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The unstoppable rise of deep learning

• Neural networks timeline
1940s First proposed
1998 Convolutional nets
2006 Deep nets trained
2011 Rectifier units
2015 Vision breakthrough
2016 Win at Go

• Enabled by
− Big data 
− Flexible, easy to build 

models
− Availability of GPUs
− Efficient inference
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Much interest from tech companies,
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...healthcare,
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…and automotive industry

https://www.youtube.com/watch?v=mCmO_5ZxdvE
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...and more 

https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/
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What you have seen

• PilotNet by NVIDIA (regression problem)
− end-to-end controller for self-driving cars
− neural network
− lane keeping and changing
− trained on data from human driven cars
− runs on DRIVE PX 2

• Traffic sign recognition (classification problem)
− conventional object recognition
− neural network solutions already planned…

• BUT
− neural networks don’t come with rigorous guarantees!

PilotNet https://arxiv.org/abs/1604.07316
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What your car sees…

Original             VGG16        VGG19         RESNET
Traffic light                          Misclassified

(ImageNet class 920)

State-of-the art deep neural networks on ImageNet
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Nexar traffic sign benchmark
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German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight
limit limit           limit
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German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight
limit limit           limit

Confidence    0.999964           0.99
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Aren’t these artificial?
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Deep neural networks can be fooled!

• They are unstable wrt adversarial perturbations
− often imperceptible changes to the image [Szegedy et al 2014, 

Biggio et al 2013 …]
− sometimes artificial white noise
− practical attacks, potential security risk
− transferable between different architectures
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Risk and robustness

• Conventional learning theory
− empirical risk minimisation [Vapnik 1991]

• Substantial growth in techniques to evaluate robustness
− variety of robustness measures, different from risk 
− e.g. minimal expected distance to misclassification

• Methods based on optimisation or stochastic search
− gradient sign method [Szegedy et al 2014]
− optimisation, tool DeepFool [Moosavi-Desfooli et al 2016]
− constraint-based, approximate [Bastani et al 2016]
− adversarial training with cleverhans [Papernot et al 2016] 
− universal adversarial example [Moosavi-Desfooli et al 2017]
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This talk

• First steps towards methodology to ensure safety of 
classification decisions 
− visible and human-recognisable

perturbations: change of camera 
angle, lighting conditions, glare,
snow, sign imperfections, ...

− should not result in class changes
− focus on individual decisions
− images, but can be adapted to other types of problems
− e.g. networks trained to produce justifications, in addition to 

classification (explainable AI)

• Search-based automated verification framework
− tool DLV based on Satisfiability Modulo Theory 
− https://128.84.21.199/abs/1610.06940
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Deep feed-forward neural network

Convolutional multi-layer network
http://cs231n.github.io/convolutional-networks/#conv
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Problem setting

• Assume 
− vector spaces DL0, DL1, …, DLn, one for each layer
− f : DL0 → {c1,…ck} classifier function modelling human

perception ability

• The network f’ : DL0 → {c1,…ck} approximates f from M 
training examples {(xi,ci)}i=1..M
− built from activation functions φ0, φ1, …, φn, one for each layer
− for point (image) x ∈ DL0, its activation in layer k is

αx,k = φk(φk-1(…φ1(x)))
− where φk(x) = σ(xWk+bk) and σ(x) = max(x,0) 
− Wk learnable weights, bk bias, σ is ReLU

• Notation
− overload αx,n = αy,n to mean x and y have the same class
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Training vs testing
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Training vs testing



20

Robustness

• Regularisation such as dropout improves smoothness

• Common smoothness assumption 
− each point x ∈ DL0 in the input layer has a region η around it 

such that all points in η classify the same as x

• Pointwise robustness [Szegedy et al 2014]
− f’ is not robust at point x if ∃y ∈ η such that f’(x) ≠ f’(y)

• Robustness (network property)
− smallest perturbation weighted by input distribution
− reduced to non-convex optimisation problem
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Verification for neural networks

• Little studied

• Reduction of safety to Boolean combination of linear 
arithmetic constraints [Pulina and Tachela 2010]
− encode entire network using constraints
− approximate the sigmoid using piecewise linear functions
− SMT solving, does not scale (6 neurons, 3 hidden)

• Reluplex [Barrett et al 2017]
− similar encoding but for ReLU, rather than sigmoid
− generalise Simplex, SMT solver
− more general properties
− successful for end-to-end controller networks with 300 nodes
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Safety of classification decisions

• Safety assurance process is complex
• Here focus on safety at a point as part of such a process

− consider region supporting decision at point x
− same as pointwise robustness… η

• But..
− what diameter for region η?
− which norm? L2, Lsup ?
− what is an acceptable/adversarial perturbation? 

