

Automated Learning of Probabilistic Assumptions for Compositional Reasoning

Marta Kwiatkowska

Oxford University Computing Laboratory

FASE'11, Saarbrücken, April 2011

Joint work with: Lu Feng, Dave Parker, Gethin Norman, Hongyang Qu

Probabilistic verification

- Probabilistic verification
 - formal verification of systems exhibiting stochastic behaviour
- Why probability?
 - unreliability (e.g. component failures)
 - uncertainty (e.g. message losses/delays over wireless)
 - randomisation (e.g. in protocols such as Bluetooth, ZigBee)

Quantitative properties

- reliability, performance, quality of service, ...
- "the probability of an airbag failing to deploy within 0.02s"
- "the expected time for a network protocol to send a packet"
- "the expected power usage of a sensor network over 1 hour"

Model checking

Probabilistic model checking

Automatic verification of systems with probabilistic behaviour

Probabilistic model checking

- First algorithms proposed in 1980s
 - [Vardi, Courcoubetis, Yannakakis, ...]
 - algorithms [Hansson, Jonsson, de Alfaro] & first implementations
- 2000: tools ETMCC (MRMC) & PRISM released
 - PRISM: efficient extensions of symbolic model checking
 - ETMCC (now MRMC): model checking for continuous-time Markov chains [Baier, Hermanns, Haverkort, Katoen, ...]
- Selected advances in probabilistic model checking:
 - compositional verification [Segala, Lynch, Stoelinga, Vaandrager, ...]
 - probabilistic counterexample generation [Han/Katoen, Leue, ...]
 - abstraction (and CEGAR) for probabilistic models
 - · [Larsen, Hermanns, Wolf, Kwiatkowska, ...]
 - and much more...

Probabilistic model checking in action

- Bluetooth device discovery protocol
 - frequency hopping, randomised delays
 - low-level model in PRISM, based on detailed Bluetooth reference documentation
 - numerical solution of 32 Markov chains, each approximately 3 billion states

- analysed performance, identified worst-case scenarios
- Fibroblast Growth Factor (FGF) pathway
 - complex biological cell signalling pathway, key roles e.g. in healing, not yet fully understood
 - model checking (PRISM) & simulation (stochastic π -calculus), in collaboration with Biosciences at Birmingham
 - "in-silico" experiments: systematic removal of components
 - behavioural predictions later validated by lab experiments

Probabilistic model checking

What's involved

- specifying, constructing probabilistic models
- graph-based analysis: reachability + qualitative verification
- numerical solution, e.g. linear equations/linear programming

The state of the art

- fast/efficient techniques for a range of probabilistic models
- (mostly Markov chains, Markov decision processes)
- feasible for models of up to 10^7 states (10^{10} with symbolic)
- tool support exists and is widely used, e.g. PRISM, MRMC
- successfully applied to many application domains:
 - distributed randomised algorithms, communication protocols, security protocols, biological systems, quantum cryptography, ...

Probabilistic model checking

Some observations

- probabilistic model checking typically more expensive than the non-probabilistic case: need to build *and solve* model
- most useful kinds results are quantitative (e.g. probability values/bounds) study trends, find anomalies, ...
- successfully used by non-experts for many application domains, but full automation and good tool support essential

Some key challenges

- scalability and efficiency: larger models, verified faster
- more realistic models (real-time behaviour, continuous dynamics, stochastic hybrid systems) and languages
- beyond model checking: parametric methods, synthesis, ...
- This talk: scalability/efficiency via compositional reasoning

Overview

- Probabilistic model checking
 - probabilistic models: probabilistic automata
 - property specifications: probabilistic safety properties
 - multi-objective model checking
- Compositional probabilistic verification
 - assume-guarantee reasoning
 - assume-guarantee for probabilistic systems
 - implementation & results
- Automated generation of assumptions
 - L* and its application to compositional verification
 - generating probabilistic assumptions
 - implementation, results & recent progress

Conclusions

Probabilistic models

- Discrete-time Markov chains (DTMCs)
 - discrete states + probability
 - for: randomisation, component failures, unreliable media
- Markov decision processes (MDPs)

- Probabilistic automata (PAs) [Segala]
 - discrete states + probability + nondeterminism
 - for: concurrency, control, under-specification, abstraction
- Continuous-time Markov chains (CTMCs)
- Probabilistic timed automata (PTAs)
 - and many other variants...
 - add notions of real-time behaviour to the above models

