UNIVERSITY OF

0),430)28D,

Automated Learning
of Probabilistic Assumptions
for Compositional Reasoning

Marta Kwiatkowska

Oxford University Computing Laboratory

Joint work with: Lu Feng, Dave Parker, Gethin Norman, Hongyang Qu

Probabilistic verification

Probabilistic verification
— formal verification of systems exhibiting stochastic behaviour

- Why probability?

— unreliability (e.g. component failures)

— uncertainty (e.g. message losses/delays over wireless)

— randomisation (e.g. in protocols such as Bluetooth, ZigBee)

- Quantitative properties

— reliability, performance, quality of service, ...

— “the probability of an airbag failing to deploy within 0.02s”
— “the expected time for a network protocol to send a packet”
— “the expected power usage of a sensor network over 1 hour”

Model checking

Automated formal verification for finite-state models

Finite-state
System model
Result
_}
—> v X
~
Model checker
—)| €.0. SMV, Spin
v
000:: —EF fail — N Counter-
—_— example
System Temporal logic ~0+0>0+0
require- specification

ments

Probabilistic model checking

Automatic verification of systems with probabilistic behaviour

Probabilistic model —) Result

System e.g. Markov chain

Quantitative

) I—b results
Probabilistic
model checker o P

— e.g. PRISM, MRMC
/
5 — olaEi — Counter-
System example
ySIe Probabilistic temporal
require- logic specification ~owa 0
ments e.g. PCTL, CSL, LTL

4

Probabilistic model checking

First algorithms proposed in 1980s
— [Vardi, Courcoubetis, Yannakakis, ...]
— algorithms [Hansson, Jonsson, de Alfaro] & first implementations

2000: tools ETMCC (MRMC) & PRISM released

— PRISM: efficient extensions of symbolic model checking

— ETMCC (now MRMC): model checking for continuous-time Markov
chains [Baier, Hermanns, Haverkort, Katoen, ...]

.+ Selected advances in probabilistic model checking:

— compositional verification [Segala, Lynch, Stoelinga, Vaandrager, ...]
— probabilistic counterexample generation [Han/Katoen, Leue, ...]

— abstraction (and CEGAR) for probabilistic models
. [Larsen, Hermanns, Wolf, Kwiatkowska, ...]

— and much more...

Probabilistic model checking in action

Bluetooth device discovery protocol
— frequency hopping, randomised delays | |

N

-
— &)}

number of states

ot
o

— low-level model in PRISM, based on
detailed Bluetooth reference documentation

— numerical solution of 32 Markov chains, Goexpecgedﬁme%oh‘e;%wore;,ﬁies(sei)
each approximately 3 billion states

— analysed performance, identified worst-case scenarios

Fibroblast Growth Factor (FGF) pathway

— complex biological cell signalling pathway,
key roles e.g. in healing, not yet fully understood

— model checking (PRISM) & simulation (stochastic 1r-calculus),
in collaboration with Biosciences at Birmingham

— “in-silico” experiments: systematic removal of components
— behavioural predictions later validated by lab experiments

Probabilistic model checking

- What’s involved

— specifying, constructing probabilistic models
— graph-based analysis: reachability + qualitative verification
— numerical solution, e.qg. linear equations/linear programming

- The state of the art

— fast/efficient techniques for a range of probabilistic models
— (mostly Markov chains, Markov decision processes)

— feasible for models of up to 107 states (10'% with symbolic)
— tool support exists and is widely used, e.g. PRISM, MRMC

— successfully applied to many application domains:

. distributed randomised algorithms, communication protocols,
security protocols, biological systems, quantum cryptography, ...

Probabilistic model checking

Some observations
— probabilistic model checking typically more expensive than
the non-probabilistic case: need to build and solve model
— most useful kinds results are quantitative (e.g. probability
values/bounds) - study trends, find anomalies, ...

— successfully used by non-experts for many application
domains, but full automation and good tool support essential

Some key challenges
— scalability and efficiency: larger models, verified faster

— more realistic models (real-time behaviour, continuous
dynamics, stochastic hybrid systems) and languages

— beyond model checking: parametric methods, synthesis, ...

