Analysing mobile networks via probabilistic model checking

Marta Kwiatkowska

School of Computer Science

THE UNIVERSITY OF BIRMINGHAM

Joint work with Marie Duflot, Gethin Norman, Dave Parker, Jeremy Sproston

Background

- FGUC: Foundations of Global Ubiquitous Computing
 - EU activity & this workshop
- SGUC: Science for Global Ubiquitous Computing (GC2)
 - One of 7 UK Grand Challenges (GC2), related to FGUC
 - Rigorous foundation for tools and techniques
- Also GC4: Scalable Ubiquitous Computing Systems
 - Design, engineering, managing ubiquitous systems
 - Tools and techniques
- This talk, focus on a component of GC2
 - Mobile ad hoc network protocols
 - Probability: why needed, challenges
 - Verification techniques and tools

Ubiquitous computing: the trends...

- Devices, ever smaller
 - Laptops, phones, PDAs, ...
 - Sensors, motes, ...
- Networking, wireless, wired & global
 - Mobile ad hoc
 - Wireless everywhere
 - Internet everywhere
 - Global connectivity
- Systems/software
 - Decentralised
 - Self-organising
 - Self-configuring
 - Autonomous
 - Adaptive
 - Context-aware

Ubiquitous computing: users expect...

- ...assurance of
 - safety
 - correctness
 - performance
 - reliability
- For example:
 - Is my e-savings account secure?
 - Can someone bluesnarf from my phone?
 - How fast is the communication from my PDA to printer?
 - Is my mobile phone energy efficient?
 - Is the operating system reliable?
 - Can the laptop recover from faults with no effort on my part?

Probability helps

- In distributed (de-centralised) co-ordination algorithms
 - As a symmetry breaker
 - "leader election is eventually resolved with probability 1"
 - In gossip-based routing and multicasting
 - "the message will be delivered to all nodes with high probability"
- When modelling uncertainty in the environment
 - To quantify failures, express soft deadlines, QoS
 - "probability of frame being delivered within 5ms is at least 0.91"
 - To quantify environmental factors in decision support
 - "expected cost of reaching the goal is 100"
- When analysing system performance
 - To quantify arrivals, service, etc. characteristics
 - "in the long run, mean waiting time in a lift queue is 30 sec"

Real-world protocol examples

- Protocols featuring randomisation
 - Randomised back-off schemes
 - IEEE 802.11 (WiFi) Wireless LAN MAC protocol
 - Random choice of waiting time
 - Bluetooth, device discovery phase
 - Random choice of routes to destination
 - Crowds, anonymity protocol for internet routing
 - Random choice of a timing delay
 - Root contention in IEEE 1394 FireWire
 - Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)
 - and more

• Continuous probability distribution needed to model network traffic, node mobility, random delays...

Probability elsewhere

- In performance modelling
 - Pioneered by Erlang, in telecommunications, ca 1910
 - Models: typically continuous-time Markov chains
 - Emphasis on steady-state and transient probabilities
- In stochastic planning
 - Cf Bellman equations, ca 1950s
 - Models: Markov decision processes
 - Emphasis on finding optimum policies
- Our focus, probabilistic model checking
 - Distinctive, on automated verification for probabilistic systems
 - Temporal logic specifications, automata-theoretic techniques
 - Shared models
 - Exchanging techniques with the other two areas

Probabilistic model checking...

Probabilistic model checking with PRISM

- Models
 - Discrete-Time Markov Chains (DTMCs)
 - Markov Decision Processes (MDPs)
 - Continuous-Time Markov Chains (CTMCs)
 - Probabilistic Time Automata (PTAs)
- Specifications (informally)
 - "probability of shutdown occurring is at most..."
 - "probability of delivery within time deadline is ..."
 - "expected time to message delivery is ..."
 - "expected power consumption is ..."
- Specifications (formally)
 - Probabilistic extensions of temporal logic (PCTL, CSL, PTCTL)
 - Probability, time, cost/rewards

Extending PRISM with mobility

Models in PRISM

- are described in reactive modules
 - :: extend with mobility, dynamic topology
 - :: extend with geographical positioning
 - :: extend with context-awareness
- are finite-state, static and often huge
 - :: verification support for compositionality, abstraction
 - :: techniques for infinite state systems
 - :: combine with simulation-based methods

• Specifications

- are temporal logic based:
 - :: add location-awareness
 - :: more expressive logics?

PRISM real-world case studies

• MDPs/DTMCs

- Bluetooth device discovery [ISOLA'04]
- Crowds anonymity protocol (by Shmatikov) [JCS 2004]
- Randomised consensus [CAV'01]
- Randomised Byzantine Agreement [FORTE'02]
- NAND multiplexing for nanotechnology (with Shukla) [VLSI'04]

• CTMCs

- Dynamic Power Management (with Shukla and Gupta) [HLDVT'02]
- Dependability of embedded controller [INCOM'04]

• PTAs

- IPv4 Zeroconf dynamic configuration [FORMATS'03]
- Root contention in IEEE 1394 FireWire [FAC 2003, STTT 2004]
- IEEE 802.11 (WiFi) Wireless LAN MAC protocol [PROBMIV'02]

Bluetooth protocol overview

- Short-range low-power wireless protocol
 - Personal Area Networks (PANs)
 - Open standard, versions 1.1 and 1.2
 - Widely available in phones, PDAs, laptops, ...
- Uses frequency hopping scheme
 - To avoid interference (uses unregulated 2.4GHz band)
 - Pseudo-random frequency selection over 32 of 79 frequencies
 - Inquirer hops faster
 - Must synchronise hopping frequencies
- Network formation
 - Piconets (1 master, up to 7 slaves)
 - Self-configuring: devices discover themselves
 - Master-slave roles

States of a Bluetooth device

- Master looks for device, slave listens for master
- Standby: default operational state
- Inquiry: device discovery
- Page: establishes connection
- Connected: device ready to communicate in a piconet

Why focus on device discovery?

