UNIVERSITY OF

OXFORD

A Framework for Verification of
Software with Time and Probabilities

Marta Kwiatkowska

Oxford University Computing Laboratory

Joint work with:

Gethin Norman and David Parker

FORMATS’10 Invited Talk, September 2010

Probabilistic verification

Probabilistic verification
— formal verification of systems exhibiting stochastic behaviour

- Why probability?

— unreliability (e.g. component failures)

— uncertainty (e.g. message losses/delays over wireless)

— randomisation (e.g. in protocols such as Bluetooth, ZigBee)

- Quantitative properties

— reliability, performance, quality of service, ...

— “the probability of an airbag failing to deploy within 0.02s”
— “the expected time for a network protocol to send a packet”
— “the expected power usage of a sensor network over 1 hour”

Probabilistic verification

- The state of the art
— fast/efficient techniques for a range of probabilistic models
— (mostly Markov chains, Markov decision processes)
— feasible for models of up to 107 states (10'% with symbolic)

— tool support exists and is widely used

— successfully applied to many application domains:
communication protocols, security, biology, ...

- The challenges
— scalability and efficiency: larger models, verified faster

— more realistic models: real-time behaviour, continuous
dynamics, stochastic hybrid systems, ...

— ease of applicability, e.g. direct verification of mainstream
modelling/programming languages (C, Simulink, SystemC, ...)

— needs: efficient and automated abstraction techniques

Probabilistic models

Discrete-time Markov chains (DTMCs)
— discrete states + probability
— for: randomisation, component failures, unreliable media

Markov decision processes (MDPs)
— discrete states, probability and nondeterminism
— for: concurrency, under-specification, abstraction

Probabilistic timed automata (PTAs)
— probability, nondeterminism and real-time

Probabilistic timed programs (PTPs)
— probability, nondeterminism and real-time and data &
— for: software verification of real programming languages

Overview

Probabilistic verification

— discrete-time Markov chains (DTMCs)

— Markov decision processes (MDPs)

— probabilistic timed automata (PTAS)
Quantitative abstraction refinement

— game-based abstraction of MDPs

— quantitative abstraction-refinement loop

— verification of PTAs and probabilistic software
- Verifying software with time and probabilities
— probabilistic timed programs (PTPs)
— verifying PTPs with abstraction + refinement
- A concrete challenge
— quantitative verification of SystemC verification

Conclusions

Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)
— model fully probabilistic behaviour
— state-transition systems augmented with probabilistic choice

Formally, a DTMC is a tuple (S, P) where:
— Sis a set of states
— P:SxS — [0,1]is the transition probability matrix

- To reason formally:]
— define a probability space @‘@
over infinite paths through DTMC 0.1
— allows computation of, for example... 3

0.1
0.
Probabilistic reachability @ @

— key concept for model checking
— p.(F) = probability of reaching goal states F<S from state s
— reduces to the solution of a linear equation system

Markov decision processes

Markov decision processes (MDPs)
— model nondeterministic as well as probabilistic behaviour
— nondeterministic choice between probability distributions

Formally, an MDP is a tuple (S, Act, Steps) where:
— Sis a set of states, Act is a set of actions
— Steps : SxAct — Dist(S) is the transition probability function

- An adversary (aka. “scheduler”/“strategy”) of an MDP
— is a resolution of the nondeterminism in the MDP
— under a given adversary o, the behaviour is fully probabilistic

Probabilistic reachability for MDPs

Probabilistic reachability for MDPs

— p.% (F) = probability of reaching F<S starting from s under o
— consider the minimum/maximum values over all adversaries
— p,™"(F) = inf, p.° (F) and p,M¥*(F) = sup, p.° (F)

1

0.8
0 p,min(F) p(F) 1 Fos
— can be computed efficiently & 41, |
. . . . 02| |: —maximum
— (linear programming, value iteration) ; [raverage
— optimal adversaries obtained too 00 1000 1200 1400 1600 1800

— tool support exists (e.g. PRISM, LiQuor, RAPTURE)

- Allows reasoning about best/worst-case behaviour

— e.g. minimum probability of the protocol terminating correctly
— e.g. maximum probability of a security breach

- Like timed automata

Probabilistic timed automata

Probabilistic timed automata (PTAs)
— models probabilistic, nondeterministic and timed behaviour
— Markov decision processes + real-valued clocks
— (or: timed automata + discrete probabilistic choice)

x:=0 retry

— all clocks increase at same rate
— clocks can be reset (to zero)

PTA model checking
— the semantics of a PTA
is an infinite-state MDP
— probabilistic (timed) reachability is defined as for MDPs
— but computation is more complex...

