
A Framework for Verification of
Software with Time and Probabilities 

Marta Kwiatkowska  
Oxford University Computing Laboratory

FORMATS’10 Invited Talk, September 2010

Joint work with:

Gethin Norman and David Parker

Probabilistic verification

•  Probabilistic verification
−  formal verification of systems exhibiting stochastic behaviour

•  Why probability?
−  unreliability (e.g. component failures)
−  uncertainty (e.g. message losses/delays over wireless)
−  randomisation (e.g. in protocols such as Bluetooth, ZigBee)

•  Quantitative properties
−  reliability, performance, quality of service, …
−  “the probability of an airbag failing to deploy within 0.02s”
−  “the expected time for a network protocol to send a packet”
−  “the expected power usage of a sensor network over 1 hour”

Probabilistic verification

•  The state of the art
−  fast/efficient techniques for a range of probabilistic models
−  (mostly Markov chains, Markov decision processes)
−  feasible for models of up to 107 states (1010 with symbolic)
−  tool support exists and is widely used
−  successfully applied to many application domains:

communication protocols, security, biology, …

•  The challenges
−  scalability and efficiency: larger models, verified faster
−  more realistic models: real-time behaviour, continuous

dynamics, stochastic hybrid systems, …
−  ease of applicability, e.g. direct verification of mainstream

modelling/programming languages (C, Simulink, SystemC, …)
−  needs: efficient and automated abstraction techniques

Probabilistic models

•  Discrete-time Markov chains (DTMCs)
−  discrete states + probability
−  for: randomisation, component failures, unreliable media

•  Markov decision processes (MDPs)
−  discrete states, probability and nondeterminism
−  for: concurrency, under-specification, abstraction

•  Probabilistic timed automata (PTAs)
−  probability, nondeterminism and real-time

•  Probabilistic timed programs (PTPs)
−  probability, nondeterminism and real-time and data
−  for: software verification of real programming languages

Overview

•  Probabilistic verification
−  discrete-time Markov chains (DTMCs)
−  Markov decision processes (MDPs)
−  probabilistic timed automata (PTAs)

•  Quantitative abstraction refinement
−  game-based abstraction of MDPs
−  quantitative abstraction-refinement loop
−  verification of PTAs and probabilistic software

•  Verifying software with time and probabilities
−  probabilistic timed programs (PTPs)
−  verifying PTPs with abstraction + refinement

•  A concrete challenge
−  quantitative verification of SystemC verification

•  Conclusions

Discrete-time Markov chains

•  Discrete-time Markov chains (DTMCs)
−  model fully probabilistic behaviour
−  state-transition systems augmented with probabilistic choice

•  Formally, a DTMC is a tuple (S, P) where:
−  S is a set of states
−  P : S x S → [0,1] is the transition probability matrix

•  To reason formally:
−  define a probability space

 over infinite paths through DTMC
−  allows computation of, for example…

•  Probabilistic reachability
−  key concept for model checking
−  ps(F) = probability of reaching goal states F⊆S from state s
−  reduces to the solution of a linear equation system

init

0.8

done

lost

fail

0.1
0.1

1

Markov decision processes

•  Markov decision processes (MDPs)
−  model nondeterministic as well as probabilistic behaviour
−  nondeterministic choice between probability distributions

•  Formally, an MDP is a tuple (S, Act, Steps) where:
−  S is a set of states, Act is a set of actions
−  Steps : S×Act → Dist(S) is the transition probability function

•  An adversary (aka. “scheduler”/“strategy”) of an MDP
−  is a resolution of the nondeterminism in the MDP
−  under a given adversary σ, the behaviour is fully probabilistic

init

0.9

retry

done

lost

fail

give- 
up

send 0.1

1

1

Probabilistic reachability for MDPs

•  Probabilistic reachability for MDPs
−  ps

σ (F) = probability of reaching F⊆S starting from s under σ
−  consider the minimum/maximum values over all adversaries
−  ps

min(F) = infσ ps
σ (F) and ps

max(F) = supσ ps
σ (F)

