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Probabilistic verification 

•  Probabilistic verification 
−  formal verification of systems exhibiting stochastic behaviour 

•  Why probability? 
−  unreliability (e.g. component failures) 
−  uncertainty (e.g. message losses/delays over wireless) 
−  randomisation (e.g. in protocols such as Bluetooth, ZigBee) 

•  Quantitative properties 
−  reliability, performance, quality of service, … 
−  “the probability of an airbag failing to deploy within 0.02s” 
−  “the expected time for a network protocol to send a packet” 
−  “the expected power usage of a sensor network over 1 hour” 



Probabilistic verification 

•  The state of the art 
−  fast/efficient techniques for a range of probabilistic models 
−  (mostly Markov chains, Markov decision processes) 
−  feasible for models of up to 107 states (1010 with symbolic) 
−  tool support exists and is widely used 
−  successfully applied to many application domains: 

communication protocols, security, biology, … 

•  The challenges 
−  scalability and efficiency: larger models, verified faster 
−  more realistic models: real-time behaviour, continuous 

dynamics, stochastic hybrid systems, … 
−  ease of applicability, e.g. direct verification of mainstream 

modelling/programming languages (C, Simulink, SystemC, …) 
−  needs: efficient and automated abstraction techniques 



Probabilistic models 

•  Discrete-time Markov chains (DTMCs) 
−  discrete states + probability 
−  for: randomisation, component failures, unreliable media 

•  Markov decision processes (MDPs) 
−  discrete states, probability and nondeterminism 
−  for: concurrency, under-specification, abstraction 

•  Probabilistic timed automata (PTAs) 
−  probability, nondeterminism and real-time 

•  Probabilistic timed programs (PTPs) 
−  probability, nondeterminism and real-time and data 
−  for: software verification of real programming languages 



Overview 

•  Probabilistic verification 
−  discrete-time Markov chains (DTMCs) 
−  Markov decision processes (MDPs) 
−  probabilistic timed automata (PTAs) 

•  Quantitative abstraction refinement 
−  game-based abstraction of MDPs 
−  quantitative abstraction-refinement loop 
−  verification of PTAs and probabilistic software 

•  Verifying software with time and probabilities 
−  probabilistic timed programs (PTPs) 
−  verifying PTPs with abstraction + refinement 

•  A concrete challenge 
−  quantitative verification of SystemC verification 

•  Conclusions 



Discrete-time Markov chains 

•  Discrete-time Markov chains (DTMCs) 
−  model fully probabilistic behaviour 
−  state-transition systems augmented with probabilistic choice 

•  Formally, a DTMC is a tuple (S, P) where: 
−  S is a set of states 
−  P : S x S → [0,1] is the transition probability matrix 

•  To reason formally: 
−  define a probability space 

 over infinite paths through DTMC 
−  allows computation of, for example… 

•  Probabilistic reachability 
−  key concept for model checking 
−  ps(F) = probability of reaching goal states F⊆S from state s 
−  reduces to the solution of a linear equation system 
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Markov decision processes 

•  Markov decision processes (MDPs) 
−  model nondeterministic as well as probabilistic behaviour 
−  nondeterministic choice between probability distributions 

•  Formally, an MDP is a tuple (S, Act, Steps) where: 
−  S is a set of states, Act is a set of actions 
−  Steps : S×Act → Dist(S) is the transition probability function 

•  An adversary (aka. “scheduler”/“strategy”) of an MDP 
−  is a resolution of the nondeterminism in the MDP 
−  under a given adversary σ, the behaviour is fully probabilistic 
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Probabilistic reachability for MDPs 

•  Probabilistic reachability for MDPs 
−  ps

σ (F) = probability of reaching F⊆S starting from s under σ 
−  consider the minimum/maximum values over all adversaries 
−  ps

min(F) = infσ ps
σ (F) and ps

max(F) = supσ ps
σ (F) 

−  can be computed efficiently 
−  (linear programming, value iteration) 
−  optimal adversaries obtained too 
−  tool support exists (e.g. PRISM, LiQuor, RAPTURE) 

•  Allows reasoning about best/worst-case behaviour 
−  e.g. minimum probability of the protocol terminating correctly 
−  e.g. maximum probability of a security breach 
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Probabilistic timed automata 

•  Probabilistic timed automata (PTAs) 
−  models probabilistic, nondeterministic and timed behaviour 
−  Markov decision processes + real-valued clocks 
−  (or: timed automata + discrete probabilistic choice) 