- Performance of device discovery crucial
 - No communication before initialisation
 - First mandatory step: device discovery
- Device discovery
 - Exchanges information about slave clock times, which can be used in later stages
 - Has considerably higher power consumption
 - Determines the speed of piconet formation

Frequency hopping

Fig. 1. Timing of the inquiring device's behaviour

- Clock CLK, 28 bit free-running, ticks every 312.5µs
- Inquiring device (master) broadcasts inquiry packets on two consecutive frequencies, then listens on the same two (plus margin)
- Potential slaves want to be discovered, scan for messages
- Frequency sequence determined by formula, dependent on bits of clock CLK (k defined on next slide):

freq = $[CLK_{16-12}+k+(CLK_{4-2,0}-CLK_{16-12}) \mod 16] \mod 32$

Frequency hopping sequence

freq = $[CLK_{16-12}+k+(CLK_{4-2,0}-CLK_{16-12}) \mod 16] \mod 32$

- Two trains (=lines)
- k is offset that determines which train
- Swaps between trains every 2.56 sec
- Each line repeated 128 times

Sending and receiving in Bluetooth

- Sender: broadcasts inquiry packets, sending according to the frequency hopping sequence, then listens, and repeats
- Receiver: follows the frequency hopping sequence, own clock

- Listens continuously on one frequency
- If hears message sent by the sender, then replies on the same frequency
- Random wait to avoid collision if two receivers hear on same frequency

Bluetooth modelling

- Very complex interaction
 - Genuine randomness, probabilistic modelling essential
 - Devices make contact only if listen on the right frequency at the right time!
 - Sleep/scan periods unbreakable, much longer than listening
 - Cannot scale constants (approximate results)
 - Cannot omit subactivities, otherwise oversimplification
- Huge model, even for one sender and one receiver!
 - Initial configurations dependent on 28 bit clock
 - Cannot fix start state of receiver, clock value could be arbitrary
 - 17,179,869,184 possible initial states
- But is a realistic future ubiquitous computing scenario!

What about other approaches?

- Indeed, others have tried...
 - network simulation tools (BlueHoc)
 - analytical approaches
- But
 - simulations obtain averaged results, in contrast to best/worst case analysis performed here
 - analytical approaches require simplifications to the model
 - it is easy to make incorrect probabilistic assumptions, as we can demonstrate
- There is a case for all types of analyses, or their combinations...

Lessons learnt...

- Must optimise/reduce model
 - Assume negligible clock drift
 - Discrete time, obtain a DTMC
 - Manual abstractions, combine transitions, etc
 - Divide into 32 separate cases
 - Success (exhaustive analysis) with one/two replies

Observations

- Work with realistic constants, as in the standard
- Analyse v1.2 and 1.1, confirm 1.1 slower
- Show best/worst case values, can pinpoint scenarios which give rise to them
- Also obtain power consumption analysis

Time to hear 1 reply

- Max time to hear is 2.5716sec, in 921,600 possible initial states, (Min 635µs)
- Cumulative: assume uniform distribution on states when receiver first starts to listen

Time to hear 2 replies

- Max time to hear is 5.177sec (16,565 slots), in 444 possible initial states
- Cumulative (derived): assumes time to reply to 2nd message is independent of time to reply to 1st (incorrect, compare with exact curve obtained from model checking)

Related projects

- FORWARD (this case study, see ISOLA'04)
 - Performance modelling of MAC layer of Bluetooth
 - Security analysis of Bluetooth
- Modelling and verification of mobile ad hoc network protocols
 - Modelling language with mobility and randomisation
 - Model checking algorithms & techniques
 - Tool development & implementation
 - Modelling timing properties of AODV
- Focus on properties
 - "probability of delivery within time deadline is ..."
 - "expected time to device discovery is ..."
 - "expected power consumption is ..."

Challenges for future

- Exploiting structure
 - Abstraction, data reduction, compositionality...
 - Parametric probabilistic verification?
- Proof assistant for probabilistic verification
- Extension for mobility
- Extension for hybrid systems
- Simulation, statistical testing [Younes]
- Approximation methods
- Continuous PTAs
 - Efficient model checking methods?
- More expressive specifications
 - Probabilistic LTL/PCTL*/mu-calculus?
- Real software, not models!

For more information...

J. Rutten, M. Kwiatkowska, G. Norman and D. Parker Mathematical Techniques for Analyzing (

P. Panangaden and F. van Breugel (editors), CRM Monograph Series, vol. 23, AMS March 2004

www.cs.bham.ac.uk/~dxp/prism/

- Case studies, statistics, group publications
- Download, version 2.0 (> 750 users)
- Publications by others and courses that feature PRISM...