

A Framework for Verification of Software with Time and Probabilities

Marta Kwiatkowska

Oxford University Computing Laboratory

Joint work with:

Gethin Norman and David Parker

FORMATS'10 Invited Talk, September 2010

Probabilistic verification

- Probabilistic verification
 - formal verification of systems exhibiting stochastic behaviour
- Why probability?
 - unreliability (e.g. component failures)
 - uncertainty (e.g. message losses/delays over wireless)
 - randomisation (e.g. in protocols such as Bluetooth, ZigBee)
- Quantitative properties
 - reliability, performance, quality of service, ...
 - "the probability of an airbag failing to deploy within 0.02s"
 - "the expected time for a network protocol to send a packet"
 - "the expected power usage of a sensor network over 1 hour"

Probabilistic verification

- The state of the art
 - fast/efficient techniques for a range of probabilistic models
 - (mostly Markov chains, Markov decision processes)
 - feasible for models of up to 10^7 states (10^{10} with symbolic)
 - tool support exists and is widely used
 - successfully applied to many application domains: communication protocols, security, biology, ...

The challenges

- scalability and efficiency: larger models, verified faster
- more realistic models: real-time behaviour, continuous dynamics, stochastic hybrid systems, ...
- ease of applicability, e.g. direct verification of mainstream modelling/programming languages (C, Simulink, SystemC, ...)
- needs: efficient and automated abstraction techniques

Probabilistic models

- Discrete-time Markov chains (DTMCs)
 - discrete states + probability
 - for: randomisation, component failures, unreliable media
- Markov decision processes (MDPs)
 - discrete states, probability and nondeterminism
 - for: concurrency, under-specification, abstraction
- Probabilistic timed automata (PTAs)
 - probability, nondeterminism and real-time
- Probabilistic timed programs (PTPs)
 - probability, nondeterminism and real-time and data
 - for: software verification of real programming languages

Overview

Probabilistic verification

- discrete-time Markov chains (DTMCs)
- Markov decision processes (MDPs)
- probabilistic timed automata (PTAs)
- Quantitative abstraction refinement
 - game-based abstraction of MDPs
 - quantitative abstraction-refinement loop
 - verification of PTAs and probabilistic software
- Verifying software with time and probabilities
 - probabilistic timed programs (PTPs)
 - verifying PTPs with abstraction + refinement
- A concrete challenge
 - quantitative verification of SystemC verification
- Conclusions

Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - model fully probabilistic behaviour
 - state-transition systems augmented with probabilistic choice
- Formally, a DTMC is a tuple (S, P) where:
 - **S** is a set of states
 - $P : S \times S \rightarrow [0,1]$ is the transition probability matrix

To reason formally:

- define a probability space over infinite paths through DTMC
- allows computation of, for example...

Probabilistic reachability

- key concept for model checking
- $p_s(F) =$ probability of reaching goal states $F \subseteq S$ from state s
- reduces to the solution of a linear equation system

Markov decision processes

- Markov decision processes (MDPs)
 - model nondeterministic as well as probabilistic behaviour
 - nondeterministic choice between probability distributions
- Formally, an MDP is a tuple (S, Act, Steps) where:
 - S is a set of states, Act is a set of actions
 - Steps : $S \times Act \rightarrow Dist(S)$ is the transition probability function

- An adversary (aka. "scheduler"/"strategy") of an MDP
 - is a resolution of the nondeterminism in the MDP
 - under a given adversary σ , the behaviour is fully probabilistic

Probabilistic reachability for MDPs

- Probabilistic reachability for MDPs
 - $p_s^{\sigma}(F) =$ probability of reaching $F \subseteq S$ starting from s under σ
 - consider the minimum/maximum values over all adversaries
 - $p_s^{min}(F) = inf_{\sigma} p_s^{\sigma}(F)$ and $p_s^{max}(F) = sup_{\sigma} p_s^{\sigma}(F)$

 $p_s^{max}(F)$

- $0 p_s^{min}(F)$
- can be computed efficiently
- (linear programming, value iteration)
- optimal adversaries obtained too
- tool support exists (e.g. PRISM, LiQuor, RAPTURE)
- Allows reasoning about best/worst-case behaviour
 - e.g. minimum probability of the protocol terminating correctly
 - e.g. maximum probability of a security breach

Probabilistic timed automata

- Probabilistic timed automata (PTAs)
 - models probabilistic, nondeterministic and timed behaviour
 - Markov decision processes + real-valued clocks
 - (or: timed automata + discrete probabilistic choice)

Like timed automata

- all clocks increase at same rate
- clocks can be reset (to zero)
- PTA model checking
 - the semantics of a PTA is an infinite-state MDP
 - probabilistic (timed) reachability is defined as for MDPs
 - but computation is more complex...