•  Like timed automata 
−  all clocks increase at same rate 
−  clocks can be reset (to zero) 

•  PTA model checking 
−  the semantics of a PTA 

 is an infinite-state MDP 
−  probabilistic (timed) reachability is defined as for MDPs 
−  but computation is more complex... 
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PTA model checking - Summary 

•  Several PTA model checking techniques developed 
−  construction/analysis of a finite-state model (usually MDP) 

•  Region graph construction [KNSS – TCS’02] 
−  shows decidability, but gives exponential complexity 

•  Digital (integer) clocks approach [KNPS – FMSD’06] 
−  slightly restricted classes of PTAs: closed zones only 
−  works well in practice, still some scalability limitations 

•  Forwards reachability [KNSS – TCS’02] 
−  efficient zone-based technique, approximate results only 

•  Backwards reachability [KNSW – I&C07] 
−  exact results, expensive zone operations required 

•  Quantitative abstraction refinement [KNP – FORMATS’09] 
−  abstraction to stochastic games, best in practice 



Overview 

•  Quantitative verification 
−  discrete-time Markov chains (DTMCs) 
−  Markov decision processes (MDPs) 
−  probabilistic timed automata (PTAs) 

•  Quantitative abstraction refinement 
−  game-based abstraction of MDPs 
−  abstraction-refinement loop 
−  verification of PTAs and probabilistic software 

•  Verifying software with time and probabilities 
−  probabilistic timed programs (PTPs) 
−  verifying PTPS with abstraction + refinement 

•  A concrete challenge: Quantitative SystemC verification 
•  Conclusions, challenges & future work 



Abstraction 

•  Very successful in (non-probabilistic) formal methods 
−  essential for verification of large/infinite-state systems 
−  hide details irrelevant to the property of interest 
−  yields smaller/finite model which is easier/feasible to verify 
−  loss of precision: verification can return “don’t know” 

•  Construct abstract model of a concrete system 
−  e.g. based on a partition of the concrete state space 
−  an abstract state represents a set of concrete states 



Abstraction refinement (CEGAR) 

•  Counterexample-guided abstraction refinement 
−  (non-probabilistic) model checking of reachability properties 
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Abstraction of MDPs 

•  Abstraction increases degree of nondeterminism 
−  i.e. minimum probabilities are lower and maximums higher 

•  But what form does the abstraction of an MDP take? 
•  2 possibilities: 

 (i) an MDP [D’Argenio/Jeannet/Jensen/Larsen’01] 
−  probabilistic simulation relates concrete/abstract models 

 (ii) a stochastic two-player game [KNP - QEST'06] 
−  separates nondeterminism from abstraction and from MDP 
−  yields separate lower/upper bounds for min/max  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Stochastic two-player games 

•  Subclass of simple stochastic games [Shapley,Condon] 
−  two nondeterministic players (1 and 2) and probabilistic choice 

•  Resolution of the nondeterminism in a game 
−  corresponds to a pair of strategies for players 1 and 2: (σ1,σ2) 
−  pa

σ1,σ2(F) probability of reaching F from a under (σ1,σ2) 
−  can compute, e.g. : supσ1 infσ2 pa

σ1,σ2(F) 
−  informally: “the maximum probability of reaching F that player 1 

can guarantee no matter what player 2 does” 

•  Abstraction of an MDP as a stochastic two-player game: 
−  player 1 controls the nondeterminism of the abstraction 
−  player 2 controls the nondeterminism of the MDP 



Game abstraction (by example) 

•  Player 1 vertices (    ) are abstract states 
•  (Sets of) distributions are lifted to the abstract state space 
•  Player 2 vertices (   ) are states with same (sets of) choices 
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Properties of the abstraction 

•  Analysis of game yields lower/upper bounds: 
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a 

         infσ1,σ2 pa
σ1,σ2(F)  ≤   ps

min(F)   ≤    supσ1 infσ2 pa
σ1,σ2(F)  

   infσ1 supσ2 pa
σ1,σ2(F)  ≤   ps

max(F)   ≤    supσ1,σ2 pa
σ1,σ2(F) 
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Properties of the abstraction 

•  Analysis of game yields lower/upper bounds: 
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a 

         infσ1,σ2 pa
σ1,σ2(F)  ≤   ps

min(F)   ≤    supσ1 infσ2 pa
σ1,σ2(F)  

   infσ1 supσ2 pa
σ1,σ2(F)  ≤   ps

max(F)   ≤    supσ1,σ2 pa
σ1,σ2(F) 

optimal probabilities for player 1, player 2 in game 
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Properties of the abstraction 