−  can be computed efficiently
−  (linear programming, value iteration)
−  optimal adversaries obtained too
−  tool support exists (e.g. PRISM, LiQuor, RAPTURE)

•  Allows reasoning about best/worst-case behaviour
−  e.g. minimum probability of the protocol terminating correctly
−  e.g. maximum probability of a security breach

0 1 ps
min(F) ps

max(F)

Probabilistic timed automata

•  Probabilistic timed automata (PTAs)
−  models probabilistic, nondeterministic and timed behaviour
−  Markov decision processes + real-valued clocks
−  (or: timed automata + discrete probabilistic choice)

•  Like timed automata
−  all clocks increase at same rate
−  clocks can be reset (to zero)

•  PTA model checking
−  the semantics of a PTA

 is an infinite-state MDP
−  probabilistic (timed) reachability is defined as for MDPs
−  but computation is more complex...

init
x=0

0.9

retry

done
true

lost
x≤5

fail
true

time  
out

y>4
send

x≥3

x:=0

y≤4 0.1

PTA model checking - Summary

•  Several PTA model checking techniques developed
−  construction/analysis of a finite-state model (usually MDP)

•  Region graph construction [KNSS – TCS’02]
−  shows decidability, but gives exponential complexity

•  Digital (integer) clocks approach [KNPS – FMSD’06]
−  slightly restricted classes of PTAs: closed zones only
−  works well in practice, still some scalability limitations

•  Forwards reachability [KNSS – TCS’02]
−  efficient zone-based technique, approximate results only

•  Backwards reachability [KNSW – I&C07]
−  exact results, expensive zone operations required

•  Quantitative abstraction refinement [KNP – FORMATS’09]
−  abstraction to stochastic games, best in practice

Overview

•  Quantitative verification
−  discrete-time Markov chains (DTMCs)
−  Markov decision processes (MDPs)
−  probabilistic timed automata (PTAs)

•  Quantitative abstraction refinement
−  game-based abstraction of MDPs
−  abstraction-refinement loop
−  verification of PTAs and probabilistic software

•  Verifying software with time and probabilities
−  probabilistic timed programs (PTPs)
−  verifying PTPS with abstraction + refinement

•  A concrete challenge: Quantitative SystemC verification
•  Conclusions, challenges & future work

Abstraction

•  Very successful in (non-probabilistic) formal methods
−  essential for verification of large/infinite-state systems
−  hide details irrelevant to the property of interest
−  yields smaller/finite model which is easier/feasible to verify
−  loss of precision: verification can return “don’t know”

•  Construct abstract model of a concrete system
−  e.g. based on a partition of the concrete state space
−  an abstract state represents a set of concrete states

Abstraction refinement (CEGAR)

•  Counterexample-guided abstraction refinement
−  (non-probabilistic) model checking of reachability properties

[true]

[yes] model
check

abstract

check
counter- 
example [no]

[false]

refine

initialise

True/false +
counterexample

Return
true

Abstraction
(existential)

Partition/
predicates

Spurious?

Return
false

Abstraction refinement (CEGAR)

•  Counterexample-guided abstraction refinement
−  (non-probabilistic) model checking of reachability properties

[true]

[yes] model
check

abstract

check
counter- 
example [no]

[false]

refine

initialise

True/false +
counterexample

Return
true

Abstraction
(existential)

Partition/
predicates

Spurious?

Return
false Quantitative

results?

What is a
counter- 
example?

How to
abstract

probabilistic
models?