+ This talk: scalability/efficiency via compositional reasoning

Overview

Probabilistic model checking
— probabilistic models: probabilistic automata
— property specifications: probabilistic safety properties
— multi-objective model checking

Compositional probabilistic verification
— assume-guarantee reasoning
— assume-guarantee for probabilistic systems

— implementation & results

Automated generation of assumptions
— L* and its application to compositional verification
— generating probabilistic assumptions
— implementation, results & recent progress

Conclusions 9

Probabilistic models

Discrete-time Markov chains (DTMCs)
— discrete states + probability
— for: randomisation, component failures, unreliable media

Markov decision processes (MDPs) o« stk

Probabilistic automata (PAs) [Segalal
— discrete states + probability + nondeterminism
— for: concurrency, control, under-specification, abstraction

. Continuous-time Markov chains (CTMCs)

Probabilistic timed automata (PTASs)
— and many other variants...
— add notions of real-time behaviour to the above models

10

Probabilistic automata (PAS)

Model nondeterministic as well as probabilistic behaviour
— very similar to Markov decision processes (MDPs)

- A probabilistic automaton is a tuple M = (S, s, i, %y, Op):

— S is the state space

— S € S is the initial state

— o, is the action alphabet

— Oy S S X oy X Dist(S) is the
transition probability relation

— Dist(S) is set of all probability
distributions over set S

warn

shutdown

Parallel composition: M, [| M,

— CSP style - synchronise over common actions
11

Probabilistic model checking for PAs

- To reason formally about PAs, we use adversaries

— an adversary o resolves nondeterminism in a PA M

— also called “scheduler”, “strategy”, “policy’, ...

— makes a (possibly randomised) choice, based on history
— induces probability measure Pr,,° over (infinite) paths

Property specifications (linear-time)
— specify some measurable property ¢ of paths (e.g. in LTL)
— Pry,° () gives probability of ¢ under adversary o
— best-/worst-case analysis: quantify over all adversaries
— e.g. M e P_ [O(req—¢ack)] & Pryo(O(req—¢ack)) = p for all o
— or just compute e.g. Prymn () = inf { Pr,,° () | 0 € Adv, }
— efficient algorithms and tools exist

— (but scalability is always an issue)
12

Running example

- Two components, each a probabilistic automaton:
— M,: sensor - detects fault and sends warn/shutdown signals
— M,: device to be shut down (may fail if no warning sent)

PA M, (“sensor”) PA M, (“device”)

warn

shutdown shutdown ' shutdown

13

Running example

PA M, (“sensor”) PA M, (“device”)

warn

shutdown shutdown shutdown

Parallel composition: M, || M,

warn shutdown

——Gat)——Gt] or

system failure

/(max. prob. 0.02)

14

Safety properties

- Safety property: language of infinite words (over actions)
— characterised by a set of “bad prefixes” (or “finite violations”)
— i.e. finite words of which any extension violates the property
- Regular safety property
— bad prefixes are represented by a regular language
— property A represented by an error automaton A,
a deterministic finite automaton (DFA) storing bad prefixes

_ warn,
fail shutdow shutdown

“a fail action “warn occurs “at most 2 time steps
never occurs before shutdown” pass before termination” 15

Probabilistic safety properties

- A probabilistic safety property P_ [A] comprises

— a regular safety property A + a rational probability bound p
— “the (minimum) probability of satisfying A must be at least p”
- M= P, [A] & PryA) = pforall o € Advy < Pry™n(A) >p
— or “the (max.) probability of violating A must be at most 1-p”

Examples:
— “warn occurs before shutdown with probability at least 0.8
— “the probability of a failure occurring is at most 0.02”
— “probability of terminating within k time-steps is at least 0.75”

Model checking:
— construct (synchronous) PA-DFA product M®A

err

— compute probability of reaching “accept” in product PA
16

Running example

Does probabilistic safety property P_, ¢ [A] hold in M,?

before shutdown”)

warn shutdown

warn, ’ warn

shutdown shutdO\’/vn

17

Running example

Does probabilistic safety property P_, ¢ [A] hold in M,?

before shutdown”)

warn shutdown
warn, ' warn,
shutdown shutdown

Product PA M, ®A

err

warn shutdown

Pry, ™"(A)
=1-0.2=0.8
- M; EP.ys [A]

shutdown @
o)

ff 18

Multi-objective PA model checking

- Study trade-off between several different objectives

— existential queries: does there exist adversary o such that:
— Pry°(O(queue_size<10)) > 0.99 A Pry°(¢flat_battery) < 0.01
— useful for synthesising controllers