•  Analysis of game yields lower/upper bounds: 
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a 

         infσ1,σ2 pa
σ1,σ2(F)  ≤   ps

min(F)   ≤    supσ1 infσ2 pa
σ1,σ2(F)  

   infσ1 supσ2 pa
σ1,σ2(F)  ≤   ps

max(F)   ≤    supσ1,σ2 pa
σ1,σ2(F) 

 min/max reachability probabilities, treating game as MDP 
(i.e. assuming that players 1 and 2 cooperate) 
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Example - Abstraction 
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Experimental results 

•  Israeli & Jalfon’s Self Stabilisation 
−  protocol for obtaining a stable state in a token ring 
−  minimum probability of reaching a stable state by time T 

concrete states: 1,048,575 

abstract states: 627          



Experimental results 

•  IPv4 Zeroconf 
−  protocol for obtaining an IP address for a new host 
−  maximum probability the new host not configured by T 

concrete states: 838,905 

abstract states: 881          



Abstraction refinement 

•  Consider (max) difference between lower/upper bounds 
−  gives a quantitative measure of the abstraction’s precision 

•  If the difference (“error”) is too great, refine the abstraction 
−  a finer partition yields a more precise abstraction 
−  lower/upper bounds can tell us where to refine (which states) 
−  (memoryless) strategies can tell us how to refine 
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Example - Refinement 
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Abstraction-refinement loop 

•  Quantitative abstraction-refinement loop for MDPs 
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Abstraction-refinement loop 

•  Quantitative abstraction-refinement loop for MDPs 
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Abstraction-refinement loop 

•  Implementations of quantitative abstraction refinement… 

•  Verification of probabilistic timed automata [FORMATS’09] 
−  zone-based abstraction/refinement using DBMs 
−  implemented in (development release of) PRISM 
−  outperforms existing PTA verification techniques 

•  Verification of probabilistic software [VMCAI’09] 
−  predicate abstraction/refinement using SAT solvers 
−  implemented in tool qprover: components of PRISM, SATABS 
−  analysed real network utilities (ping, tftp) - approx 1KLOC 

•  Verification of concurrent PRISM models [Wachter/Zhang’10] 
−  implemented in tool PASS; infinite-state PRISM models 



Overview 

•  Quantitative verification 
−  discrete-time Markov chains (DTMCs) 
−  Markov decision processes (MDPs) 
−  probabilistic timed automata (PTAs) 

•  Quantitative abstraction refinement 
−  game-based abstraction of MDPs 
−  abstraction-refinement loop 
−  verification of PTAs and probabilistic software 

•  Verifying software with time and probabilities 
−  probabilistic timed programs (PTPs) 
−  verifying PTPS with abstraction + refinement 

•  A concrete challenge: Quantitative SystemC verification 
•  Conclusions, challenges & future work 



Probabilistic timed programs 

•  Probabilistic timed programs (PTPs) 
−  probability, nondeterminism and real-time and data 
−  probabilistic timed automata + discrete-valued variables 

•  Time – assume a finite set X of real-valued clocks 
−  Zones(X) is the set of zones ζ over X 
−  i.e. ζ ::= x ≤ d  | c ≤ x  | x+c ≤ y+d  | ¬ζ  | ζ ∨ ζ 
−  where x, y ∈ X and c, d ∈ ℕ  

•  Data – assume a finite set D of data variables 
−  Val(D) is the set of all valuations of D 
−  Pred(D) is the set of predicates over D 
−  Up(D) is the set of all update functions over D 
−  i.e. set of all functions up : Val(D)→Val(D) 



Probabilistic timed programs 

•  A PTP is a tuple (L, linit, D, uinit, X, Act, inv, enab, prob) 
−  L = locations, D = data variables, X = clocks, Act = actions 
−  linit ∈ L is initial location and uinit ∈ Val(D) is initial valuation 

−  inv : L → Zones(X) is the invariant condition 
•  clocks X must satisfy inv(l) whilst in location l 

−  enab : L×Act → Pred(D) × Zones(X) is the enabling condition 
•  guard for action a in location l split into enabD(l,a) and enabX(l,a) 
•  can only take action a in l if enabD(l,a) ∧ enabX(l,a) 

−  prob : L×Act → Dist(Up(D) × 2X × L)  
is the probabilistic transition function 

•  if take action a in l, then with probability prob(l,a)(up,Y,l’): 
•  update D according to up, reset clocks in Y⊆X, move to location l’ 