Abstraction of MDPs

•  Abstraction increases degree of nondeterminism
−  i.e. minimum probabilities are lower and maximums higher

•  But what form does the abstraction of an MDP take?
•  2 possibilities:

 (i) an MDP [D’Argenio/Jeannet/Jensen/Larsen’01]
−  probabilistic simulation relates concrete/abstract models

 (ii) a stochastic two-player game [KNP - QEST'06]
−  separates nondeterminism from abstraction and from MDP
−  yields separate lower/upper bounds for min/max  

0 1 ps
min ps

max

0 1 ps
min ps

max

Stochastic two-player games

•  Subclass of simple stochastic games [Shapley,Condon]
−  two nondeterministic players (1 and 2) and probabilistic choice

•  Resolution of the nondeterminism in a game
−  corresponds to a pair of strategies for players 1 and 2: (σ1,σ2)
−  pa

σ1,σ2(F) probability of reaching F from a under (σ1,σ2)
−  can compute, e.g. : supσ1 infσ2 pa

σ1,σ2(F)
−  informally: “the maximum probability of reaching F that player 1

can guarantee no matter what player 2 does”

•  Abstraction of an MDP as a stochastic two-player game:
−  player 1 controls the nondeterminism of the abstraction
−  player 2 controls the nondeterminism of the MDP

Game abstraction (by example)

•  Player 1 vertices () are abstract states
•  (Sets of) distributions are lifted to the abstract state space
•  Player 2 vertices () are states with same (sets of) choices

0.5 0.1 0.8
1

0.5
1 1 1

MDP (fragment)

0.1

Stochastic game (fragment)

1
0.2 0.8

abstract

Properties of the abstraction

•  Analysis of game yields lower/upper bounds:
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

 infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)  

 infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

Properties of the abstraction

•  Analysis of game yields lower/upper bounds:
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

 infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)  

 infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

0 1 ps
min ps

max

 min/max reachability probabilities for original MDP

Properties of the abstraction

•  Analysis of game yields lower/upper bounds:
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

 infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)  

 infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

optimal probabilities for player 1, player 2 in game

0 1 ps
min ps

max

Properties of the abstraction

•  Analysis of game yields lower/upper bounds:
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

 infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)  

 infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

 min/max reachability probabilities, treating game as MDP
(i.e. assuming that players 1 and 2 cooperate)

0 1 ps
min ps

max

Example - Abstraction

0.5 0.1 0.8
1

0.5
1

0.1

1

F F

s

a

infσ1 supσ2 pa
σ1,σ2 (F) = 0.8

supσ1,σ2 pa
σ1,σ2 (F) = 1

ps
max (F) = 1 ∈ [0.8,1]

abstract

1 1
0.2 0.8

F

Experimental results

•  Israeli & Jalfon’s Self Stabilisation
−  protocol for obtaining a stable state in a token ring
−  minimum probability of reaching a stable state by time T

concrete states: 1,048,575

abstract states: 627

Experimental results

•  IPv4 Zeroconf
−  protocol for obtaining an IP address for a new host
−  maximum probability the new host not configured by T

concrete states: 838,905

abstract states: 881

Abstraction refinement

•  Consider (max) difference between lower/upper bounds
−  gives a quantitative measure of the abstraction’s precision

•  If the difference (“error”) is too great, refine the abstraction
−  a finer partition yields a more precise abstraction
−  lower/upper bounds can tell us where to refine (which states)
−  (memoryless) strategies can tell us how to refine

0 1 ps
min(F) ps

max(F)

Example - Refinement

F F

a

0.8 1.0

ps
max (F) = 1 ∈ [0.8,1]

“error” = 0.2

ps
max (F) = 1 ∈ [1,1]

“error” = 0

a

refine

1 1
0.2 0.8

1 1
0.2 0.8

Abstraction-refinement loop

•  Quantitative abstraction-refinement loop for MDPs

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction

Abstraction-refinement loop

•  Quantitative abstraction-refinement loop for MDPs

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction •  Refinements yield
strictly finer partition

•  Guaranteed to  
converge for finite
models 

•  Guaranteed to
converge for infinite
models with finite
bisimulation

Abstraction-refinement loop

•  Implementations of quantitative abstraction refinement…

•  Verification of probabilistic timed automata [FORMATS’09]
−  zone-based abstraction/refinement using DBMs
−  implemented in (development release of) PRISM
−  outperforms existing PTA verification techniques