Probabilistic automata (PAs)

- Model nondeterministic as well as probabilistic behaviour
 very similar to Markov decision processes (MDPs)
- A probabilistic automaton is a tuple $M = (S, s_{init}, \alpha_M, \delta_M)$:
 - **S** is the state space
 - $-s_{init} \in S$ is the initial state
 - α_M is the action alphabet
 - $\delta_M \subseteq S \times \alpha_M \times \text{Dist}(S)$ is the transition probability relation
 - Dist(S) is set of all probability distributions over set S

- Parallel composition: M₁ || M₂
 - CSP style synchronise over common actions

Probabilistic model checking for PAs

- To reason formally about PAs, we use adversaries
 - an adversary σ resolves nondeterminism in a PA M
 - also called "scheduler", "strategy", "policy", ...
 - makes a (possibly randomised) choice, based on history
 - induces probability measure Pr_M^{σ} over (infinite) paths
 - Property specifications (linear-time)
 - specify some measurable property ϕ of paths (e.g. in LTL)
 - $Pr_M^{\sigma}(\phi)$ gives probability of ϕ under adversary σ
 - best-/worst-case analysis: quantify over all adversaries
 - $\text{ e.g. } M \vDash P_{\geq p}[\Box(req \rightarrow \Diamond ack)] \Leftrightarrow Pr_M^{\sigma}(\Box(req \rightarrow \Diamond ack)) \geq p \text{ for all } \sigma$
 - or just compute e.g. $Pr_{M}^{min}(\varphi) = inf \{ Pr_{M}^{\sigma}(\varphi) \mid \sigma \in Adv_{M} \}$
 - efficient algorithms and tools exist
 - (but scalability is always an issue)

- Two components, each a probabilistic automaton:
 - M_1 : sensor detects fault and sends warn/shutdown signals
 - M2: device to be shut down (may fail if no warning sent)

Safety properties

- Safety property: language of infinite words (over actions)
 - characterised by a set of "bad prefixes" (or "finite violations")
 - i.e. finite words of which any extension violates the property

Regular safety property

- bad prefixes are represented by a regular language
- property A represented by an *error automaton* A_{err},
 - a deterministic finite automaton (DFA) storing bad prefixes

Probabilistic safety properties

- A probabilistic safety property P_{≥p}[A] comprises
 - a regular safety property A + a rational probability bound p
 - "the (minimum) probability of satisfying A must be at least p"
 - $\mathsf{M} \vDash \mathsf{P}_{\geq p}[\mathsf{A}] \iff \mathsf{Pr}_{\mathsf{M}}^{\sigma}(\mathsf{A}) \geq p \text{ for all } \sigma \in \mathsf{Adv}_{\mathsf{M}} \iff \mathsf{Pr}_{\mathsf{M}}^{\min}(\mathsf{A}) \geq p$
 - or "the (max.) probability of violating A must be at most 1-p"
- Examples:
 - "warn occurs before shutdown with probability at least 0.8"
 - "the probability of a failure occurring is at most 0.02"
 - "probability of terminating within k time-steps is at least 0.75"
- Model checking:
 - construct (synchronous) PA-DFA product $M \otimes A_{err}$
 - compute probability of reaching "accept" in product PA

• Does probabilistic safety property $P_{\geq 0.8}$ [A] hold in M_1 ?

PA M₁ ("sensor")

• Does probabilistic safety property $P_{\geq 0.8}$ [A] hold in M_1 ?

Product PA M₁ ⊗ A_{err}

Multi-objective PA model checking

- Study trade-off between several different objectives
 - existential queries: does there \underline{exist} adversary σ such that:
 - $Pr_M^{\sigma}(\Box(queue_size < 10)) > 0.99 \land Pr_M^{\sigma}(\Diamond flat_battery) < 0.01$
 - useful for synthesising controllers
- Multi-objective PA model checking
 - [Etessami/Kwiatkowska/Vardi/Yannakakis, TACAS'07]
 - LTL formulae $\Phi_1, ..., \Phi_k$ and probability bounds $\sim_1 p_1, ..., \sim_k p_k$
 - check if $\exists \sigma \in Adv_M$ s.t. $Pr_M^{\sigma}(\phi_1) \sim p_1 \wedge \dots \wedge Pr_M^{\sigma}(\phi_k) \sim p_k$
 - construct product of automata for M, Φ_1, \dots, Φ_k
 - then solve linear programming (LP) problem
 - the resulting adversary σ can obtained from LP solution
 - note: σ may be randomised (unlike the single objective case)