Multi-objective PA model checking
— [Etessami/Kwiatkowska/Vardi/Yannakakis, TACAS’07]
— LTL formulae ¢,,...,, and probability bounds ~,p,...,~, px
— check if 3 0 € Adv,, s.t. Pry9(¢,) ~p; A ... A Pry(dy) ~, Pr
— construct product of automata for M, ®,,...,o,
— then solve linear programming (LP) problem
— the resulting adversary o can obtained from LP solution
— note: o may be randomised (unlike the single objective case)

19

Multi-objective PA model checking

- Consider the two objectives OD and ¢E in the PA below
— i.e. the trade-off between the probabilities Pr(¢D) and Pr(OE)
— an adversary resolves the choice between a/b/c

— increasing the probability of reaching one target decreases the
probability of reaching the other

choose a

/ / choose b

choose ¢

4

4 >
0.5 0.8 PI’(<> E)

| I

20

Multi-objective PA model checking

- Need to consider all randomised adversaries

— for example, is there an adversary o such that:
— Pr(¢D) > 0.2 A Pr(OE) > 0.6

all (randomised)
adversaries

Pareto curve

4/ adversary o

I >
0.5 0.8 PI’(Q E)

21

Overview

Compositional probabilistic verification
— assume-guarantee reasoning
— assume-guarantee for probabilistic systems
— implementation & results

22

Compositional verification

- Goal: scalability through modular verification
— e.g. decide if M, || M, £ G
— by analysing M, and M, separately

- Assume-guarantee (A/G) reasoning
— use assumption A about the context of a component M,

— (A) M, (G) - “whenever M, is part of a system satisfying A,
then the system must also guarantee G”

— example of asymmetric (non-circular) A/G rule:

— e e ey

[Pasareanu/Giannakopoulou/et al.] 23

AG rules for probabilistic systems

— e e ey

How to formulate AG rules | M, = A i
for probabilistic automata? LA M, G
M, [IM,EG

Key questions: oo .

— 1. What form do assumptions A take?
. needs to be compositional
. needs to be efficient to check
. needs to allow compact assumptions

— 2. How do we generate suitable assumptions?
. preferably in a fully automated fashion

— 3. Can we get “quantitative” results?

. i.e. numerical values, rather than “yes”/’no”
24

A/G rules for probabilistic systems

— e e ey

- How to formulate A/G rules i M, = A i
for probabilistic automata? LA M, G
M, [IM,EG

Key questions: oo .

— 1. What form do assumptions A take?
. needs to be compositional
. needs to be efficient to check
. needs to allow compact assumptions

> various compositional relations exist
. e.g. strong/weak (probabilistic) (bi)simulation

. but these are either too fine (difficult to get small
assumptions) or expensive to check

> here, we use: probabilistic safety properties [TACAS’10]
. less expressive, but compact and efficient

. (see also generalisation to liveness/rewards [TACAS 11]) 25

A/G rules for probabilistic systems

— e e ey

How to formulate A/G rules | M, = A i
for probabilistic automata? LA M, G
M, [IM,EG

Key questions: oo .

— 2. How do we generate suitable assumptions?
. preferably in a fully automated fashion

> algorithmic learning (based on L* algorithm)
adapt techniques for (non-probabilistic) assumptions

— 3. Can we get “quantitative” results?
. i.e. numerical values, rather than “yes”’/’no”

> yes: generate lower/upper bounds on probabilities

26

Probabilistic assume guarantee

- Assume-guarantee triples <A>ZIOA M (G).,_ where:
— M is a probabilistic automaton

— PZpA[A] and PZpG[G] are probabilistic safety properties

ZpG

Informally:

— “whenever M is part of a system satisfying A with probability
at least p,, then the system is guaranteed to satisfy G with
probability at least p.”

Formally:
— Vo € Advy, (Pry°(A) = pp — Pry°(G) = pc)
— where M’ is M with its alphabet extended to include o,
— reduces to multi-objective model checking on M’
— look for adversary satisfying assumption but not guarantee
— i.e. can check (A)_, M (G)_, efficiently via LP problem 27

An assume-guarantee rule

- The following asymmetric proof rule holds
— (asymmetric = uses one assumption about one component)

(ASYM)

- So, verifying M, [| M, & P=p.[G] requires:
— premise 1: M, = P=p, [A] (standard model checking)
— premise 2: Azp, My <G>ZIOG (multi-objective model checking)

- Potentially much cheaper if |A| much smaller than |M, |

28

Running example

Does probabilistic safety property P_, o5 [G] hold in M, ||M,?

PA M, (“sensor”) PA M, (“device”) G (“a fail action

nhever occurs”)
detect warn @

shutdown

shutdown shutdown :
l fail

@‘ fail @’ off ’

fail

29

Running example

Does probabilistic safety property P_, o5 [G] hold in M, ||M,?