•  Verification of probabilistic software [VMCAI’09]
−  predicate abstraction/refinement using SAT solvers
−  implemented in tool qprover: components of PRISM, SATABS
−  analysed real network utilities (ping, tftp) - approx 1KLOC

•  Verification of concurrent PRISM models [Wachter/Zhang’10]
−  implemented in tool PASS; infinite-state PRISM models

Overview

•  Quantitative verification
−  discrete-time Markov chains (DTMCs)
−  Markov decision processes (MDPs)
−  probabilistic timed automata (PTAs)

•  Quantitative abstraction refinement
−  game-based abstraction of MDPs
−  abstraction-refinement loop
−  verification of PTAs and probabilistic software

•  Verifying software with time and probabilities
−  probabilistic timed programs (PTPs)
−  verifying PTPS with abstraction + refinement

•  A concrete challenge: Quantitative SystemC verification
•  Conclusions, challenges & future work

Probabilistic timed programs

•  Probabilistic timed programs (PTPs)
−  probability, nondeterminism and real-time and data
−  probabilistic timed automata + discrete-valued variables

•  Time – assume a finite set X of real-valued clocks
−  Zones(X) is the set of zones ζ over X
−  i.e. ζ ::= x ≤ d | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∨ ζ
−  where x, y ∈ X and c, d ∈ ℕ

•  Data – assume a finite set D of data variables
−  Val(D) is the set of all valuations of D
−  Pred(D) is the set of predicates over D
−  Up(D) is the set of all update functions over D
−  i.e. set of all functions up : Val(D)→Val(D)

Probabilistic timed programs

•  A PTP is a tuple (L, linit, D, uinit, X, Act, inv, enab, prob)
−  L = locations, D = data variables, X = clocks, Act = actions
−  linit ∈ L is initial location and uinit ∈ Val(D) is initial valuation

−  inv : L → Zones(X) is the invariant condition
•  clocks X must satisfy inv(l) whilst in location l

−  enab : L×Act → Pred(D) × Zones(X) is the enabling condition
•  guard for action a in location l split into enabD(l,a) and enabX(l,a)
•  can only take action a in l if enabD(l,a) ∧ enabX(l,a)

−  prob : L×Act → Dist(Up(D) × 2X × L)  
is the probabilistic transition function

•  if take action a in l, then with probability prob(l,a)(up,Y,l’):
•  update D according to up, reset clocks in Y⊆X, move to location l’

Example - PTP

•  Simple communication protocol
−  aims to send a message  

over an unreliable channel
−  tries to send up to 5 times
−  or until time-out of 4 secs
−  delay between tries: 3-5 secs

•  In the PTP:
−  L = {init, lost, done, fail}
−  D = {c} (c counts number of tries)
−  X = {x, y} (x for delay, y for timeout)
−  Act = {send, retry, giveup, timeout}

•  Property of interest: maximum probability of reaching “fail”
−  actual max. probability is 0.1 (time-out after after 1 send)

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

Abstraction of PTPs

•  Formal semantics of a PTP is an infinite-state MDP
−  over state space L×Val(D)×ℝX

−  data domain Val(D) may be large/infinite; so need abstraction
−  time domain ℝ is dense; so need abstraction

•  In general, use an abstract domain ((A,⊔,⊓,⊑), α, γ)
−  lattice of abstract states, abstraction/concretisation functions
−  here, we use predicate abstraction for data and zones for time
−  i.e. abstract states are (l,b,ζ) ∈ L×{F,T}n×Zones(X)
−  assuming a set of data predicates Φ = {Φ1,…, Φn}
−  (paper also covers case of predicates for data and time)

•  We use (finite-state) stochastic games to abstract PTPs
−  i.e. state space is L×{F,T}n×Zones(X)