Multi-objective PA model checking

- Consider the two objectives ◊D and ◊E in the PA below
 - i.e. the trade-off between the probabilities $Pr(\Diamond D)$ and $Pr(\Diamond E)$
 - an adversary resolves the choice between a/b/c
 - increasing the probability of reaching one target decreases the probability of reaching the other

Multi-objective PA model checking

- Need to consider all randomised adversaries
 - for example, is there an adversary σ such that:
 - $Pr(\Diamond D) > 0.2 \land Pr(\Diamond E) > 0.6$

Overview

- Probabilistic model checking
 - probabilistic automata
 - property specification + probabilistic safety properties
 - multi-objective model checking
- Compositional probabilistic verification
 - assume-guarantee reasoning
 - assume-guarantee for probabilistic systems
 - implementation & results
- Automated generation of assumptions
 - L* and its application to compositional verification
 - generating probabilistic assumptions
 - implementation & results
- Conclusions, current & future work

Compositional verification

Goal: scalability through modular verification

- e.g. decide if $M_1 || M_2 \models G$
- by analysing M_1 and M_2 separately
- Assume-guarantee (A/G) reasoning
 - use assumption A about the context of a component M_2
 - $\langle A \rangle M_2 \langle G \rangle$ "whenever M_2 is part of a system satisfying A, then the system must also guarantee G"
 - example of asymmetric (non-circular) A/G rule:

```
\begin{array}{c}
\mathsf{M}_1 \vDash \mathsf{A} \\
\overset{\langle \mathsf{A} \rangle}{\mathsf{M}_2} \langle \mathsf{G} \rangle \\
\hline
\mathsf{M}_1 \mid \mid \mathsf{M}_2 \vDash \mathsf{G}
\end{array}
```

[Pasareanu/Giannakopoulou/et al.]

AG rules for probabilistic systems

 How to formulate AG rules for probabilistic automata?

- Key questions:
 - 1. What form do assumptions A take?
 - needs to be compositional
 - needs to be efficient to check
 - needs to allow compact assumptions
 - 2. How do we generate suitable assumptions?
 . preferably in a fully automated fashion
 - 3. Can we get "quantitative" results?
 i.e. numerical values, rather than "yes"/"no"

A/G rules for probabilistic systems

- How to formulate A/G rules for probabilistic automata?
- $\begin{array}{c}
 M_1 \vDash A \\
 \langle A \rangle M_2 \langle G \rangle \\
 \hline
 M_1 \mid \mid M_2 \vDash G
 \end{array}$

- Key questions:
 - 1. What form do assumptions A take?
 - needs to be compositional
 - $\cdot\,$ needs to be efficient to check
 - needs to allow compact assumptions
 - various compositional relations exist
 - \cdot e.g. strong/weak (probabilistic) (bi)simulation
 - but these are either too fine (difficult to get small assumptions) or expensive to check
 - ▷ here, we use: probabilistic safety properties [TACAS'10]
 - less expressive, but compact and efficient
 - (see also generalisation to liveness/rewards [TACAS'11])

A/G rules for probabilistic systems

 How to formulate A/G rules for probabilistic automata?

- Key questions:
 - 2. How do we generate suitable assumptions?
 - $\cdot\,$ preferably in a fully automated fashion
 - algorithmic learning (based on L* algorithm)
 adapt techniques for (non-probabilistic) assumptions
 - 3. Can we get "quantitative" results?
 - $\cdot\,$ i.e. numerical values, rather than "yes"/"no"
 - ▷ yes: generate lower/upper bounds on probabilities

Probabilistic assume guarantee

- Assume-guarantee triples $\langle A \rangle_{\geq p_A} M \langle G \rangle_{\geq p_C}$ where:
 - M is a probabilistic automaton
 - $P_{\geq p_A}[A]$ and $P_{\geq p_G}[G]$ are probabilistic safety properties
- Informally:
 - "whenever M is part of a system satisfying A with probability at least p_A , then the system is guaranteed to satisfy G with probability at least p_G "
- Formally:
 - $\ \forall \sigma \in Adv_{M'} \ (\ Pr_{M'}^{\sigma}(A) \geq p_A \rightarrow Pr_{M'}^{\sigma}(G) \geq p_G \)$
 - where M' is M with its alphabet extended to include α_A
 - reduces to multi-objective model checking on M'
 - look for adversary satisfying assumption but not guarantee
 - i.e. can check $\langle A \rangle_{\geq p_A} M \langle G \rangle_{\geq p_G}$ efficiently via LP problem