PA M, (“sensor”) PA M, (“device”) G (“a fail action

never occurs”)
detect warn a

shutdown

shutdown

@‘ fail @’ off ’

Use A/G with assumption fail

P_o s [A] about M,

shutdown shutdowth

TSt T I T A (“warn occurs

: M E P (Al : before shutdown”) shutdown

: <A>20.8 MZ <G>20.98 i

: | warn, warn

Running example

- Premise 1: Does M, = P_, ¢ [A] hold? Yes (earlier example)

before shutdown”)

shutdow shutdO\’/vn

Product PA M, ®A,,,

warn shutdown

Pry, ™"(A)
=1-0.2=0.8
- M; EP.ys [A]

shutdown @
o)

ff 31

Running example

- Premise 2: Does (A)_,3 M, (G)_, 95 hold? Yes...

G (“a fail action
PA M, (“device”) never occurs”)

A (“warn occurs

before shutdown”)
{ shutdown ' shutdown shutdown lfail

warn, Warn, ’
@‘ fail @’ off shutdown shutdown fail

shutdown

There is no adversary warn w @
' off

of M, satisfying o1P

PrMG(A)ZO.S " | shutdown
but not

Pry,° (G)=0.98

warn

Running example

- Premise 2: Does (A)_,3 M, (G)_, 95 hold? Yes...

G (“a fail action
PA M, (“device”) never occurs”)

A (“warn occurs

before shutdown”)
{ shutdown ' shutdown shutdown lfail

warn, Warn, ’
@‘ fail @’ off shutdown shutdown fail

shutdown

There is no adversary of warn w @
| off

|
0.1 shutdown

warn

Pry° (¢a,)<0.2
and
Pry,° (¢q;)>0.02

Other assume-guarantee rules

Multiple assumptions:

M] = P=p, [A 1 AA P>p, [Ak]
<A'|, Ak>>p]

M || My &= P=p¢ [G]

- Circular rule:

MZ = Psz [AZ]
<A2>Zp2 M] <A]>Zpl
<A1>2p1 M2 <G>ch

(CIRC)

M; [I My & P=p¢[G]

o My (G)=p; (ASYM-MULT)

Multiple components (chain):

M, & P>p, [A,]
<A1>Zp1 Mz <A2>Zp2
(ASYM-N)
<An>2pn Mn <G>ch

M, || ... || M, & P>p.[C]

Asynchronous components:

<A'|>Zp] M] <G'|>Zq]
<A2>ZI32 Mz <Gz>ZQ2

(ASYNC)

(A1,Ap=pip, My || M, (G, VG,)=(a,+0,-9,4,)

34

Implementation + Case studies

Implemented using:
— extension of PRISM model checker
— added support for multi-objective model checking
— built-in support for assume-guarantee in progress

- Two large case studies

— randomised consensus algorithm (Aspnes & Herlihy)
. minimum probability consensus reached by round R

— Zeroconf network protocol

. maximum probability network configures incorrectly
. minimum probability network configured by time T

35

Experimental results

Case study Non-compositional Compositional
RS

3,2 1,418,545 18,971 40,542 29.6
Randomised _

consensus 3, 20 39,827,233 time-out 40,542 125.3

(3 processes) 4,2 150,487,585 78,955 141,168 376.1

[R,KI 4,20 2,028,200,209 mem-out 141,168 471.9

4 313,541 103.9 20,927 21.9

Zerﬁgonf 6 811,290 2752 40,258 54.8

8 1,892,952 592.2 66,436 107.6

2,10 65,567 46.3 62,188 89.0

ZeroConf 2,14 106,177 63.1 101,313 170.8

time-bounded
K, T] 4,10 976,247 88.2 74,484 170.8
4,14 2,288,771 128.3 166,203 430.6

36

Experimental results

Case study
[parameters]

Randomised
consensus
(3 processes)
[R,K]

ZeroConf
[K]

ZeroConf
time-bounded
[K, T]

3,2
3, 20
4,2
4, 20
4
6
8
2,10
2,14
4,10
4,14

Non-compositional Compositional
—States | Time 9 | (Psize | Tmes)