PTA model checking – Summary

- Several PTA model checking techniques developed
 - construction/analysis of a finite-state model (usually MDP)
- Region graph construction [KNSS TCS'02]
 - shows decidability, but gives exponential complexity
- Digital (integer) clocks approach [KNPS FMSD'06]
 - slightly restricted classes of PTAs: closed zones only
 - works well in practice, still some scalability limitations
- Forwards reachability [KNSS TCS'02]
 - efficient zone-based technique, approximate results only
- Backwards reachability [KNSW I&C07]
 - exact results, expensive zone operations required
- Quantitative abstraction refinement [KNP FORMATS'09]
 - abstraction to stochastic games, best in practice

Overview

- Quantitative verification
 - discrete-time Markov chains (DTMCs)
 - Markov decision processes (MDPs)
 - probabilistic timed automata (PTAs)
- Quantitative abstraction refinement
 - game-based abstraction of MDPs
 - abstraction-refinement loop
 - verification of PTAs and probabilistic software
- Verifying software with time and probabilities
 - probabilistic timed programs (PTPs)
 - verifying PTPS with abstraction + refinement
- A concrete challenge: Quantitative SystemC verification
- Conclusions, challenges & future work

Abstraction

- Very successful in (non-probabilistic) formal methods
 - essential for verification of large/infinite-state systems
 - hide details irrelevant to the property of interest
 - yields smaller/finite model which is easier/feasible to verify
 - loss of precision: verification can return "don't know"
- Construct abstract model of a concrete system
 - e.g. based on a partition of the concrete state space
 - an abstract state represents a set of concrete states

Abstraction refinement (CEGAR)

- Counterexample-guided abstraction refinement
 - (non-probabilistic) model checking of reachability properties

Abstraction refinement (CEGAR)

Counterexample-guided abstraction refinement

 (pon-probabilistic) model checking of reachability properties

Abstraction of MDPs

- Abstraction increases degree of nondeterminism
 - i.e. minimum probabilities are lower and maximums higher

- But what form does the abstraction of an MDP take?
- 2 possibilities:
 - (i) an MDP [D'Argenio/Jeannet/Jensen/Larsen'01]
 - probabilistic simulation relates concrete/abstract models
 - (ii) a stochastic two-player game [KNP QEST'06]
 - separates nondeterminism from abstraction and from MDP
 - yields separate lower/upper bounds for min/max

Stochastic two-player games

- Subclass of simple stochastic games [Shapley,Condon]
 - two nondeterministic players (1 and 2) and probabilistic choice
- Resolution of the nondeterminism in a game
 - corresponds to a pair of strategies for players 1 and 2: (σ_1, σ_2)
 - $-p_a^{\sigma_1,\sigma_2}(F)$ probability of reaching F from a under (σ_1,σ_2)
 - can compute, e.g. : $\sup_{\sigma_1} \inf_{\sigma_2} p_a^{\sigma_1,\sigma_2}(F)$
 - informally: "the maximum probability of reaching F that player 1 can guarantee no matter what player 2 does"
 - Abstraction of an MDP as a stochastic two-player game:
 - player 1 controls the nondeterminism of the abstraction
 - player 2 controls the nondeterminism of the MDP

Game abstraction (by example)

- Player 1 vertices () are abstract states
- (Sets of) distributions are lifted to the abstract state space
- Player 2 vertices () are states with same (sets of) choices

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

 $\inf_{\sigma_{1},\sigma_{2}} p_{a}^{\sigma_{1},\sigma_{2}}(F) \leq p_{s}^{\min}(F) \leq \sup_{\sigma_{1},\sigma_{2}} \inf_{\sigma_{2}} p_{a}^{\sigma_{1},\sigma_{2}}(F)$ $\inf_{\sigma_{1}} \sup_{\sigma_{2}} p_{a}^{\sigma_{1},\sigma_{2}}(F) \leq p_{s}^{\max}(F) \leq \sup_{\sigma_{1},\sigma_{2}} p_{a}^{\sigma_{1},\sigma_{2}}(F)$