An assume-guarantee rule

- The following asymmetric proof rule holds
 - (asymmetric = uses one assumption about one component)

$$\begin{split} & \mathsf{M}_{1} \vDash \mathsf{P}_{\geq \mathsf{p}_{\mathsf{A}}}[\mathsf{A}] \\ & \underbrace{\langle \mathsf{A} \rangle_{\geq \mathsf{p}_{\mathsf{A}}} \mathsf{M}_{2} \langle \mathsf{G} \rangle_{\geq \mathsf{p}_{\mathsf{G}}}}_{\mathsf{M}_{1}} || \mathsf{M}_{2} \vDash \mathsf{P}_{\geq \mathsf{p}_{\mathsf{G}}}[\mathsf{G}] \end{split} \tag{ASYM}$$

- So, verifying $M_1 || M_2 \models P_{\ge p_G}[G]$ requires:
 - premise 1: $M_1 \models P_{\ge p_A}[A]$ (standard model checking)
 - premise 2: $\langle A \rangle_{\geq p_A} M_2 \langle G \rangle_{\geq p_G}$ (multi-objective model checking)
- Potentially much cheaper if |A| much smaller than $|M_1|$

• Does probabilistic safety property $P_{\geq 0.98}$ [G] hold in $M_1 || M_2$?

• Does probabilistic safety property $P_{\geq 0.98}$ [G] hold in $M_1 || M_2$?

• Premise 1: Does $M_1 \models P_{\geq 0.8}$ [A] hold? Yes (earlier example)

PA M₁ ("sensor")

Product PA M₁⊗A_{err}

• Premise 2: Does $\langle A \rangle_{\geq 0.8} M_2 \langle G \rangle_{\geq 0.98}$ hold? Yes...

• Premise 2: Does $\langle A \rangle_{\geq 0.8} M_2 \langle G \rangle_{\geq 0.98}$ hold? Yes...

Other assume-guarantee rules

Multiple assumptions:

$$\begin{split} \mathbf{M}_{1} &\models P_{\geq} p_{1} \left[\mathbf{A}_{1} \right] \land \ldots \land P_{\geq} p_{k} \left[\mathbf{A}_{k} \right] \\ & \frac{\langle \mathbf{A}_{1}, \ldots, \mathbf{A}_{k} \rangle_{\geq} p_{1, \ldots,} p_{k} \left[\mathbf{M}_{2} \left\langle \mathbf{G} \right\rangle_{\geq} p_{G} \right]}{\mathbf{M}_{1} \mid \mid \mathbf{M}_{2} \models P_{\geq} p_{G} \left[\mathbf{G} \right]} \end{split} \text{ (Asym-Mult)}$$

Multiple components (chain):

$$\begin{split} \mathsf{M}_{1} &\models \mathsf{P}_{\geq}\mathsf{p}_{1}\left[\mathsf{A}_{1}\right] \\ &\langle \mathsf{A}_{1} \rangle_{\geq} \mathsf{p}_{1} \ \mathsf{M}_{2} \ \langle \mathsf{A}_{2} \rangle_{\geq} \mathsf{p}_{2} \\ & \dots \qquad (\mathsf{ASYM-N}) \\ &\langle \mathsf{A}_{n} \rangle_{\geq} \mathsf{p}_{n} \ \mathsf{M}_{n} \ \langle \mathsf{G} \rangle_{\geq} \mathsf{p}_{\mathsf{G}} \\ \hline \mathsf{M}_{1} \ || \ \dots \ || \ \mathsf{M}_{n} \vDash \mathsf{P}_{\geq} \mathsf{p}_{\mathsf{G}}\left[\mathsf{G}\right] \end{split}$$