Example - PTP 

•  Simple communication protocol 
−  aims to send a message  

over an unreliable channel 
−  tries to send up to 5 times 
−  or until time-out of 4 secs 
−  delay between tries: 3-5 secs 

•  In  the PTP: 
−  L = {init, lost, done, fail} 
−  D = {c} (c counts number of tries) 
−  X = {x, y} (x for delay, y for timeout) 
−  Act = {send, retry, giveup, timeout} 

•  Property of interest: maximum probability of reaching “fail” 
−  actual max. probability is 0.1 (time-out after after 1 send) 
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Abstraction of PTPs 

•  Formal semantics of a PTP is an infinite-state MDP 
−  over state space L×Val(D)×ℝX 

−  data domain Val(D) may be large/infinite; so need abstraction 
−  time domain ℝ is dense; so need abstraction 

•  In general, use an abstract domain ((A,⊔,⊓,⊑), α, γ) 
−  lattice of abstract states, abstraction/concretisation functions 
−  here, we use predicate abstraction for data and zones for time 
−  i.e. abstract states are (l,b,ζ) ∈ L×{F,T}n×Zones(X) 
−  assuming a set of data predicates Φ = {Φ1,…, Φn} 
−  (paper also covers case of predicates for data and time) 

•  We use (finite-state) stochastic games to abstract PTPs 
−  i.e. state space is L×{F,T}n×Zones(X) 



Abstraction/refinement of PTPs 

•  1. Build reachability graph for PTP 
−  all reachable abstract states and possible transitions between 
−  constructed through (classical) forwards reachability search 
−  as in, for example, UPPAAL, but not on-the-fly 
−  zone operations (DBMs) and SAT/SMT for symbolic post 

•  2. Build stochastic game abstraction for PTP 
−  i.e. of underlying infinite-state MDP semantics 
−  constructed from reachability graph 
−  further zone operations and/or SAT/SMT solving needed 
−  yields lower/upper bound  on reachability probabilities 

•  3. Refine the abstraction (iteratively) 
−  split zones, or generate new predicates 



Example 1 - Abstraction 

Reachability graph: 
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In this example: 
  just abstract time, not data 
  i.e. abstract states are of the form: 
  (l,d,ζ) ∈ L×Val(D)×Zones(X) 
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Example 1 - Abstraction 

Stochastic game abstraction: 

PTP: 
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3≤y≤4 or 4<y≤5? 

Results: 
  max probability to reach fail? 
  lower/upper bounds: [0.01,0.1] 
  (in abstraction, can try to send  
   either once or twice) 
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Example 1 - Refinement 
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Example 2 – Time and data 

Stochastic game abstraction: 

PTP: 

Player 1 choice: 
imprecision from both time/data 
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In this example: 
  abstract time and data 
  i.e. abstract states are of the form: 
  (l,b,ζ) ∈ L×{F,T}n×Zones(X) 
  single data predicate: {c=0} 
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Example 2 – Time and data 

States where 4<y≤5, 
only possibility is time-out 
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Symbolic operations 

•  Need symbolic manipulation of abstract states 

•  For example, the post operator 
−  to construct reachability graph 
−  over abstract states A = L×{F,T}n×Zones(X) 
−  split into two parts, timed and discrete: 
−  tpost[l] : A → 2A - elapse of time in location l 
−  dpost[e] : A → 2A - discrete transition on edge e = (l,α,up,Y,l’) 

•  Also need (not discussed here) operations to: 
−  construct player 1/2 choices in stochastic game 
−  split abstract states during refinement 



Symbolic operations: Post 

•  Time (clocks X) 
−  use zone operations, implemented with DBMs 
−  for zone ζ ∈ Zones(X): 
−  tpostX[l](ζ) = inv(l) ∧ ↗ζ  
−  dpostX[e](ζ) = (ζ ∧ enab(l,α))[Y:=0] ∧ inv(l’) 

•  Data (variables D) 
−  formulate as SAT/SMT problem, use solver to enumerate  
−  for predicate valuation b ∈ {F,T}n: 
−  dpostD[e](b) contains all instances of b’ ∈ {F,T}n such that 
−  ∃u,u’∈Val(D) satisfying: up(u)=u’ ∧ Φ(u)=b ∧ Φ(u’)=b’ 

•  Combined time/data 
−  for an abstract state (l,b,ζ) ∈ L×{F,T}n×Zones(X): 
−  tpost[l](l,b,ζ) = { (l,b,tpostX[l](ζ)) } 
−  dpost[e](l,b,ζ) = { (l’,b’,dpostX[e](ζ)) | b’ ∈ dpostD[e](b) } 