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

Example – Abstraction

Experimental results

- Israeli & Jalfon's Self Stabilisation
 - protocol for obtaining a stable state in a token ring
 - minimum probability of reaching a stable state by time T

concrete states: 1,048,575 abstract states: 627

Experimental results

- IPv4 Zeroconf
 - protocol for obtaining an IP address for a new host
 - maximum probability the new host not configured by T

Abstraction refinement

Consider (max) difference between lower/upper bounds
 – gives a quantitative measure of the abstraction's precision

If the difference ("error") is too great, refine the abstraction

- a finer partition yields a more precise abstraction
- lower/upper bounds can tell us where to refine (which states)
- (memoryless) strategies can tell us how to refine

Example – Refinement

$$p_s^{max}(F) = 1 \in [0.8, 1]$$

"error" = 0.2

 $p_s^{max}(F) = 1 \in [1,1]$ "error" = 0

Abstraction-refinement loop

Quantitative abstraction-refinement loop for MDPs

Abstraction-refinement loop

Quantitative abstraction-refinement loop for MDPs

 Refinements yield strictly finer partition

 Guaranteed to converge for finite models

 Guaranteed to converge for infinite models with finite bisimulation

Abstraction-refinement loop

- Implementations of quantitative abstraction refinement...
- Verification of probabilistic timed automata [FORMATS'09]
 - zone-based abstraction/refinement using DBMs
 - implemented in (development release of) PRISM
 - outperforms existing PTA verification techniques
- Verification of probabilistic software [VMCAI'09]
 - predicate abstraction/refinement using SAT solvers
 - implemented in tool qprover: components of PRISM, SATABS
 - analysed real network utilities (ping, tftp) approx 1KLOC
- Verification of concurrent PRISM models [Wachter/Zhang'10]
 - implemented in tool PASS; infinite-state PRISM models

Overview

- Quantitative verification
 - discrete-time Markov chains (DTMCs)
 - Markov decision processes (MDPs)
 - probabilistic timed automata (PTAs)
- Quantitative abstraction refinement
 - game-based abstraction of MDPs
 - abstraction-refinement loop
 - verification of PTAs and probabilistic software
- Verifying software with time and probabilities
 - probabilistic timed programs (PTPs)
 - verifying PTPS with abstraction + refinement
- A concrete challenge: Quantitative SystemC verification
- Conclusions, challenges & future work

Probabilistic timed programs

- Probabilistic timed programs (PTPs)
 - probability, nondeterminism and real-time and data
 - probabilistic timed automata + discrete-valued variables
- Time assume a finite set X of real-valued clocks
 - Zones(X) is the set of zones ζ over X
 - $\text{ i.e. } \zeta ::= x \leq d \ \mid c \leq x \ \mid x + c \leq y + d \ \mid \neg \zeta \ \mid \zeta \lor \zeta$
 - where x, $y \in X$ and c, $d \in \mathbb{N}$
- Data assume a finite set D of data variables
 - Val(D) is the set of all valuations of D
 - Pred(D) is the set of predicates over D
 - Up(D) is the set of all update functions over D
 - i.e. set of all functions up : $Val(D) \rightarrow Val(D)$

Probabilistic timed programs

- A PTP is a tuple (L, I_{init}, D, u_{init}, X, Act, inv, enab, prob)
 - L = locations, D = data variables, X = clocks, Act = actions
 - $I_{init} \in L$ is initial location and $u_{init} \in Val(D)$ is initial valuation
 - inv : $L \rightarrow Zones(X)$ is the invariant condition
 - clocks X must satisfy inv(l) whilst in location l
 - enab : L×Act \rightarrow Pred(D) × Zones(X) is the enabling condition
 - guard for action a in location I split into $enab_D(I,a)$ and $enab_X(I,a)$
 - can only take action a in I if $enab_D(I,a) \land enab_X(I,a)$
 - prob : L×Act → Dist(Up(D) × $2^{X} \times L$) is the probabilistic transition function
 - if take action a in I, then with probability prob(I,a)(up,Y,I'):
 - update D according to up, reset clocks in $Y \subseteq X$, move to location l'