• Circular rule:

$$\begin{split} & \mathsf{M}_{2} \vDash \mathsf{P}_{\geq} \mathsf{p}_{2} \left[\mathsf{A}_{2} \right] \\ & \langle \mathsf{A}_{2} \rangle_{\geq} \mathsf{p}_{2} \left[\mathsf{M}_{1} \left\langle \mathsf{A}_{1} \right\rangle_{\geq} \mathsf{p}_{1} \right] \\ & \langle \mathsf{A}_{1} \rangle_{\geq} \mathsf{p}_{1} \left[\mathsf{M}_{2} \left\langle \mathsf{G} \right\rangle_{\geq} \mathsf{p}_{G} \right] \end{split} \tag{CIRC}$$

 $\mathsf{M}_1 \mid \mid \mathsf{M}_2 \vDash \mathsf{P}_{\geq \mathsf{p}_{\mathsf{G}}}[\mathsf{G}]$

Asynchronous components:

 $\begin{array}{l} \langle \boldsymbol{A}_1 \rangle {\geq} \boldsymbol{p}_1 \ \boldsymbol{M}_1 \ \langle \boldsymbol{G}_1 \rangle {\geq} \boldsymbol{q}_1 \\ \langle \boldsymbol{A}_2 \rangle {\geq} \boldsymbol{p}_2 \ \boldsymbol{M}_2 \ \langle \boldsymbol{G}_2 \rangle {\geq} \boldsymbol{q}_2 \end{array} \text{ (ASYNC)} \end{array}$

 $\langle \textbf{A}_1, \textbf{A}_2 \rangle {\geq} \textbf{p}_1 \textbf{p}_2 ~ \textbf{M}_1 ~ \left| \right| ~ \textbf{M}_2 ~ \langle \textbf{G}_1 \lor \textbf{G}_2 \rangle {\geq} (\textbf{q}_1 {+} \textbf{q}_2 {-} \textbf{q}_1 \textbf{q}_2)$

Implementation + Case studies

- Implemented using:
 - extension of PRISM model checker
 - added support for multi-objective model checking
 - built-in support for assume-guarantee in progress
- Two large case studies
 - randomised consensus algorithm (Aspnes & Herlihy)
 - minimum probability consensus reached by round R
 - Zeroconf network protocol
 - maximum probability network configures incorrectly
 - minimum probability network configured by time T

Experimental results

Case study [parameters]		Non-compo	sitional	Compositional		
		States	Time (s)	LP size	Time (s)	
	3, 2	1,418,545	18,971	40,542	29.6	
consensus	3,20	39,827,233	time-out	40,542	125.3	
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1	
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9	
ZeroConf [K]	4	313,541	103.9	20,927	21.9	
	6	811,290	275.2	40,258	54.8	
	8	1,892,952	592.2	66,436	107.6	
ZeroConf time-bounded [K, T]	2,10	65,567	46.3	62,188	89.0	
	2,14	106,177	63.1	101,313	170.8	
	4,10	976,247	88.2	74,484	170.8	
	4,14	2,288,771	128.3	166,203	430.6	

Experimental results

Case study		Non-compo	Compositional			
[parameter:	5]	States	Time (s)	LP size	Tim	e (s)
	3, 2	1,418,545	18,971	40,542	ſ	29.6
consensus	3,20	39,827,233	time-out	40,542		125.3
(3 processes)	4, 2	150,487,585	78,955	141,168		376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168	·	471.9
	4	313,541	103.9	20,927		21.9
ZeroConf [K]	6	811,290	275.2	40,258		54.8
[17]	8	1,892,952	592.2	66,436		107.6
ZeroConf time-bounded [K, T]	2,10	65,567	46.3	62,188		89.0
	2,14	106,177	63.1	101,313		170.8
	4,10	976,247	88.2	74,484		170.8
	4,14	2,288,771	128.3	166,203		430.6

• Faster than conventional model checking in a number of cases 37

Experimental results

Case study [parameters]		Non-compo	sitional	Compositional		
		States	Time (s)	LP size	Time (s)	
Developsional	3, 2	1,418,545	18,971	40,542	29.6	
consensus	3,20	39,827,233	time-out	40,542	125.3	
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1	
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9	
	4	313,541	103.9	20,927	21.9	
ZeroConf [K]	6	811,290	275.2	40,258	54.8	
[17]	8	1,892,952	592.2	66,436	107.6	
ZeroConf time-bounded [K, T]	2,10	65,567	46.3	62,188	89.0	
	2,14	106,177	63.1	101,313	170.8	
	4,10	976,247	88.2	74,484	170.8	
	4,14	2,288,771	128.3	166,203	430.6	

