
ECSS 2014, Wroclaw, 14th October 2014
Based on 2012 Milner Lecture, University of Edinburgh

Sensing everywhere:

on quantitative verification for 
ubiquitous computing

Marta Kwiatkowska
University of Oxford



2

Where are computers?
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Once upon a time, back in the 1980s…
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Smartphones, tablets, …

Access to services

-Email
-Banking
-Shopping
-Directions
…
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Smart homes

Internet of Things

-Home network
-Internet-enabled 
appliances
-Remote control
-Smart energy 
management
…



6

Smart cars

Intelligent vehicles

-Self-parking cars
-Driverless cars
-Search and rescue
-Unmanned 
missions
…
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Smart wearables

Personalised health 
monitoring

-Heart rate
-Accelerometer
-Health tracking
-Fitness apps
…
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Smart implantable medical devices…

Monitoring and 
treatment of 
diseases

-Glucose level
-Heart rate
-Blood pressure
…
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Ubiquitous computing

• Computing without computers

• Populations of sensor-enabled computing devices that are

− embedded in the environment, or even in our body

− sensors for interaction and control of the environment

− software controlled, can communicate

− operate autonomously, unattended

− devices are mobile, handheld or wearable

− miniature size, limited resources, bandwidth and memory

− organised into communities

• Unstoppable technological progress

− smaller and smaller devices, more and more 
complex scenarios, increasing take up…
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Perspectives on ubiquitous computing

• Technological: calm technology [Weiser 1993]

− “The most profound technologies are those that
disappear. They weave themselves into everyday 
life until they are indistinguishable from it.”

• Usability: ‘everyware’ [Greenfield 2008]

− Hardware/software evolved into ‘everyware’: 
household appliances that do computing

• Scientific: “Ubicomp can empower us, if we can 
understand it” [Milner 2008]

− “What concepts, theories and tools are needed 
to specify and describe ubiquitous systems, 

their subsystems and their interaction?”

• This lecture: from theory to practice, for Ubicomp

− emphasis on practical, algorithmic techniques and 
industrially-relevant tools  
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Are we safe?

• Embedded software at the heart of the device

• What if…

− self-parking car software crashes during the manouvre

− health monitoring device fails to trigger alarm



12

Are we safe?

• Embedded software at the heart of the device

• What if…

− self-parking car software crashes during the manouvre

− health monitoring device fails to trigger alarm

• Imagined or real?

− February 2014: Toyota recalls 1.9 million Prius hybrids due to 
software problems

− Jan-June 2010 “Killed by code”: FDA recalls 23 defective 
cardiac pacemaker devices because they can cause adverse 
health consequences or death, six likely caused by software 
defects
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Software quality assurance

• Software is an integral component

− performs critical, lifesaving functions and basic daily tasks

− software failure costly and life endangering

• Need quality assurance methodologies

− model-based development

− rigorous software engineering

• Use formal techniques to produce guarantees for:

− safety, reliability, performance, resource usage, trust, …

− (safety) “heart rate never drops below 30 BPM”

− (energy) “energy usage is below 2000 mA per minute”

• Focus on automated, tool-supported methodologies

− automated verification via model checking

− quantitative/probabilistic verification
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Quantitative (probabilistic) verification then

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [ F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative 
properties of probabilistic system models
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Why quantitative verification?

• Real ubicomp software/systems are quantitative:

− Real-time aspects

• hard/soft time deadlines

− Resource constraints

• energy, buffer size, number of unsuccessful transmissions, etc

− Randomisation, e.g. in distributed coordination algorithms

• random delays/back-off in Bluetooth, Zigbee

− Uncertainty, e.g. communication failures/delays

• prevalence of wireless communication

• Analysis “quantitative” & “exhaustive” 

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies
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Quantitative properties

• Simple properties

− P≤0.01 [ F “fail” ] – “the probability of a failure is at most 0.01”

• Analysing best and worst case scenarios

− Pmax=? [ F≤10 “outage” ] – “worst-case probability of an outage 
occurring within 10 seconds, for any possible scheduling of 
system components”

− P=? [ G
≤0.02 !“deploy” {“crash”}{max} ] - “the maximum 

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward/cost-based properties

− R{“time”}=? [ F “end” ] – “expected algorithm execution time”

− R{“energy”}max=? [ C≤7200 ] – “worst-case expected energy 
consumption during the first 2 hours”
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From verification to synthesis…

• Automated verification aims to establish if a property holds 
for a given model

• Can we find a model so that a property is satisfied?

