Probabilistic model checking with PRISM: overview and recent developments

Marta Kwiatkowska

Department of Computer Science, University of Oxford

ATVA 2013, Hanoi, October 2013
What is probabilistic model checking?

• Probabilistic model checking...
 – is a formal verification technique for modelling and analysing systems that exhibit probabilistic behaviour

• Formal verification...
 – is the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems
Why formal verification?

• Errors in computerised systems can be costly...

Pentium chip (1994)
Bug found in FPU.
Intel (eventually) offers to replace faulty chips.
Estimated loss: $475m

Infusion pumps (2010)
Patients die because of incorrect dosage.
Cause: software malfunction.
79 recalls.

Toyota Prius (2010)
Software “glitch” found in anti-lock braking system.
185,000 cars recalled.

• Why verify?
 • “Testing can only show the presence of errors, not their absence.” [Edsger Dijkstra]
Model checking

System → Finite-state model → Temporal logic specification → Model checker e.g. SMV, Spin

¬EF fail

Result

Counter-example
Probabilistic model checking

System

Probabilistic model
e.g. Markov chain

Probabilistic model checker
e.g. PRISM

Result

Quantitative results

Counter-example

System requirements

Probabilistic temporal logic specification
e.g. PCTL, CSL, LTL

\[P_{<0.1} [\text{F fail}] \]
Why probability?

• Some systems are inherently probabilistic…

• **Randomisation**, e.g. in distributed coordination algorithms
 – as a symmetry breaker, in gossip routing to reduce flooding

• **Examples: real-world protocols featuring randomisation:**
 – Randomised back-off schemes
 • CSMA protocol, 802.11 Wireless LAN
 – Random choice of waiting time
 • IEEE1394 Firewire (root contention), Bluetooth (device discovery)
 – Random choice over a set of possible addresses
 • IPv4 Zeroconf dynamic configuration (link–local addressing)
 – Randomised algorithms for anonymity, contract signing, …
Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
 – as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance
 – to quantify rate of failures, express Quality of Service

• Examples:
 – computer networks, embedded systems
 – power management policies
 – nano-scale circuitry: reliability through defect-tolerance
Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
 – as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance
 – to quantify rate of failures, express Quality of Service

• To model biological processes
 – reactions occurring between large numbers of molecules are naturally modelled in a stochastic fashion
Verifying probabilistic systems

• We are not just interested in correctness

• We want to be able to quantify:
 – security, privacy, trust, anonymity, fairness
 – safety, reliability, performance, dependability
 – resource usage, e.g. battery life
 – and much more...

• Quantitative, as well as qualitative requirements:
 – how reliable is my car’s Bluetooth network?
 – how efficient is my phone’s power management policy?
 – is my bank’s web-service secure?
 – what is the expected long-run percentage of protein X?
Probabilistic models

<table>
<thead>
<tr>
<th></th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete time</td>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs)</td>
</tr>
<tr>
<td></td>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Simple stochastic games (SMGs)</td>
</tr>
<tr>
<td>Continuous time</td>
<td></td>
<td>Probabilistic timed automata (PTAs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interactive Markov chains (IMCs)</td>
</tr>
</tbody>
</table>
Probabilistic models

<table>
<thead>
<tr>
<th></th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs)</td>
<td></td>
</tr>
<tr>
<td>Continuous time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Probabilistic timed automata (PTAs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simple stochastic games (SMGs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interactive Markov chains (IMCs)</td>
<td></td>
</tr>
</tbody>
</table>
Overview

• Introduction
• Model checking for discrete-time Markov chains (DTMCs)
 – DTMCs: definition, paths & probability spaces
 – PCTL model checking
 – Costs and rewards
 – Case studies: Bluetooth, (CTMC) DNA computing
• PRISM: overview
 – modelling language, properties, GUI, etc
• PRISM: recent developments
 – Multi-objective model checking
 – Parametric models
 – Probabilistic timed automata, case study: FireWire
 – Stochastic games, case study: smartgrid protocol
• Summary
Discrete–time Markov chains

- **Discrete–time Markov chains (DTMCs)**
 - state–transition systems augmented with probabilities

- **States**
 - discrete set of states representing possible configurations of the system being modelled

- **Transitions**
 - transitions between states occur in discrete time–steps

- **Probabilities**
 - probability of making transitions between states is given by discrete probability distributions