Example – PTP

Simple communication protocol

- aims to send a message over an unreliable channel
- tries to send up to 5 times
- or until time-out of 4 secs
- delay between tries: 3–5 secs

• In the PTP:

- L = {init, lost, done, fail}
- D = {c} (c counts number of tries)
- $X = \{x, y\}$ (x for delay, y for timeout)
- Act = {send, retry, giveup, timeout}
- Property of interest: maximum probability of reaching "fail"
 - actual max. probability is 0.1 (time-out after 1 send)

Abstraction of PTPs

- Formal semantics of a PTP is an infinite-state MDP
 - over state space $L \times Val(D) \times \mathbb{R}^{X}$
 - data domain Val(D) may be large/infinite; so need abstraction
 - time domain \mathbb{R} is dense; so need abstraction
- In general, use an abstract domain ((A, \sqcup , \sqcap , \sqsubseteq), α , γ)
 - lattice of abstract states, abstraction/concretisation functions
 - here, we use predicate abstraction for data and zones for time
 - i.e. abstract states are $(I,b,\zeta) \in L \times \{F,T\}^n \times Zones(X)$
 - assuming a set of data predicates $\Phi = \{\Phi_1, ..., \Phi_n\}$
 - (paper also covers case of predicates for data and time)
- We use (finite-state) stochastic games to abstract PTPs
 - i.e. state space is $L \times \{F,T\}^n \times Zones(X)$

Abstraction/refinement of PTPs

• 1. Build reachability graph for PTP

- all reachable abstract states and possible transitions between
- constructed through (classical) forwards reachability search
- as in, for example, UPPAAL, but not on-the-fly
- zone operations (DBMs) and SAT/SMT for symbolic post
- 2. Build stochastic game abstraction for PTP
 - i.e. of underlying infinite-state MDP semantics
 - constructed from reachability graph
 - further zone operations and/or SAT/SMT solving needed
 - yields lower/upper bound on reachability probabilities
- 3. Refine the abstraction (iteratively)
 - split zones, or generate new predicates

Example 1 – Abstraction

Example 1 – Abstraction

Example 1 – Refinement

Example 2 - Time and data

Example 2 – Time and data

Symbolic operations

- Need symbolic manipulation of abstract states
- For example, the **post** operator
 - to construct reachability graph
 - over abstract states $A = L \times \{F,T\}^n \times Zones(X)$
 - split into two parts, timed and discrete:
 - tpost[l] : A \rightarrow 2^A elapse of time in location l
 - dpost[e] : A \rightarrow 2^A discrete transition on edge e = (I, α ,up,Y,I')
- Also need (not discussed here) operations to:
 - construct player 1/2 choices in stochastic game
 - split abstract states during refinement

Symbolic operations: Post

- Time (clocks X)
 - use zone operations, implemented with DBMs
 - for zone $\zeta \in \text{Zones}(X)$:
 - $\ tpost_X[I](\zeta) = inv(I) \ \land \ \nearrow \zeta$
 - $\ dpost_{X}[e](\zeta) = (\zeta \land enab(I, \alpha))[Y:=0] \land inv(I')$
- Data (variables D)
 - formulate as SAT/SMT problem, use solver to enumerate
 - for predicate valuation $b \in \{F,T\}^n$:
 - dpost_D[e](b) contains all instances of b' $\in \{F,T\}^n$ such that
 - $\exists u, u' \in Val(D) \text{ satisfying: } up(u) = u' \land \Phi(u) = b \land \Phi(u') = b'$
- Combined time/data
 - for an abstract state $(I,b,\zeta) \in L \times \{F,T\}^n \times Zones(X)$:
 - tpost[l](l,b, ζ) = { (l,b,tpost_x[l](ζ)) }
 - $dpost[e](I,b,\zeta) = \{ (I',b',dpost_X[e](\zeta)) \mid b' \in dpost_D[e](b) \}$

Example: Post operator

- Abstract state $a = (I, b, \zeta)$
 - where l=init, b=(f), $\zeta = x = 0 \land 3 \le y \le 5$
 - and edge e = (init,send,c++,{},lost)

Time

- tpost_x[init](ζ) = x=0 \land 3 \leq y \leq 5
- $\ dpost_{X}[e](\zeta) = x {=} 0 \land 3 {\leq} y {\leq} 4$