Example: Post operator 

•  Abstract state a = (l,b,ζ) 
−  where l=init, b=(f), ζ=x=0∧3≤y≤5 
−  and edge e = (init,send,c++,{},lost) 

•  Time 
−  tpostX[init](ζ) = x=0∧3≤y≤5 
−  dpostX[e](ζ) = x=0∧3≤y≤4 

•  Data 
−  dpostD[e](b) = {(f),(t)} 

•  Combined (tpost, then dpost) 
−  tpost[init](a) = { a’ } 

   where a’ = (init,(f),x=0∧3≤y≤5) 
−  dpost[e](a’) = 

   { (lost,(f),x=0∧3≤y≤4), (lost,(t),x=0∧3≤y≤4) } 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x≤5 

c++ 

fail 
true 

give- 
up 

time  
out 

y>4 c>5 
send 

x≥3 

x:=0 

c≤5∧y≤4 
0.1 

c:=0 

fail, c≠0,  
x=0,4<y≤5 

lost, c=0,  
x=0,3≤y≤4 

done, c≠0,  
x=0,3≤y≤4 

init, c≠0,  
x=0,3≤y≤5 

lost, c≠0,  
x=0,3≤y≤4 

send 

send 

time- 
out 
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A concrete challenge: SystemC 

•  SystemC: A system-level modelling language 
−  increasingly prominent in the development of embedded 

systems, e.g. for System-on-Chip (SoC) designs 
−  close enough to hardware level to support synthesis to RTL 
−  but models complex designs at a higher level of abstraction 
−  very efficient simulation at design phase 

•  Basic ingredients 
−  C++-based, with low-level data-types for hardware 
−  an object-oriented approach to design 
−  and convenient high-level abstractions of concurrent 

communicating processes 
•  Analysis of SystemC designs 

−  mostly simulation currently; growing interest in verification 
−  identified as an important but challenging direction [Vardi’07] 



Quantitative verification of SystemC 

•  Challenges involved in quantitative verification of SystemC: 

•  Software 
−  basic process behaviour is defined in terms of C++ code, 

using a rich array of data types 
•  Concurrency 

−  designs comprise multiple concurrent processes, 
communicating through message-passing primitives 

•  Timing 
−  processes can be subjected to precisely timed delays, through 

interaction with the SystemC scheduler 
•  Probability 

−  SystemC components may link to unpredictable devices 
−  due to communication failures (e.g. wireless/radio),  

or randomisation (e.g. ZigBee/Bluetooth) 



Quantitative verification of SystemC 

•  Outline approach to quantitative SystemC verification… 

•  SystemC designs comprise multiple modules/threads 
−  communicating through ports/channels 
−  translate to parallel composition of PTPs 
−  C++ control-flow graph maps to PTP locations/transitions 
−  various SystemC model extractors exist to do this 

•  Concurrency/timing between SystemC threads 
−  controlled by precisely defined (co-operative/non-preemptive) 

scheduler, incorporating thread-specified delays 
−  existing translation from SystemC to UPPAAL [Herber et al.’08]  

•  Probabilistic behaviour - randomisation or failures 
−  randomisation: map rand() calls to PTP probabilistic choice 
−  failures: replace e.g. network calls with probabilistic stubs  
−  similar approach applied to probabilistic ANSI-C [VMCAI’09] 
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Conclusions 

•  Probabilistic verification 
−  discrete-time Markov chains, Markov decision processes, … 

•  Abstraction: essential for large/infinite-state systems 
−  this talk: abstractions of MDPs as stochastic games 
−  yields lower/upper bounds on min/max probabilities 

•  Quantitative abstraction refinement 
−  fully automatic generation of abstractions 
−  iterative refinement based on quantitative measure of ‘error’ 
−  works in practice: probabilistic software & timed automata 

•  Probabilistic timed programs 
−  probability + nondeterminism + real-time + data 
−  amenable to verification with abstraction/refinement 



Challenges & Future work 

•  Scalability & efficiency 
−  improved abstraction techniques/heuristics 
−  compositional verification for PTAs/PTPs 

•  More realistic modelling of system behaviour 
−  e.g. interaction with continuous environment 
−  continuous probability distributions 
−  probabilistic/stochastic hybrid systems 

•  Direct verification of modelling/programming languages 
−  e.g. SystemC, Simulink 

•  Beyond verification 
−  synthesis of parameters, controllers, designs, … 