1,418,545
39,827,233
150,487,585
2,028,200,209

313,541
811,290
1,892,952
65,567
106,177
976,247
2,288,771

18,971

time-out

78,955

mem-out

103.9
275.2
592.2
46.3
63.1
88.2
128.3

40,542
40,542
141,168
141,168

20,927
40,258
66,436
62,188
101,313
74,484
166,203

107.6
N———/

29.6
125.3
376.1
471.9

21.9
54.8

89.0
170.8
170.8
430.6

* Faster than conventional model checking in a number of cases 37

Experimental results

Case study Non-compositional Compositional
parameters

3,2 1,418,545 18,971 40,542 29.6
Randomised :

consensus 3, 20 39,827,233 time-out| 40,542 125.3

(3 processes) 4, 2 150,487,585 78,955 141,168 376.1

[R,KI 4,20 2,028,200,209[mem—out] 141,168 471.9

4 313,541 103.9 20,927 21.9

Zerﬁgonf 6 811,290 2752 40,258 54.8

8 1,892,952 502.2 66,436 107.6

2.10 65,567 46.3 62,188 89.0

ZeroConf 2,14 106,177 63.1 101,313 170.8

time-bounded
K. T] 4,10 976,247 88.2 74,484 170.8
4,14 2,288,771 128.3 166,203 430.6

* Verified instances where conventional model checking is infeasiblesg

Overview

Automated generation of assumptions
— L* and its application to compositional verification
— generating probabilistic assumptions
— implementation & results

39

Generating assumptions

Can model check M, ||M, compositionally

— but this relies on the existence :
of a suitable assumption P=p, [A] L Apy My G,y

1. Does such an assumption always exist?

2. When it does exist, can we generate it automatically?

Our approach: use algorithmic learning techniques
— inspired by non-probabilistic AG work of [Pasareanu et al.]
— uses L* algorithm to learn finite automata for assumptions
— we use a modified version of L*

— to learn probabilistic assumptions for rule (Asym) [QEST’10] 40

The L* learning algorithm

- The L* algorithm [Angluin]
— learns an unknown regular language L, as a (minimal) DFA

- Based on “active” learning
— relies on existence of a “teacher” to guide the learning

— answers two type of queries: “membership” and “equivalence”
— membership: “is trace (word) t in the target language L?”

. stores results of membership queries in observation table
. based on these, generates conjectures A for the automata

— equivalence: “does automata A accept the target language L™

. if not, teacher must return counterexample c
. (cis a word in the symmetric difference of L and L(A))

41

The L* learning algorithm

L* Teacher
— i AL N trace t e sses AR :
> Memllj::shlp E b i
-P'CI y Membership query
table :
. 2
- done? :
NO oy :
yes
Generate : conJecture A ’._
........ SelAlSEIig . Equivalence query |
.. counterexample ¢ (analyse conjecture A)
Update €
table P |

42

L* for assume-guarantee

- Breakthrough in automated compositional verification
— use of L* to learn assumptions for A/G reasoning
— [Pasareanu/Giannakopoulou/et al.]

— uses notion of “weakest assumption” about a component that
suffices for compositional verification (always exists)

— weakest assumption is the target regular language

- Fully automated L* learning loop
— model checker plays role of teacher, returns counterexamples

— in practice, can usually stop early: either with a simpler
(stronger) assumption or by refuting the property

- Successfully applied to several large case studies
— does particularly well when assumption/alphabet are small
— much recent interest in learning for verification...

43

Probabilistic assumption generation

- Goal: automate A/G rule (Asym) R e E T Ty
— generate probabilistic assumption P-p, [A] M, &= P=p, [A]

— for checking property P-,.[G] on M, || M, i Adzpy My (G2

Reduce problem to generation of
non-probabilistic assumption A

— then (if possible) find lowest p, such that premises 1 & 2 hold

— in fact, for fixed A, we can generate lower and upper bounds
on Pry u,™" (G), which may suffice to verify/refute P-,. [G]

Use adapted L* to learn non-probabilistic assumption A
— note: there is no “weakest assumption” (AG rule is incomplete)
— but can generate sequence of conjectures for A in similar style

— “teacher” based on a probabilistic model checker (PRISM),
feedback is from probabilistic counterexamples [Han/Katoen]

— three outcomes of loop: “true”, “false”, lower/upper bounds 44

Probabilistic assumption generation

L* Teacher

: Membersh|p [trace Tl i Membership query . OUT: :
: Ler naluse trace & | e
q y.- (yh k) —» “true”
~ Update | |Yesimo| MC:; N L
table S = P.p. [G
. -
done? : T : —» “false
no R eS Equ|va|ence query M] | |M2
y _ : (analyse conjecture A)
""""" Conerate & |conj. 1 # P.p. [G]
enerate ,, :
conjecture Try to find Pa such that: :
RN GNUE DRSNS H +b0unds
sy | oo (i) My = P, [A] o
Update » : (i) (A M. <G> - PrM]HMz(G)
............... table e e Gk | € [l0,up]

45

Implementation + Case studies

- Implemented using:
— extension of PRISM model checker
— libalf learning library [Bollig et al.]