• Introduce the concept of manipulation, a family of 
operations that perturb an image 
− think of scratches, weather conditions, camera angle, etc
− classification should be invariant wrt safe manipulations

x

y
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Safety verification

• Take as a specification set of manipulations and region η
− work with pointwise robustness as a safety criterion 
− focus on safety wrt a set of manipulations
− exhaustively search the region for misclassifications

• Challenges
− high dimensionality, nonlinearity, infinite region, huge scale

• Automated verification (= ruling out adversarial examples)
− need to ensure finiteness of search
− guarantee of decision safety if adversarial example not found

• Falsification (= searching for adversarial examples)
− good for attacks, no guarantees
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Training vs testing vs verification
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Verification framework

• Size of the network is prohibitive
− millions of neurons!

• The crux of our approach
− propagate verification layer by layer, i.e. need to assume for 

each activation αx,k in layer k there is a region η(αx,k)
− dimensionality reduction by focusing on features

• This differs from heuristic search for adversarial examples
− nonlinearity implies need for approximation using convex 

optimisation
− no guarantee of precise adversarial examples
− no guarantee of exhaustive search even if we iterate
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Multi-layer (feed-forward) neural network

ψkηk-1 ηk

φkx
αx,kαx,k-1 αx,n

layer 0                  layer k-1         layer k                   layer n
• Require mild conditions on region ηk and ψk mappings
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Mapping forward and backward

ψkηk-1 ηk

φkx
αx,kαx,k-1 αx,n

layer 0                  layer k-1         layer k                   layer n
• Map region ηk(αx,k) forward via ɸk, backward via inverse ψk
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Multi-layer (feed-forward) neural network

• Require mild conditions on region ηk and ψk mappings
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Mapping forward and backward

• Can compute region ηk(αx,k) forward via activation function
• Back, use inverse of activation function
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Manipulations

• Consider a family Δk of operators δk : DLk → DLk that 
perturb activations in layer k, incl. input layer
− think of scratches, weather conditions, camera angle, etc
− classification should be invariant wrt such manipulations

• Intuitively, safety of network N at a point x wrt the region 
ηk(αx,k) and set of manipulations Δk means that perturbing 
activation αx,k by manipulations from Δk will not result in a 
class change  

• Note that manipulations can be 
− defined by user and wrt different norms
− made specific to each layer, and 
− applied directly on features, i.e. subsets of dimensions
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Ensuring region coverage

• Fix point x and region ηk(αx,k) 
• Want to perform exhaustive search of the region for 

adversarial manipulations
− if found, use to fine-tune the network and/or show to human 

tester
− else, declare region safe wrt the specified manipulations

• Methodology: reduce to counting of misclassifications
− discretise the region
− cover the region with ‘ladders’ that are complete and covering
− show 0-variation, i.e. explore nondeterministically and 

iteratively all paths in the tree of ladders, counting the 
number of misclassifications after applying manipulations

− search is exhaustive under assumption of minimality of 
manipulations, e.g. unit steps
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Covering region with ‘ladders’

• NB related work considers approximate, deterministic and 
non-iterative manipulations that are not covering

• Can search single or multiple paths (Monte Carlo tree search)
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Layer-by-layer analysis

• In deep neural networks linearity increases with deeper layers
• Naïve search intractable: work with features

• Propagate analysis, starting from a given layer k:
• Determine region ηk(αx,k) from region ηk-1(αx,k-1)

− map forward using activation function
− NB each activation at layer k arises from a subset of dimensions 

at layer k-1
− check forward/backward mapping conditions (SMT-expressible)

• Refine manipulations in Δk-1, yielding Δk
− consider more points as the analysis progresses into deeper 

layers
• If safety wrt ηk(αx,k) and Δk is verified, continue to layer k+1, 

else report adversarial example
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Layer-by-layer analysis

• Framework ensures that safety wrt ηk(αx,k) and Δk implies
safety wrt ηk-1(αx,k-1) and Δk-1

• If manipulations are minimal, then can deduce safety (= 
pointwise robustness) of the region at x

• But adversarial examples at layer k can be spurious, i.e. need 
to check if they are adversarial examples at the input layer

• NB employ various heuristics for scalability
− explore manipulations of a subset of most extreme dimensions, 

which encode more explicit knowledge
− employ additional precision parameter to avoid overly small 

spans
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Features

• The layer-by-layer analysis is finite, but regions ηk(αx,k) are 
high-dimensional
− exhaustive analysis impractical, need heuristics…

• We exploit decomposition into features, assuming their 
independence and low-dimensionality
− natural images form high-dimensional tangled manifold, 

which embeds tangled manifolds that represent features
− classification separates these manifolds

• By assuming independence of features, reduce problem of 
size O(2d1+..+dn) to set of smaller problems O(2d1),…O(2dn)
− e.g. compute regions and 0-variation wrt to features
− analysis discovers features automatically through hidden layer 

analysis
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Implementation

• Implement the techniques using SMT (Z3)
− for layer-by-layer analysis, use linear real arithmetic with 

existential and universal quantification
− within the layer (0-variation), use as above but without 

universal quantification
− work with Euclidean and Manhattan norms, can be adapted to 

other norms
• We work with one point/decision at a time, rather than 

activation functions, but computation is exact
− avoid approximating sigmoid (not scalable) [Pulina et al 2010]
− more scalable than approximating ReLU by LP [Bastani et al 