− difficult, especially for quantitative properties…

− advantage: correct-by-construction

• We initially focus on simpler problems

− strategy synthesis

− parameter synthesis

− template-based synthesis

• Many application domains

− robotics (controller synthesis from LTL/PCTL)

− security (generating attacks)

− dynamic power management (optimal policy synthesis)
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Historical perspective

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking 
[Kwiatkowska, Norman, Parker, …]

− ETMCC (now MRMC): model checking for continuous-time Markov 
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains, 
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols, 
biological systems, quantum cryptography, planning…

− genuine flaws found and corrected in real-world systems
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Tool support: PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

− continuously updated and extended

• Support for four probabilistic models:

− models: DTMCs, CTMCs, MDPs, PTAs, …

− properties: PCTL, CSL, LTL, PCTL*, costs/rewards …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

− adopted and used across a multitude of application domains

− 90+ case studies

• See: http://www.prismmodelchecker.org/
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The challenge of ubiquitous computing

• Quantitative verification is not powerful enough!

• Necessary to model communities and cooperation

− add self-interest and ability to form coalitions

• Need to monitor and control physical processes

− extend models with continuous flows

• Important to interface to biological systems

− consider computation at the molecular scale…

• In this lecture, focus on the above directions

− each demonstrating transition from theory to practice

− formulating novel verification algorithms

− resulting in new software tools, beyond PRISM…
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Focus on…

Cooperation & competition

•Self-interest

•Autonomy

Physical processes

•Monitoring

•Control

Natural world

•Biosensing

•Molecular programming
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Modelling cooperation & competition

• Ubicomp systems are organised into communities

− self-interested agents, goal driven

− need to cooperate, e.g. in order to share bandwidth

− possibly opposing goals, hence competititive behaviour

− incentives to increase motivation and discourage selfishness

• Many typical scenarios

− e.g. user-centric networks, energy management or sensor 
network co-ordination

• Natural to adopt a game-theoretic view

− widely used in computer science, economics, …

− here, distinctive focus on algorithms and temporal  logic 
specification/goals

• Research question: can we automatically verify cooperative 
and competitive behaviour? synthesise winning strategies?
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Case study: Energy management

• Energy management protocol for Microgrid

− Microgrid: local energy management

− randomised demand management protocol
[Hildmann/Saffre'11]

− probability: randomisation, demand model, …

• Existing analysis

− simulation-based, 

− assumes all clients are unselfish

• Our analysis

− stochastic multi-player game

− clients can cheat (and cooperate)

− exposes protocol weakness

− propose/verify simple fix

Verification of Competitive Stochastic Systems. Chen et al, Formal Methods in System 
Design 43(1): 61-92 (2013).
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Results: Competitive behaviour

• The original algorithm does not discourage selfish 
behaviour…

All follow alg.

No use of alg.

Deviations of
varying size

Strong 
incentive to 
deviate
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Results: Competitive behaviour

• Algorithm fix: simple punishment mechanism

− distribution manager can cancel some tasks

All follow alg.

Deviations of
varying size

Better to 
collaborate
(with all)
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Case study: Autonomous urban driving

• Inspired by DARPA challenge

− represent map data as a stochastic 
game, with environment able to
select hazards 

− express goals as conjunctions of 
probabilistic and reward properties

− e.g. “maximise probability of 
avoiding hazards and minimise time
to reach destination”

• Solution

− synthesise a probabilistic strategy
to achieve the multiobjective goal

− enable the exploration of trade-offs between subgoals

• Applied to synthesise driving strategies for English villages

− being developed as extension of PRISM

Synthesis for Multi-Objective Stochastic Games: An Application to Autonomous Urban 
Driving. Chen et al, In Proc. QEST, pages 322-337, IEEE CS Press. 2013. 
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Tool support: PRISM-games

