistic, annotated with time, energy cost, …

• Use temporal logics to specify:

− reliability, performance,
resource usage, …

• Apply quantitative/
probabilistic verification
tools at design time

− offline, to ensure
correctness before
deployment

• As good as ability to
anticipate problems…

• What if requirements
change at runtime?

37

Online quantitative verification…

… for adaptive systems, to capture failure and uncertainty

37

38

Online quantitative verification

• Implemented in QoSMOS framework [TSE2011]

− enables natural language specification, runtime monitoring and
enforcement, and learning from history

− uses PRISM to select optimal services

− incremental model construction and verification techniques, i.e.
re-using previous results [DSN11][RV12]

38

39

Summing up…

• Brief overview of three new directions in quantitative
verification

− highlighted a growing shift from automated verification to
correct-by-construction synthesis

− demonstrated usefulness of quantitative verification
methodology, particularly as implemented in PRISM

− new techniques and frameworks

• Many challenges remain

− scalability of the techniques

− synthesis of models

− more expressive models, e.g. cyber-physical systems

• More challenges not covered in this lecture

− implantable medical devices, collaboration and competition,
biosensing, …

40

References

• Autonomous behaviour

− T. Chen, M. Kwiatkowska, A. Simaitis and C. Wiltsche. Synthesis for
Multi-Objective Stochastic Games: An Application to Autonomous
Urban Driving. In Proc. QEST'13.

− T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis and C. Wiltsche. On
Stochastic Games with Multiple Objectives. In Proc. MFCS'13.

• Constrained resources

− T. Chen, E. Hahn, T. Han, M. Kwiatkowska, H. Qu and L. Zhang. Model
Repair for Markov Decision Processes. In Proc. TASE'13.

• Adaptiveness

− R. Calinescu, C. Ghezzi, M. Kwiatkowska and R. Mirandola.S elf-
adaptive Software Needs Quantitative Verification at Runtime.
Communications of the ACM, 55(9), pages 69-77, ACM, 2012.

• See also

− M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. CAV 2011: 585-591.

41

Acknowledgements

• My group and collaborators in this work

• Collaborators who contributed to theoretical and practical
PRISM development

• External users of, and contributors to, PRISM

• Project funding

− ERC, EPSRC

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org