Abstraction/refinement of PTPs

•  1. Build reachability graph for PTP
−  all reachable abstract states and possible transitions between
−  constructed through (classical) forwards reachability search
−  as in, for example, UPPAAL, but not on-the-fly
−  zone operations (DBMs) and SAT/SMT for symbolic post

•  2. Build stochastic game abstraction for PTP
−  i.e. of underlying infinite-state MDP semantics
−  constructed from reachability graph
−  further zone operations and/or SAT/SMT solving needed
−  yields lower/upper bound on reachability probabilities

•  3. Refine the abstraction (iteratively)
−  split zones, or generate new predicates

Example 1 - Abstraction

Reachability graph:

init, c=0,  
x=y=0 fail, c=1,  

x=0,4<y≤5

lost, c=2,  
x=0,3≤y≤4

done, c=1,  
x=0,3≤y≤4

init, c=2,  
x=0,6≤y≤9

0.9 fail, c=2,  
x=0,6≤y≤9

init, c=1,  
x=0,3≤y≤5

done, c=0,  
x=y=0

lost, c=1,  
x=y=0 send

retry
send

time- 
out

time- 
out

retry

PTP:

Actions send and time-out
are both enabled since

abstract state satisfies 3≤y≤5

In this example:
  just abstract time, not data
  i.e. abstract states are of the form:
  (l,d,ζ) ∈ L×Val(D)×Zones(X)

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

Example 1 - Abstraction

Stochastic game abstraction:

PTP:

init, c=0,  
x=y=0

0.1

0.9 fail, c=1,  
x=0,4<y≤5

lost, c=2,  
x=0,3≤y≤4

done, c=1,  
x=0,3≤y≤4

0.1

0.9

init, c=2,  
x=0,6≤y≤9

0.9 fail, c=2,  
x=0,6≤y≤9

init, c=1,  
x=0,3≤y≤5

done, c=0,  
x=y=0

lost, c=1,  
x=y=0

Player 1 choice
i.e. imprecision due to abstraction

3≤y≤4 or 4<y≤5?

Results:
  max probability to reach fail?
  lower/upper bounds: [0.01,0.1]
  (in abstraction, can try to send  
 either once or twice)

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

Example 1 - Refinement

fail, c=1,  
x=0,4<y≤5

lost, c=2,  
x=0,3≤y≤4

done, c=1,  
x=0,3≤y≤4

0.1

0.9

init, c=2,  
x=0,6≤y≤9

0.9 fail, c=2,  
x=0,6≤y≤9

init, c=1,  
x=0,3≤y≤4

init, c=1,  
x=0,4<y≤5

init, c=0,  
x=y=0

0.1

0.9 done, c=0,  
x=y=0

lost, c=1,  
x=y=0

init, c=0,  
x=y=0

0.1

0.9 fail, c=1,  
x=0,4<y≤5

lost, c=2,  
x=0,3≤y≤4

done, c=1,  
x=0,3≤y≤4

0.1

0.9

init, c=2,  
x=0,6≤y≤9

0.9 fail, c=2,  
x=0,6≤y≤9

init, c=1,  
x=0,3≤y≤5

done, c=0,  
x=y=0

lost, c=1,  
x=y=0

First abstraction:
(bounds [0.01,0.1])

Refined abstraction:
(bounds [0.1,0.1])

Refine here
(i.e. split state)

Player 1 choice removed

Player 2 choice
i.e. nondeterminism in original PTP

(how long to delay for in lost)

Example 2 – Time and data

Stochastic game abstraction:

PTP:

Player 1 choice:
imprecision from both time/data

init, c=0,  
x=y=0

0.1

0.9
0.1

0.9

fail, c≠0,  
x=0,4<y≤5

lost, c=0,  
x=0,3≤y≤4

done, c≠0,  
x=0,3≤y≤4

0.1

0.9

init, c=0,  
x=0,6≤y≤9

init, c≠0,  
x=0,3≤y≤5

done, c=0,  
x=y=0

lost, c≠0,  
x=y=0

lost, c≠0,  
x=0,3≤y≤4

0.9

0.1 init, c≠0,  
x=0,6≤y≤9

0.9 fail, c=0,  
x=0,6≤y≤9

fail, c≠0,  
x=0,6≤y≤9

In this example:
  abstract time and data
  i.e. abstract states are of the form:
  (l,b,ζ) ∈ L×{F,T}n×Zones(X)
  single data predicate: {c=0}