2016] or Reluplex [Barrett et al 2017]
• Main challenge: how to define meaningful regions and 

manipulations
− but adversarial examples can be found quickly
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Example: input layer

x

• Small point classification network, 8 manipulations
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Example: 1st hidden layer

• Refined manipulations, adversarial example found
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MNIST example

8                                                0

• 28x28 image size, one channel, medium size network (12 
layers, Conv, ReLU, FC and softmax)
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Another MNIST example

6                                                5

• 28x28 image size, one channel, medium size network (12 
layers, Conv, ReLU, FC and softmax)
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Compare to existing methods

• Search for adversarial perturbations only (=falsification)

• FGSM [Goodfellow et al 2014]
− calculates optimal attack for a linear approximation of 

network cost, for a set of images
− deterministic, iterative manipulations

• JSMA [Papernot et al 2015]
− finds subset of dimensions to manipulate (in the input layer)
− manipulates according to partial derivatives

• DLV (this talk)
− explores proportion of dimensions in input and hidden layers
− so manipulates over features discovered in hidden layers
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Falsification comparison

FGSM                                                                                       9

JSMA                                                                                        3

DLV                                                                                          3

• DLV able to find examples with smaller average distance than JSMA, 
at comparable performance (may affect transferability)

• FGSM fastest per image
• For high success rates (approx 98%) JSMA has smallest average 

distance, followed by DLV, followed by FGSM
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CIFAR-10 example

ship                           ship truck

• 32x32 image size, 3 channels, medium size network (Conv, 
ReLU, Pool, FC, dropout and softmax)

• Working with 1st hidden layer, project back to input layer
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ImageNet example

Street sign                                    Birdhouse

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network VGG, (Conv, ReLU, Pool, FC, zero padding, 
dropout and softmax)

• Work with 20,000 dimensions (of 3m), unsafe for 2nd layer
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ImageNet example

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network VGG, (Conv, ReLU, Pool, FC, zero padding, 
dropout and softmax)

• Reported safe for 20,000 dimensions
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Another ImageNet example

Boxer                      Rhodesian ridgeback

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network, (Conv, ReLU, Pool, FC, zero padding, dropout 
and softmax)

• Work with 20,000 dimensions
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Yet another ImageNet example

Labrador retriever                      Lifeboat

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network, (Conv, ReLU, Pool, FC, zero padding, dropout 
and softmax)

• Work with 20,000 dimensions
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Conclusion

• First framework for safety verification of deep neural 
network classifiers formulated and implemented

• Method 
− safety parameterised by region and set of manipulations
− based on exhaustive search, akin to explicit model checking
− propagation of analysis into deeper layers
− heuristics to improve scalability
− adversarial examples found quickly

• Future work
− simplistic, can we use operator or statistical properties?
− how best to use adversarial examples: training vs logic
− symbolic methods?
− abstraction-refinement?
− more complex properties?
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AI safety – challenge for verification?

• Complex scenarios
- goals
- perception
- situation awareness
- context (social, 

regulatory)

• Safety-critical, so 
guarantees needed

• Should failure occur, 
accountability needs
to be established
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Reasoning about cognitive trust

• Formulate a theory for expressing and reasoning about 
social trust in human-robot collaboration/competition

• Develop tools for trust evaluation to aid design and 
analysis of human-robot systems

Over-trust and inattention are known 
problems that technology developers 
need to design for, and simply telling 
customers not to do what comes naturally 
is probably not enough.

Patrick Lin
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Quantitative verification for trust? 

• Logic PRTL* undecidable in general

• Have identified decidable fragments (EXPTIME, PSPACE, 
PTIME), by restricting the expressiveness of the logic and 
the stochastic multiagent systems

• Reasoning about trust can be used
- in decision-making for robots
- to justify and explain trust-based decisions, also for humans
- to infer accountability for failures

- Next step is to develop model checking for trust…

- But many challenges remain!
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Morality, ethics and social norms

• Already merging into 
traffic proving difficult, 
what about social
subtleties?

• What to do in emergency? 
− moral decisions
− enforcement
− conflict resolution
− handover in 

semi-autonomous 
driving

• Obey traffic rules
− cultural dependency

http://www.pbs.org/wgbh/nova/next/tech/robot-morals/



53

Acknowledgements

• My group and collaborators in this work
• Project funding

− ERC Advanced Grant
− EPSRC Mobile Autonomy Programme Grant
− Oxford Martin School, Institute for the Future of Computing

• See also
− www.veriware.org

− PRISM www.prismmodelchecker.org



54