PTA model checking - Summary

- Several PTA model checking techniques developed
— construction/analysis of a finite-state model (usually MDP)

- Region graph construction [KNSS - TCS’02]

— shows decidability, but gives exponential complexity

- Digital (integer) clocks approach [KNPS - FMSD’06]

— slightly restricted classes of PTAs: closed zones only

— works well in practice, still some scalability limitations

- Forwards reachability [KNSS - TCS’02]

— efficient zone-based technique, approximate results only
- Backwards reachability [KNSW - 1&CO07]

— exact results, expensive zone operations required

- Quantitative abstraction refinement [KNP - FORMATS’09]

— abstraction to stochastic games, best in practice

Quantitative verification

— discrete-time Markov chains (DTMCs)

— Markov decision processes (MDPs)

— probabilistic timed automata (PTAs)
Quantitative abstraction refinement

— game-based abstraction of MDPs

— abstraction-refinement loop

— verification of PTAs and probabilistic software
- Verifying software with time and probabilities
— probabilistic timed programs (PTPs)
— verifying PTPS with abstraction + refinement
- A concrete challenge: Quantitative SystemC verification

Conclusions, challenges & future work

Abstraction

- Very successful in (non-probabilistic) formal methods
— essential for verification of large/infinite-state systems
— hide details irrelevant to the property of interest
— vyields smaller/finite model which is easier/feasible to verify
— loss of precision: verification can return “don’t know”

- Construct abstract model of a concrete system
— e.g. based on a partition of the concrete state space
— an abstract state represents a set of concrete states

s
— 3
\ J
> v
()
—/

Abstraction refinement (CEGAR)

- Counterexample-guided abstraction refinement
— (non-probabilistic) model checking of reachability properties

initialise

o abstract _
Partition/ Abstraction
predicates (existential)

. odel
[yes] ‘ refine ?heck
I [false] ‘
[SRR cénﬁﬁzzﬂ;iﬁle}
check y P
counter-
[no] example [true]

Return Return
false true

Abstraction refinement (CEGAR)

- Counterexample-guided abstraction refinement
—Mprobabilistic) model checking of reachability properties

initialise B abstract How to

— Partition/ Abstractlon abstract
predicates (eX|stent|aI) probabilistic

models?

[yes]‘ refine ?h%céle(I
[false])) What is a
Spurious? counter-
check O Pe example?
counter-
[no] example [true]

@ Quantitative
results?

/

Abstraction of MDPs

- Abstraction increases degree of nondeterminism
— i.e. minimum probabilities are lower and maximums higher

0 psmin psmax]

- But what form does the abstraction of an MDP take?
- 2 possibilities:

(i) an MDP [D’Argenio/Jeannet/Jensen/Larsen’01]
— probabilistic simulation relates concrete/abstract models
(ii) a stochastic two-player game [KNP - QEST'06]
— separates nondeterminism from abstraction and from MDP
— yields separate lower/upper bounds for min/max

0 D min D max 1
S s

Stochastic two-player games

Subclass of simple stochastic games [Shapley,Condon]
— two nondeterministic players (1 and 2) and probabilistic choice

Resolution of the nondeterminism in a game
— corresponds to a pair of strategies for players 1 and 2: (o,,0,)
— p,°"9%(F) probability of reaching F from a under (o,,0,)
— can compute, e.g. : sup_, inf_, p,o"7%(F)

— informally: “the maximum probability of reaching F that player 1
can guarantee no matter what player 2 does”

- Abstraction of an MDP as a stochastic two-player game:
— player 1 controls the nondeterminism of the abstraction
— player 2 controls the nondeterminism of the MDP

Game abstraction (by example)

. Player 1 vertices ([_]) are abstract states

- (Sets of) distributions are lifted to the abstract state space

- Player 2 vertices (}\) are states with same (sets of) choices

MDP (fragment) Stochastic game (fragment)