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

Example 2 – Time and data

States where 4<y≤5,
only possibility is time-out

fail, c≠0,  
x=0,4<y≤5

lost, c=0,  
x=0,3≤y≤4

done, c≠0,  
x=0,3≤y≤4

init, c≠0,  
x=0,3≤y≤5

lost, c≠0,  
x=0,3≤y≤4

States where 3≤y≤4 and c≠-1,
incrementing c lead to c≠0

States where 3≤y≤4 and c=-1,
incrementing c lead to c=0

0.1

0.9
0.9

0.1

Results:
  imprecise, as in 
 earlier example
  bounds on max.  
 prob. of failure  
 are [0.01,0.1]

Symbolic operations

•  Need symbolic manipulation of abstract states

•  For example, the post operator
−  to construct reachability graph
−  over abstract states A = L×{F,T}n×Zones(X)
−  split into two parts, timed and discrete:
−  tpost[l] : A → 2A - elapse of time in location l
−  dpost[e] : A → 2A - discrete transition on edge e = (l,α,up,Y,l’)

•  Also need (not discussed here) operations to:
−  construct player 1/2 choices in stochastic game
−  split abstract states during refinement

Symbolic operations: Post

•  Time (clocks X)
−  use zone operations, implemented with DBMs
−  for zone ζ ∈ Zones(X):
−  tpostX[l](ζ) = inv(l) ∧ ↗ζ
−  dpostX[e](ζ) = (ζ ∧ enab(l,α))[Y:=0] ∧ inv(l’)

•  Data (variables D)
−  formulate as SAT/SMT problem, use solver to enumerate
−  for predicate valuation b ∈ {F,T}n:
−  dpostD[e](b) contains all instances of b’ ∈ {F,T}n such that
−  ∃u,u’∈Val(D) satisfying: up(u)=u’ ∧ Φ(u)=b ∧ Φ(u’)=b’

•  Combined time/data
−  for an abstract state (l,b,ζ) ∈ L×{F,T}n×Zones(X):
−  tpost[l](l,b,ζ) = { (l,b,tpostX[l](ζ)) }
−  dpost[e](l,b,ζ) = { (l’,b’,dpostX[e](ζ)) | b’ ∈ dpostD[e](b) }

Example: Post operator

•  Abstract state a = (l,b,ζ)
−  where l=init, b=(f), ζ=x=0∧3≤y≤5
−  and edge e = (init,send,c++,{},lost)

•  Time
−  tpostX[init](ζ) = x=0∧3≤y≤5
−  dpostX[e](ζ) = x=0∧3≤y≤4

•  Data
−  dpostD[e](b) = {(f),(t)}

•  Combined (tpost, then dpost)
−  tpost[init](a) = { a’ }

 where a’ = (init,(f),x=0∧3≤y≤5)
−  dpost[e](a’) =

 { (lost,(f),x=0∧3≤y≤4), (lost,(t),x=0∧3≤y≤4) }

init
x=0

0.9

retry

done
true

lost
x≤5

c++

fail
true

give- 
up

time  
out

y>4 c>5
send

x≥3

x:=0

c≤5∧y≤4
0.1

c:=0

fail, c≠0,  
x=0,4<y≤5

lost, c=0,  
x=0,3≤y≤4

done, c≠0,  
x=0,3≤y≤4

init, c≠0,  
x=0,3≤y≤5

lost, c≠0,  
x=0,3≤y≤4

send

send

time- 
out

Overview

•  Quantitative verification
−  discrete-time Markov chains (DTMCs)
−  Markov decision processes (MDPs)
−  probabilistic timed automata (PTAs)