• Prototype model checker for stochastic games

− PRISM extended, adding games to the repertoire of models

− property specification language based on ATL (Alternating 
Temporal Logic), incl. multiobjective

− e.g. “coalition C has a strategy to ensure that the probability 
of success is above 0.9, regardless of strategies of other 
players”

− verification and strategy synthesis

• Further case studies

− collective decision making for sensor networks

− user-centric networks

− reputation-based protocols

• Available at:

− http://www.prismmodelchecker.org/games/
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Focus on…

Cooperation & competition

•Self-interest

•Autonomy

Physical processes

•Monitoring

•Control

Natural world

•Biosensing

•Molecular programming
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Monitoring physical processes

• Ubicomp systems monitor and control physical processes

− electrical signal, velocity, distance,  chemical concentration, …

− often modelled by non-linear differential equations

− necessary to extend models with continuous flows

• Many typical scenarios

− e.g. smart energy meters, automotive control, closed loop 
medical devices

• Natural to adopt hybrid system models, which combine 
discrete mode switches and continuous variables

− widely used in embedded systems, control engineering …

− probabilistic extensions needed to model failure

• Research question: can we apply quantitative verification to 
establish correctness of implantable cardiac pacemakers? 
synthesise timing parameters?
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Function of the heart

• Maintains blood circulation by contracting the atria and 
ventricles

− spontaneously generates electrical signal (action potential)

− conducted through cellular pathways into atrium, causing 
contraction of atria then ventricles

− repeats, maintaining 60-100 beats per minute

− a real-time system, and natural pacemaker

• Abnormalities in 
electrical 
conduction

− missed/slow 
heart beat

− can be corrected by 
by implantable 
pacemakers
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Implantable pacemaker

• How it works

− reads electrical (action potential) signals through sensors 
placed in the right atrium and right ventricle

− monitors the timing of heart beats 
and local electrical activity

− generates artificial pacing signal
as necessary

• Widely used, replaced 
every few years

• Core specification
by Boston Scientific

• Basic pacemaker can
be modelled as a 
network of timed 
automata [Ziang et al]
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Quantitative verification for pacemakers

• Model the pacemaker and the heart, compose and verify



33

Quantitative verification for pacemakers
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Quantitative verification for pacemakers
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Quantitative verification for pacemakers

• Given a model of the pacemaker and a heart model, 
compose and verify against extended MTL (Metric Temporal 
Logic) properties (syntax omitted):

− basic safety: “for any 1 minute window, the number of heart 
beats lies in the interval [60,100]”

− energy: “for a given time point T, the energy consumed is less 
than the given energy level V”

• But models are multi-component, hybrid, nonlinear, and 
can contain stochasticity!

• Methodologies

− rely on simulation and parameterise by simulation step

− employ approximate verification based on finitely many 
simulation runs: estimate probability of satisfying property 
from Chernoff bound, for some confidence interval

− overapproximate reach sets using annotations
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Correction of Bradycardia

Blue lines original (slow) heart beat, red are induced (correcting) 
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Energy consumption

Battery charge in 1 min under Bradycardia, varying timing parameters.

Quantitative Verification of Implantable Cardiac Pacemakers over Hybrid Heart Models. 
Chen et al, Information and Computation, 2014



38

Alternans in the heart

We plot the reach set from a set of initial states with pacing rate of 
1000 msec and observe that the AP durations do not change (a), 
whereas at a pacing rate of 600 msec (b) the AP durations alternate.

Invariant Verification of Nonlinear Hybrid Automata Networks of Cardiac Cells. Huang et al
In CAV, volume 8559 of LNCS, pages 373-390, Springer, 2014.
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Tool support: MATLAB Simulink

• Develop a model-based framework

− models are networks of timed or hybrid I/O automata, realised 
in Matlab Simulink

• quantitative: energy usage, probabilistic switching

• patient-specific parameterisation

• Functionality

− plug-and-play composition of heart and pacemaker models

− (approximate) quantitative verification against variants of MTL

• to ensure property is satisfied

− parametric analysis

• for in silico evaluation, to reduce need for testing on patients

− automated synthesis of optimal timing parameters 

• to determine delays between paces so that energy usage is 
optimised for a given patient