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

inf, o, P°%(F) < p™(F) < supg, inf, p,oo%(F)

inf_, sup_, p,°"%%(F) =< p™F) =< SUP,1 o p,o"92(F)

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

inf(ﬂ,cz pacﬂ,oZ(F) = @ = Schﬂ infGZ I:)aCﬂ’cyz(F)
infcl SUpO'Z pa(ﬂ’cz(F) - @ = Sup(ﬂ,oz I:)a(ﬂ’crz(F)

min/max reachaiility probabilitifs for original MDP

0 D min p_max]
s s

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

i nf(ﬂ ,02 pam ’GZ(F) =

Cnf,, sup,, .7 (=

optimal probabilities for player 1, player 2 in game

0 D min p_max]
s s

Properties of the abstraction

- Analysis of game yields lower/upper bounds:
— fortarget F € A, s € Sand a € Awiths € a

@,02 |f’am@S p.,""(F) < sup,, inf_, p,o"%(F)

min/max reachability probabilities, treating game as MDP
(i.e. assuming that players 1 and 2 cooperate)

0 D min P max 1
S s

Example — Abstraction

inf_, sup_, p,°"°?(F) = 0.8

max(F) = 1 € [0.8,1]
ps Supcﬂ,cz pacﬂ,crz (F) = 1

Experimental results

Israeli & Jalfon’s Self Stabilisation

— protocol for obtaining a stable state in a token ring

— minimum probability of reaching a stable state by time T

-;-uppe}bound
- gctual value
0.15[| -.-. Jower bound

Min. prob. stabilised by time T
o

80 90 100 110 120
T (time units)

concrete states: 1,048,575
abstract states: 627

Experimental results

IPv4 Zeroconf

— protocol for obtaining an IP address for a new host
— maximum probability the new host not configured by T

5 0.15 - '
£ - == upper bound
- i - actual value
Q ; S T lower bound
€ 017, | ‘
S . ! concrete states: 838,905
S : I abstract states: 881
o 0.05 , :
@) i 1
c I S :
S oo e
8 10 12 14

T (seconds)

Abstraction refinement

Consider (max) difference between lower/upper bounds
— gives a quantitative measure of the abstraction’s precision

+—>

0

p,™"(F)

p,"*(F) 1

If the difference (“error”) is too great, refine the abstraction
— a finer partition yields a more precise abstraction
— lower/upper bounds can tell us where to refine (which states)

— (memoryless) strategies can tell us how to refine

Example - Refinement

p,"*(F) = 1 € [0.8,1] p.">(F) =1 €[1,1]

“error’ = 0.2 “error’ = 0

Abstraction-refinement loop

Quantitative abstraction-refinement loop for MDPs

Initial abstract
par;lt?t?on Abstraction
model
check
New [error=¢] Bounds and
partition strategies
refine
1 [error<e]
Return

bounds

Abstraction-refinement loop

Quantitative abstraction-refinement loop for MDPs

Initial abstract Y - . Rgfine_ments yiglld
partition strictly finer partition
model
l check - Guaranteed to
converge for finite
New lerror=€] | goynds and models
partition strategies

refine

- Guaranteed to
1 lerror<e]l converge for infinite
models with finite
Return bisimulation
bounds

Abstraction-refinement loop

Implementations of quantitative abstraction refinement...

- Verification of probabilistic timed automata [FORMATS’09]
— zone-based abstraction/refinement using DBMs

— implemented in (development release of) PRISM
— outperforms existing PTA verification techniques

- Verification of probabilistic software [VMCAI’09]

— predicate abstraction/refinement using SAT solvers

— implemented in tool gprover: components of PRISM, SATABS
— analysed real network utilities (ping, tftp) - approx 1KLOC

- Verification of concurrent PRISM models [Wachter/Zhang’10]

— implemented in tool PASS; infinite-state PRISM models

Overview

Quantitative verification

— discrete-time Markov chains (DTMCs)

— Markov decision processes (MDPs)

— probabilistic timed automata (PTAS)
Quantitative abstraction refinement

— game-based abstraction of MDPs

— abstraction-refinement loop

— verification of PTAs and probabilistic software
- Verifying software with time and probabilities
— probabilistic timed programs (PTPs)
— verifying PTPS with abstraction + refinement
- A concrete challenge: Quantitative SystemC verification