•  Quantitative abstraction refinement
−  game-based abstraction of MDPs
−  abstraction-refinement loop
−  verification of PTAs and probabilistic software

•  Verifying software with time and probabilities
−  probabilistic timed programs (PTPs)
−  verifying PTPS with abstraction + refinement

•  A concrete challenge: Quantitative SystemC verification
•  Conclusions, challenges & future work

A concrete challenge: SystemC

•  SystemC: A system-level modelling language
−  increasingly prominent in the development of embedded

systems, e.g. for System-on-Chip (SoC) designs
−  close enough to hardware level to support synthesis to RTL
−  but models complex designs at a higher level of abstraction
−  very efficient simulation at design phase

•  Basic ingredients
−  C++-based, with low-level data-types for hardware
−  an object-oriented approach to design
−  and convenient high-level abstractions of concurrent

communicating processes
•  Analysis of SystemC designs

−  mostly simulation currently; growing interest in verification
−  identified as an important but challenging direction [Vardi’07]

Quantitative verification of SystemC

•  Challenges involved in quantitative verification of SystemC:

•  Software
−  basic process behaviour is defined in terms of C++ code,

using a rich array of data types
•  Concurrency

−  designs comprise multiple concurrent processes,
communicating through message-passing primitives

•  Timing
−  processes can be subjected to precisely timed delays, through

interaction with the SystemC scheduler
•  Probability

−  SystemC components may link to unpredictable devices
−  due to communication failures (e.g. wireless/radio),  

or randomisation (e.g. ZigBee/Bluetooth)

Quantitative verification of SystemC

•  Outline approach to quantitative SystemC verification…

•  SystemC designs comprise multiple modules/threads
−  communicating through ports/channels
−  translate to parallel composition of PTPs
−  C++ control-flow graph maps to PTP locations/transitions
−  various SystemC model extractors exist to do this

•  Concurrency/timing between SystemC threads
−  controlled by precisely defined (co-operative/non-preemptive)

scheduler, incorporating thread-specified delays
−  existing translation from SystemC to UPPAAL [Herber et al.’08]

•  Probabilistic behaviour - randomisation or failures
−  randomisation: map rand() calls to PTP probabilistic choice
−  failures: replace e.g. network calls with probabilistic stubs
−  similar approach applied to probabilistic ANSI-C [VMCAI’09]

Overview

•  Quantitative verification
−  discrete-time Markov chains (DTMCs)
−  Markov decision processes (MDPs)
−  probabilistic timed automata (PTAs)

•  Quantitative abstraction refinement
−  game-based abstraction of MDPs
−  abstraction-refinement loop
−  verification of PTAs and probabilistic software

•  Verifying software with time and probabilities
−  probabilistic timed programs (PTPs)
−  verifying PTPS with abstraction + refinement

•  A concrete challenge: Quantitative SystemC verification
•  Conclusions, challenges & future work

Conclusions

•  Probabilistic verification
−  discrete-time Markov chains, Markov decision processes, …

•  Abstraction: essential for large/infinite-state systems
−  this talk: abstractions of MDPs as stochastic games
−  yields lower/upper bounds on min/max probabilities

•  Quantitative abstraction refinement
−  fully automatic generation of abstractions
−  iterative refinement based on quantitative measure of ‘error’
−  works in practice: probabilistic software & timed automata

•  Probabilistic timed programs
−  probability + nondeterminism + real-time + data
−  amenable to verification with abstraction/refinement

Challenges & Future work

•  Scalability & efficiency
−  improved abstraction techniques/heuristics
−  compositional verification for PTAs/PTPs

•  More realistic modelling of system behaviour
−  e.g. interaction with continuous environment
−  continuous probability distributions
−  probabilistic/stochastic hybrid systems

•  Direct verification of modelling/programming languages
−  e.g. SystemC, Simulink

•  Beyond verification
−  synthesis of parameters, controllers, designs, …