• Data

- $dpost_{D}[e](b) = {(f),(t)}$
- Combined (tpost, then dpost)
 - tpost[init](a) = { a' }

where a' = (init,(f),x= $0 \land 3 \le y \le 5$)

- dpost[e](a') =

{ (lost,(f), $x=0 \land 3 \le y \le 4$), (lost,(t), $x=0 \land 3 \le y \le 4$) }

Overview

- Quantitative verification
 - discrete-time Markov chains (DTMCs)
 - Markov decision processes (MDPs)
 - probabilistic timed automata (PTAs)
- Quantitative abstraction refinement
 - game-based abstraction of MDPs
 - abstraction-refinement loop
 - verification of PTAs and probabilistic software
- Verifying software with time and probabilities
 - probabilistic timed programs (PTPs)
 - verifying PTPS with abstraction + refinement
- A concrete challenge: Quantitative SystemC verification
- Conclusions, challenges & future work

A concrete challenge: SystemC

• SystemC: A system-level modelling language

- increasingly prominent in the development of embedded systems, e.g. for System-on-Chip (SoC) designs
- close enough to hardware level to support synthesis to RTL
- but models complex designs at a higher level of abstraction
- very efficient simulation at design phase
- Basic ingredients
 - C++-based, with low-level data-types for hardware
 - an object-oriented approach to design
 - and convenient high-level abstractions of concurrent communicating processes
- Analysis of SystemC designs
 - mostly simulation currently; growing interest in verification
 - identified as an important but challenging direction [Vardi'07]

Quantitative verification of SystemC

Challenges involved in quantitative verification of SystemC:

Software

- basic process behaviour is defined in terms of C++ code, using a rich array of data types
- Concurrency
 - designs comprise multiple concurrent processes, communicating through message-passing primitives

Timing

 processes can be subjected to precisely timed delays, through interaction with the SystemC scheduler

Probability

- SystemC components may link to unpredictable devices
- due to communication failures (e.g. wireless/radio), or randomisation (e.g. ZigBee/Bluetooth)

Quantitative verification of SystemC

- Outline approach to quantitative SystemC verification...
- SystemC designs comprise multiple modules/threads
 - communicating through ports/channels
 - translate to parallel composition of PTPs
 - C++ control-flow graph maps to PTP locations/transitions
 - various SystemC model extractors exist to do this
- Concurrency/timing between SystemC threads
 - controlled by precisely defined (co-operative/non-preemptive) scheduler, incorporating thread-specified delays
 - existing translation from SystemC to UPPAAL [Herber et al.'08]
- Probabilistic behaviour randomisation or failures
 - randomisation: map rand() calls to PTP probabilistic choice
 - failures: replace e.g. network calls with probabilistic stubs
 - similar approach applied to probabilistic ANSI-C [VMCAI'09]

Overview

- Quantitative verification
 - discrete-time Markov chains (DTMCs)
 - Markov decision processes (MDPs)
 - probabilistic timed automata (PTAs)
- Quantitative abstraction refinement
 - game-based abstraction of MDPs
 - abstraction-refinement loop
 - verification of PTAs and probabilistic software
- Verifying software with time and probabilities
 - probabilistic timed programs (PTPs)
 - verifying PTPS with abstraction + refinement
- A concrete challenge: Quantitative SystemC verification
- Conclusions, challenges & future work

Conclusions

- Probabilistic verification
 - discrete-time Markov chains, Markov decision processes, ...
- Abstraction: essential for large/infinite-state systems
 - this talk: abstractions of MDPs as stochastic games
 - yields lower/upper bounds on min/max probabilities
- Quantitative abstraction refinement
 - fully automatic generation of abstractions
 - iterative refinement based on quantitative measure of 'error'
 - works in practice: probabilistic software & timed automata

Probabilistic timed programs

- $\ probability + nondeterminism + real-time + data$
- amenable to verification with abstraction/refinement

Challenges & Future work

- Scalability & efficiency
 - improved abstraction techniques/heuristics
 - compositional verification for PTAs/PTPs
- More realistic modelling of system behaviour
 - e.g. interaction with continuous environment
 - continuous probability distributions
 - probabilistic/stochastic hybrid systems
- Direct verification of modelling/programming languages
 e.g. SystemC, Simulink
- Beyond verification
 - synthesis of parameters, controllers, designs, ...