Conclusions, challenges & future work

Probabilistic timed programs

Probabilistic timed programs (PTPs)
— probability, nondeterminism and real-time and data
— probabilistic timed automata + discrete-valued variables

- Time - assume a finite set X of real-valued clocks

— Zones(X) is the set of zones T over X
—ie.CT:i=x=<d |c=<x | x+c<y+d | =T |TV T
— where x,ye Xandc,d e N

Data - assume a finite set D of data variables
— Val(D) is the set of all valuations of D
— Pred(D) is the set of predicates over D
— Up(D) is the set of all update functions over D
— i.e. set of all functions up : Val(D)—Val(D)

Probabilistic timed programs

- APTPis atuple (L, I, D, u, X, Act, inv, enab, prob)
— L = locations, D = data varlables, X = clocks, Act = actions
— |,y € Lis initial location and u,,, € Val(D) is initial valuation

— inv : L — Zones(X) is the invariant condition
clocks X must satisfy inv(l) whilst in location |

— enab : LxAct — Pred(D) x Zones(X) is the enabling condition
guard for action a in location | split into enab(l,a) and enaby(l,a)
can only take action a in | if enabp(l,a) A enaby(l,a)

— prob : LXAct — Dist(Up(D) x 2% x L)
is the probabilistic transition function
if take action a in |, then with probability prob(l,a)(up,Y,!’):
update D according to up, reset clocks in YSX, move to location I’

Example — PTP

Simple communication protocol

— aims to send a message
over an unreliable channel

— tries to send up to 5 times

— or until time-out of 4 secs
— delay between tries: 3-5 secs

In the PTP:
— L = {init, lost, done, fail}
— D = {c} (c counts number of tries)
— X = {x, y} (x for delay, y for timeout)
— Act = {send, retry, giveup, timeout}

Property of interest: maximum probability of reaching “fail”
— actual max. probability is 0.1 (time-out after after 1 send)

Abstraction of PTPs

Formal semantics of a PTP is an infinite-state MDP
— over state space LxVal(D)xRX
— data domain Val(D) may be large/infinite; so need abstraction
— time domain R is dense; so need abstraction

In general, use an abstract domain ((A,L,M,E), &, Y)
— lattice of abstract states, abstraction/concretisation functions
— here, we use predicate abstraction for data and zones for time
— i.e. abstract states are (I,b,0) € Lx{F,T}"xZones(X)
— assuming a set of data predicates ® = {®,,..., ¢}
— (paper also covers case of predicates for data and time)

- We use (finite-state) stochastic games to abstract PTPs
— i.e. state space is Lx{F, T}"xZones(X)

Abstraction/refinement of PTPs

1. Build reachability graph for PTP
— all reachable abstract states and possible transitions between
— constructed through (classical) forwards reachability search
— as in, for example, UPPAAL, but not on-the-fly

— zone operations (DBMs) and SAT/SMT for symbolic post

2. Build stochastic game abstraction for PTP
— i.e. of underlying infinite-state MDP semantics
— constructed from reachability graph
— further zone operations and/or SAT/SMT solving needed
— yields lower/upper bound on reachability probabilities

3. Refine the abstraction (iteratively)
— split zones, or generate new predicates

Example 1 — Abstraction

Reachability graph:

In this example:

« just abstract time, not data
+ i.e. abstract states are of the form:
+ (1,d,©) € LxVal(D)xZones(X)

send

_<

lost, c=2, |"€'0} init, c=2,
send x=0,3<y<4 x=0,6<y<9
retry —— time-
lost, c=1,) init, c=1, done, c=1, out
x=y=0 x=0,3<y<5 x=0,3<y<4 T
x=0,6<y<9
done, c=0, time- fail, c=1,
x=y=0 out x=0,4<y<5

Actions send and time-out

are both enabled since

abstract state satisfies 3<y<5

Example 1 — Abstraction

Results:
+ max probability to reach fail?
+ lower/upper bounds: [0.01,0.1]

« (in abstraction, can try to send
either once or twice)

lost, c=2, init, c=2,
0.1 x=0,3<y<4 [*| x=0,6<y<9
lost, c=1, | 4) init, c=1, done, c=1, i
0.1 x=y=0 x=0,3<y<5 0.9 x=0,3<y<4 o
fail, c=2,
—o—<< x=0,6<y<9
0.9 "|done, c=0, fail, c=1,
x=y=0 x=0,4<y<5

Player 1 choice
i.e. imprecision due to abstraction
3<y<4 or 4<y<5?