- Several case studies
— client-server (A/G model checking benchmark + failures)
- minimum probability mutual exclusion not violated
— randomised consensus algorithm [Aspnes & Herlihy]
- minimum probability consensus reached by round R
— sensor network [QEST’10]
. minimum probability of processor error occurring
— Mars Exploration Rovers (MER) [NASA]
- minimum probability mutual exclusion not violated in k cycles

46

Experimental results (learning)

Case study
[parameters]

Client-server

(N failures) 4
[N] 5
Randomised % 2y 20
consensus 2,4, 4

[N,R,K] 3,3,20
Sensor 2
network [N] 3
MER 2,5
[N R] 3,2

VooG, | i | a | Tme
229 16 6.6

1,121
5,397
391
573
8,843

42

42
5,776
16,759

25

36
3,217
431,649
38,193

1,184
10,662
427,363
171

5
6
/
6
12
11

DDA W W

26.1
191.1
24.2
413.2
438.9

3.7
4.6
31.8
210.5

47

[parameters] IM,®G, .| m
3 229 16

Client-server

(N failures) 4 1,121
[NI 5 5,397
Randomised % 2y 20 el
consensus 2,4,4 573
[N;R,K] 3,3, 20 8,843
Sensor 2 42
network [N] 3 42
MER 2,5 5,776

[N R] 3, 2 16,759

5 6.6

25 6 26.1

36 7 191.1

3,217 6 24.2
431,649 12 413.2
38,193 11 438.9
1,184 3 3.7
10,662 3 4.6
427,363 4 31.8
) 4 210.5

* Successfully learnt (small) assumptions in all cases

48

Experimental results (learning)

parametersl [oc, | jwi | i | Tme
3 229 16 6.6

. 5
Client-server
(N failures) 4 1,121 25 6 26.1
[N] 5.397 36 7 191.1
randomised 21320 391 3,217 6
consensus 2,4, 4 573 431,649 12 413.2
[N,R,K] 3,3, 20 8.843 38,193 11 438.9
network [N] 3 42 10,662 3 4.6
MER 2,5 5,776 427,363 4 31.8
[N R] 3,2 16,759 171 4 210.5

* In some cases, learning + compositional verification is faster
(than non-compositional verification, using PRISM) 49

Recent developments

- An alternative learning algorithm: NL* [Bollig et al.]
— learns residual finite-state automata (subclass of NFAs)
— can be exponentially smaller than corresponding DFA
— basic learning loop remains the same

— we need to determinise NFA for model checking; but still get
gains in some cases due to less equivalence queries (EQ)

Case study Compositional (L*) Compositional (NL*)
e ——l el L e
405.9

Client-server] 7 484.6
Client-serverN 5 7 5 [191.1| 8 5 201.9
Rand. cons. 2,4, 4 12 413.2 12 5 103.4
[N,R,K] 3, 3,20 11 6 438.9 15 5 411.3

MER 2, 5 4 3(31.8 7 5 154.4
[N R] 3, 2 4 31 210.5 - - memout ¢,

Recent developments...

M] = PZp] [A]]
<A]>Zp1 M2 <A2>Zp2

. Learning multiple assumptions |
— decompose into >2 components i
— using A/G rule (AsYM-N) |
— recursive application of learning loop i

(Ap=p, M, (G)=p,

— learn assumptions P>p, [A,] ... P>p, [A,]
M, |]...|IM, E P=p.[G]

— much better scalability...

R

Client-serverN memout 40.9
[N] 7 memout 164.7 1.7
3,5 memout 29.8 48.2
MER
[N R] 4.5 memout 122.9 memout
5,5 _memout 3,903.4 memout

51

Conclusions

Probabilistic model checking
— active research area, efficient tools, widely used
— but scalability is still the biggest challenge

Compositional probabilistic verification
— assume-guarantee framework for probabilistic automata
— reduction to (efficient) multi-objective model checking
— verified safety/performance on several large case studies
— cases where infeasible using non-compositional verification
— full automation: learning-based generation of assumptions

But this is only the beginning...

52