• See http://www.veriware.org/pacemaker.php
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Focus on…

Cooperation & competition

•Self-interest

•Autonomy

Physical processes

•Monitoring

•Control

Natural world

•Biosensing

•Molecular programming
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Interacting with the natural world 

• Ubicomp systems need to sense and control biological 
processes

− programmable identification of substance, targeted delivery, 
movement

− directly at the molecular level

• Many typical scenarios

− e.g. smart therapeutics, drug delivery directly into the blood 
stream, implantable continuous monitoring devices

• Natural to adopt the molecular programming approach

− here, focus on DNA computation, which aims to build 
computing devices using DNA molecules

− shared techniques and tools with synthetic biology

• Research question: can we apply (quantitative) verification 
to DNA programs?
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Digital circuits

• Logic gates realised in silicon

• 0s and 1s are represented as low and high voltage

• Hardware verification indispensable as design methodology
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DNA circuits

Pop quiz, hotshot: what's 
the square root of 13?
Science Photo Library/Alamy

[Qian, Winfree,
Science 2012]

• “Computing with soup” (The 
Economist 2012)

• DNA strands are inputs and outputs

• Circuit of 130 strands computes 
square root of 4 bit number,
rounded down

• 10 hours, but it’s a first…
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DNA structures

2nm

DNA origami

• DNA origami [Rothemund, Nature 2006]

− DNA can self-assemble into structures – “molecular IKEA?”

− Programmable self-assembly  (can form tiles, nanotubes, 
boxes that can open, etc)

− Simple manufacturing process (heating and cooling), not yet 
well understood
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Logic gates made from DNA

http://lucacardelli.name/
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Case study: DNA circuits

• DNA circuits: seemingly simple

• Design flaws possible!

• PRISM identifies a 5-step trace to the
“bad” deadlock state

− previously found manually  [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

Design and Analysis of DNA Strand Displacement Devices using Probabilistic Model Checking,
Lakin et al, Journal of the Royal Society Interface, 9(72), 1470-1485, 2012
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Transducers: Quantitative properties

• We can also use PRISM to study the kinetics of the pair of 
(faulty) transducers:

− P=? [ F[T,T] "deadlock" ]

− P=? [ F[T,T] "deadlock" & !"all_done" ]

− P=? [ F[T,T] "deadlock" & "all_done" ]
success/error
equally likely
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Case study: DNA walkers

• How it works…

− tracks laid out 
on DNA origami tile

− can make molecule 
‘walk’ by 
attaching/
detaching from 
anchor

− starts at ‘initial’, 
detect when reaches 
‘final’

− can control 
‘left’/’right’ decision                   

• Biosensors for diagnosis, targeted drug delivery

− safety/reliability paramount: devise a model, analyse with PRISM

DNA walker circuits: Computational potential, design, and verification, Dannenberg et al, 
Natural Computing, To appear, 2014
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Tool support: DSD & PRISM

• Developed a framework incorporating DSD and PRISM 

− DSD designs automatically translated to PRISM via SBML

• Model checking as for molecular signalling networks

− reduction to CTMC model

− reuse existing PRISM algorithms

• Achievements 

− first ever (quantitative) verification of a DNA circuit

− demonstrated bugs can be found automatically

− but scalability major challenge

• Further case studies

− approximated majority, molecular walkers 

• Available now:

http://www.veriware.org/dna.php
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Summing up…

• An exciting future ahead!

− Smartphones, smart devices, smart homes

• Brief overview of progress in quantitative verification

− demonstrating first successes and usefulness of quantitative 
verification and synthesis methodology

− and resulting in new techniques and tools

• Many technological and scientifi challenges remain

− huge models!

− compositional methods

− integration of discrete, continuous and stochastic dynamics

− scalability of quantitative verification and synthesis

− accuracy of approximate verification

− efficiency of parameter synthesis

− model synthesis from quantitative requirements



51

Acknowledgements

• My group and collaborators in this work

• Collaborators who contributed to theoretical and practical 
PRISM development  

• External users of, and contributors to, PRISM

• Project funding

− ERC, EPSRC, Microsoft Research Cambridge

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org