Example 1 - Refinement

First abstraction:
(bounds [0.01,0.1])

Refined abstraction:
(bounds [0.1,0.1)])

lost, c=1,
0.1 x=y=0
0.9 : done, c=0,
x=y=0

init, c=2,
x=0,6<y<9

(i.e. split state)

lost, c=2,
0.1 x=0,3<y<4

lost, c=1, [4 | init, c=1, /< done, c=1,
0.1 x=y=0 x=0,3<y<5 0.9 x=0,3<y<4
0.9 “[done, c=0, _ ? fail, c=1,
x=y=0 Refine here x=0,4<y<5

fail, c=2,
x=0,6<y<9

Player 1 choice removed

/.

init, c=1,

.<:

4<| x=0,3<y<4

0.9

init, c=1,
x=0,4<y<5

Player 2 choice

N\

i.e. nondeterminism in original PTP
(how long to delay for in lost)

Example 2 - Time and data

0.1

.<:

0.9

In this example:
+ abstract time and data
« i.e. abstract states are of the form:
+ (I,b,0) € Lx{F,TI"xZones(X)
«+ single data predicate: {c=0}

0.1

A\

lost, c+0,
x=y=0

init, c+0,
x=0,3<y<5

)

done, c=0,
x=y=0

Player 1 choice:

imprecision from both time/data

o L oo
—_ [No)\e;

I St, C:O, *—p |n|t1 C:O,
x=0,3<y<4 x=0,6<y<9
done, c+0, fail, c=0,
x=0,3<y<4 x=0,6<y<9
lost, c+0, > init, c+0,

x=0,3<y<4 x=0,6<y<9
fail, c=0, fail, c+0,
x=0,4<y<5 x=0,6<y<9

)

Example 2 - Time and data

Results:
States where 3<y<4 and c=-1, . lmplr_ease, as Iln
incrementing ¢ lead to c=0 earlier example

+ bounds on max.
prob. of failure

St’czo’ -------
0.1| x=0.32y=4 [are [0.01,0.1]

init, c+0, //< done, c+0,
....... —> x=0,3<y<5 \< x=0,3<y<4
0.1

lost, c+0, -
x=0,3<y<4

co
[{e}\e]

fail, c=0,

States where 3<y<4 and c=-1, x=0,4<y<5

incrementing c lead to c+0

States where 4<y<5,
only possibility is time-out

Symbolic operations

Need symbolic manipulation of abstract states

For example, the post operator
— to construct reachability graph
— over abstract states A = Lx{F,T}"xZones(X)
— split into two parts, timed and discrete:
— tpost[l] : A — 2A - elapse of time in location |
— dpost[e] : A — 2A - discrete transition on edge e = (l,o¢,up,Y,I’)

- Also need (not discussed here) operations to:
— construct player 1/2 choices in stochastic game
— split abstract states during refinement

Symbolic operations: Post
F
A - Time (clocks X)
=1

— use zone operations, implemented with DBMs
— for zone T € Zones(X):
— tpost,[I](C) = inv(l) A /T
— dposty[e](T) = (T A enab(l,c))[Y:=0] A inv(l’)
- Data (variables D)
— formulate as SAT/SMT problem, use solver to enumerate

— for predicate valuation b € {F,T}":
— dposty[e](b) contains all instances of b’ € {F,T}" such that
— Ju,u’eVal(D) satisfying: up(u)=u’ A ®(u)=b A ®(u’)=>b’
- Combined time/data
— for an abstract state (I,b,C) € Lx{F, T}"xZones(X):
— tpost[l](l,b,T) = { (I,b,tposty[l](T)) }
— dpost[e](l,b,0) = { (I',b’,dposty[e](T)) | b’ € dposty[e](b) }

Example: Post operator

- Abstract state a = (I,b,0)
— where I=init, b=(f), T=x=0A3=<y<5
— and edge e = (init,send,c++,{},lost)