• Verified instances where conventional model checking is infeasible₃₈

Overview

- Probabilistic model checking
 - probabilistic automata
 - property specification + probabilistic safety properties
 - multi-objective model checking
- Compositional probabilistic verification
 - assume-guarantee reasoning
 - assume-guarantee for probabilistic systems
 - implementation & results
- Automated generation of assumptions
 - L* and its application to compositional verification
 - generating probabilistic assumptions
 - implementation & results

Generating assumptions

- Can model check M₁||M₂ compositionally
 - but this relies on the existence of a suitable assumption P≥p_A[A]

- 1. Does such an assumption always exist?
- 2. When it does exist, can we generate it automatically?
- Our approach: use algorithmic learning techniques
 - inspired by non-probabilistic AG work of [Pasareanu et al.]
 - uses L* algorithm to learn finite automata for assumptions
 - we use a modified version of L*
 - to learn probabilistic assumptions for rule (Asym) [QEST'10]

The L* learning algorithm

- The L* algorithm [Angluin]
 - learns an unknown regular language L, as a (minimal) DFA
- Based on "active" learning
 - relies on existence of a "teacher" to guide the learning
 - answers two type of queries: "membership" and "equivalence"
 - membership: "is trace (word) t in the target language L?"
 - $\cdot\,$ stores results of membership queries in observation table
 - $\cdot\,$ based on these, generates conjectures A for the automata
 - equivalence: "does automata A accept the target language L"?
 - $\cdot\,$ if not, teacher must return counterexample ${\bf c}$
 - (c is a word in the symmetric difference of L and L(A))

The L* learning algorithm

L* for assume-guarantee

- Breakthrough in automated compositional verification
 - use of L* to learn assumptions for A/G reasoning
 - [Pasareanu/Giannakopoulou/et al.]
 - uses notion of "weakest assumption" about a component that suffices for compositional verification (always exists)
 - weakest assumption is the target regular language
- Fully automated L* learning loop
 - model checker plays role of teacher, returns counterexamples
 - in practice, can usually stop early: either with a simpler (stronger) assumption or by refuting the property
- Successfully applied to several large case studies
 - does particularly well when assumption/alphabet are small
 - much recent interest in learning for verification...

Probabilistic assumption generation

- Goal: automate A/G rule (Аsyм)
 - generate probabilistic assumption $P_{\geq p_A}[A]$
 - for checking property $P_{\geq p_G}[G]$ on $M_1 \parallel M_2$
- Reduce problem to generation of non-probabilistic assumption A

- then (if possible) find lowest p_A such that premises 1 & 2 hold
- in fact, for fixed A, we can generate lower and upper bounds on $\Pr_{M_1||M_2}^{min}$ (G), which may suffice to verify/refute $P_{\geq p_G}$ [G]

Use adapted L* to learn non-probabilistic assumption A

- note: there is no "weakest assumption" (AG rule is incomplete)
- but can generate sequence of conjectures for A in similar style
- "teacher" based on a probabilistic model checker (PRISM), feedback is from probabilistic counterexamples [Han/Katoen]
- three outcomes of loop: "true", "false", lower/upper bounds

Probabilistic assumption generation

Implementation + Case studies

Implemented using:

- extension of PRISM model checker
- libalf learning library [Bollig et al.]

Several case studies

- client-server (A/G model checking benchmark + failures)
 . minimum probability mutual exclusion not violated
- randomised consensus algorithm [Aspnes & Herlihy]
 - $\cdot\,$ minimum probability consensus reached by round R
- sensor network [QEST'10]
 - $\cdot\,$ minimum probability of processor error occurring
- Mars Exploration Rovers (MER) [NASA]
 - minimum probability mutual exclusion not violated in k cycles

Experimental results (learning)

Case study [parameters]		Component	t sizes	Compositional		
		$ M_2 \otimes G_{err} $	M ₁	A ^{err}	Time (s)	
Client-server	3	229	16	5	6.6	
(N failures)	4	1,121	25	6	26.1	
[N]	5	5,397	36	7	191.1	
Randomised consensus [N,R,K]	2, 3, 20	391	3,217	6	24.2	
	2, 4, 4	573	431,649	12	413.2	
	3, 3, 20	8,843	38,193	11	438.9	
Sensor	2	42	1,184	3	3.7	
network [N]	3	42	10,662	3	4.6	
MER [N R]	2, 5	5,776	427,363	4	31.8	
	3, 2	16,759	171	4	210.5	