- Time
— tpost,[init](CT) = x=0A3<y<5
— dposty[e](T) = x=0A3<y<4

- Data lost, c=0,
send x=0,3<y<4
— dpostplel(b) = {(f),()} /<<
. Combined (tpost, then dpost) it 0 [| 2055y <a
— tpost[init]@) ={a’ } \<:
where a’ = (init,(f),x=0A3<y<5) time- X'ff‘)fgc;;gq

out

— dpost[e](@’) =
{ (lost,(f),x=0A3<y=<4), (lost,(t),x=0A3<y=<4) } s

Overview

Quantitative verification

— discrete-time Markov chains (DTMCs)

— Markov decision processes (MDPs)

— probabilistic timed automata (PTAS)
Quantitative abstraction refinement

— game-based abstraction of MDPs

— abstraction-refinement loop

— verification of PTAs and probabilistic software
Verifying software with time and probabilities

— probabilistic timed programs (PTPs)

— verifying PTPS with abstraction + refinement
- A concrete challenge: Quantitative SystemC verification

Conclusions, challenges & future work

A concrete challenge: SystemC

- SystemC: A system-level modelling language

— increasingly prominent in the development of embedded
systems, e.g. for System-on-Chip (SoC) designs

— close enough to hardware level to support synthesis to RTL
— but models complex designs at a higher level of abstraction
— very efficient simulation at design phase

Basic ingredients
— C++-based, with low-level data-types for hardware

— an object-oriented approach to design

— and convenient high-level abstractions of concurrent
communicating processes

- Analysis of SystemC designs
— mostly simulation currently; growing interest in verification
— identified as an important but challenging direction [Vardi’07]

Quantitative verification of SystemC

- Challenges involved in quantitative verification of SystemC:

. Software

— basic process behaviour is defined in terms of C++ code,
using a rich array of data types

- Concurrency

— designs comprise multiple concurrent processes,
communicating through message-passing primitives

- Timing

— processes can be subjected to precisely timed delays, through
interaction with the SystemC scheduler

Probability
— SystemC components may link to unpredictable devices

— due to communication failures (e.g. wireless/radio),
or randomisation (e.g. ZigBee/Bluetooth)

Quantitative verification of SystemC

- QOutline approach to quantitative SystemC verification...

- SystemC designs comprise multiple modules/threads

— communicating through ports/channels

— translate to parallel composition of PTPs

— C++ control-flow graph maps to PTP locations/transitions
— various SystemC model extractors exist to do this

- Concurrency/timing between SystemC threads

— controlled by precisely defined (co-operative/non-preemptive)
scheduler, incorporating thread-specified delays

— existing translation from SystemC to UPPAAL [Herber et al.’08]
Probabilistic behaviour - randomisation or failures

— randomisation: map rand() calls to PTP probabilistic choice

— failures: replace e.g. network calls with probabilistic stubs

— similar approach applied to probabilistic ANSI-C [VMCAI'09]

Overview

Quantitative verification

— discrete-time Markov chains (DTMCs)

— Markov decision processes (MDPs)

— probabilistic timed automata (PTAS)
Quantitative abstraction refinement

— game-based abstraction of MDPs

— abstraction-refinement loop

— verification of PTAs and probabilistic software
- Verifying software with time and probabilities
— probabilistic timed programs (PTPs)
— verifying PTPS with abstraction + refinement
- A concrete challenge: Quantitative SystemC verification

Conclusions, challenges & future work

Conclusions

Probabilistic verification
— discrete-time Markov chains, Markov decision processes, ...

Abstraction: essential for large/infinite-state systems
— this talk: abstractions of MDPs as stochastic games
— vyields lower/upper bounds on min/max probabilities

Quantitative abstraction refinement
— fully automatic generation of abstractions
— iterative refinement based on quantitative measure of ‘error
— works in practice: probabilistic software & timed automata

Probabilistic timed programs
— probability + nondeterminism + real-time + data
— amenable to verification with abstraction/refinement

Challenges & Future work

- Scalability & efficiency

— improved abstraction techniques/heuristics
— compositional verification for PTAs/PTPs

More realistic modelling of system behaviour
— e.g. interaction with continuous environment
— continuous probability distributions
— probabilistic/stochastic hybrid systems

Direct verification of modelling/programming languages
— e.g. SystemC, Simulink

Beyond verification
— synthesis of parameters, controllers, designs, ...