Experimental results (learning)

Case study [parameters]		Component	Compositional			
		$ M_2 \otimes G_{err} $ $ M_1 $		A ^{err}		Time (s)
Client-server	3	229	16		5	6.6
(N failures)	4	1,121	25		6	26.1
[N]	5	5,397	36		7	191.1
Randomised consensus [N,R,K]	2, 3, 20	391	3,217		6	24.2
	2, 4, 4	573	431,649		12	413.2
	3, 3, 20	8,843	38,193		11	438.9
Sensor	2	42	1,184		3	3.7
network [N]	3	42	10,662		3	4.6
MER [N R]	2, 5	5,776	427,363		4	31.8
	3, 2	16,759	171		4	210.5

• Successfully learnt (small) assumptions in all cases

Experimental results (learning)

Case study		Component	t sizes	Compositional		
[parame	ters]	$ M_2 \otimes G_{err} $	M ₁	A ^{err}	Time (s)	
Client-server	3	229	16	5	6.6	
(N failures)	4	1,121	25	6	26.1	
[N]	5	5,397	36	7	191.1	
Randomised consensus [N,R,K]	2, 3, 20	391	3,217	6	24.2	
	2, 4, 4	573	431,649	12	413.2	
	3, 3, 20	8,843	38,193	11	438.9	
Sensor	2	42	1,184	3	3.7	
network [N]	3	42	10,662	3	4.6	
MER [N R]	2,5	5,776	427,363	4	31.8	
	3, 2	16,759	171	4	210.5	

 In some cases, learning + compositional verification is faster (than non-compositional verification, using PRISM)

Recent developments

- An alternative learning algorithm: NL* [Bollig et al.]
 - learns residual finite-state automata (subclass of NFAs)
 - can be exponentially smaller than corresponding DFA
 - basic learning loop remains the same
 - we need to determinise NFA for model checking; but still get gains in some cases due to less equivalence queries (EQ)

Case study [parameters]		Compositional (L*)			Compositional (NL*)		
		A ^{err}	EQ	Time (s)	A ^{err}	EQ	Time (s)
Client-server1	7	9	7	484.6	10	5	405.9
Client-serverN	5	7	5	191.1	8	5	201.9
Rand. cons. [N,R,K]	2, 4, 4	12	8	413.2	12	5	103.4
	3, 3, 20	11	6	438.9	15	5	411.3
MER [N R]	2,5	4	3	31.8	7	5	154.4
	3, 2	4	3	210.5	-	-	memout

50

Recent developments...

- Learning multiple assumptions
 - decompose into >2 components
 - using A/G rule (Азүм–N)
 - recursive application of learning loop
 - learn assumptions $P \ge p_1[A_1] \dots P \ge p_n[A_n]$
 - much better scalability...

 $\mathbf{M}_1 \models \mathbf{P}_{\geq \mathbf{p}_1}[\mathbf{A}_1]$ $\langle \mathbf{A}_1 \rangle \ge \mathbf{p}_1 \mathbf{M}_2 \langle \mathbf{A}_2 \rangle \ge \mathbf{p}_2$ $\langle A_n \rangle {\geq} \mathsf{p}_n \; M_n \; \langle G \rangle {\geq} \mathsf{p}_G$ $M_1 || ... || M_n \vDash P_{\geq p_G} [G]$

Case study [parameters]		(Asym)	(Asym-N)	Non-comp.
		Time (s)	Time (s)	Time (s)
Client–serverN [N]	6	memout	40.9	0.7
	7	memout	164.7	1.7
MER [N R]	3,5	memout	29.8	48.2
	4, 5	memout	122.9	memout
	5,5	memout	3,903.4	memout

Conclusions

Probabilistic model checking

- active research area, efficient tools, widely used
- but scalability is still the biggest challenge

Compositional probabilistic verification

- assume-guarantee framework for probabilistic automata
- reduction to (efficient) multi-objective model checking
- verified safety/performance on several large case studies
- cases where infeasible using non-compositional verification
- full automation: learning-based generation of assumptions
- But this is only the beginning...