![Diagram of a discrete-time Markov chain]

- States: s_0, s_1, s_2, s_3
- Transitions:
 - $s_0 \xrightarrow{\text{try}} s_1$ with probability 0.01
 - $s_1 \xrightarrow{\text{try}} s_2$ with probability 0.98
 - $s_2 \xrightarrow{\text{try}} s_3$ with probability 0.01
 - $s_3 \xrightarrow{\text{try}} s_1$ with probability 0.01
 - $s_1 \xrightarrow{\text{fail}} s_0$ with probability 1
 - $s_2 \xrightarrow{\text{fail}} s_3$ with probability 1
 - $s_3 \xrightarrow{\text{succ}} s_2$ with probability 1
Discrete-time Markov chains

• Formally, a DTMC D is a tuple \((S, s_{\text{init}}, P, L)\) where:
 – \(S\) is a finite set of states (“state space”)
 – \(s_{\text{init}} \in S\) is the initial state
 – \(P : S \times S \rightarrow [0,1]\) is the \textbf{transition probability matrix}
 where \(\sum_{s' \in S} P(s, s') = 1\) for all \(s \in S\)
 – \(L : S \rightarrow 2^{\text{AP}}\) is function labelling states with atomic propositions

• Note: no deadlock states
 – i.e. every state has at least one outgoing transition
 – can add self loops to represent final/terminating states
Paths and probabilities

- A (finite or infinite) path through a DTMC
 - is a sequence of states $s_0s_1s_2s_3...$ such that $P(s_i, s_{i+1}) > 0 \ \forall i$
 - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling

- To reason (quantitatively) about this system
 - need to define a probability space over paths

- Intuitively:
 - sample space: $\text{Path}(s) =$ set of all infinite paths from a state s
 - events: sets of infinite paths from s
 - basic events: cylinder sets (or “cones”)
 - cylinder set $C(\omega)$, for a finite path ω
 - set of infinite paths with the common finite prefix ω
 - for example: $C(ss_1s_2)$
Probability space over paths

- **Sample space** $\Omega = \text{Path}(s)$
 set of infinite paths with initial state s
- **Event set** $\Sigma_{\text{Path}(s)}$
 - the **cylinder set** $C(\omega) = \{ \omega' \in \text{Path}(s) \mid \omega \text{ is prefix of } \omega' \}$
 - $\Sigma_{\text{Path}(s)}$ is the **least σ-algebra** on $\text{Path}(s)$ containing $C(\omega)$ for all finite paths ω starting in s
- **Probability measure** Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1 \ldots s_n$ as:
 - $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $P_s(\omega) = P(s,s_1) \cdot \ldots \cdot P(s_{n-1},s_n)$ otherwise
 - define $Pr_s(C(\omega)) = P_s(\omega)$ for all finite paths ω
 - Pr_s extends uniquely to a probability measure $Pr_s: \Sigma_{\text{Path}(s)} \rightarrow [0,1]$
- See [KSK76] for further details
Probability space – Example

- **Paths where sending fails the first time**
 - $\omega = s_0 s_1 s_2$
 - $C(\omega) =$ all paths starting $s_0 s_1 s_2 \ldots$
 - $P_{s_0}(\omega) = P(s_0, s_1) \cdot P(s_1, s_2)$
 $= 1 \cdot 0.01 = 0.01$
 - $Pr_{s_0}(C(\omega)) = P_{s_0}(\omega) = 0.01$

- **Paths which are eventually successful and with no failures**
 - $C(s_0 s_1 s_3) \cup C(s_0 s_1 s_1 s_3) \cup C(s_0 s_1 s_1 s_1 s_3) \cup \ldots$
 - $Pr_{s_0}(C(s_0 s_1 s_3) \cup C(s_0 s_1 s_1 s_3) \cup C(s_0 s_1 s_1 s_1 s_3) \cup \ldots)$
 $= P_{s_0}(s_0 s_1 s_3) + P_{s_0}(s_0 s_1 s_1 s_3) + P_{s_0}(s_0 s_1 s_1 s_1 s_3) + \ldots$
 $= 1 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.01 \cdot 0.98 + \ldots$
 $= 0.9898989898...$
 $= 98/99$
PCTL

• Temporal logic for describing properties of DTMCs
 – PCTL = Probabilistic Computation Tree Logic [HJ94]
 – essentially the same as the logic pCTL of [ASB+95]

• Extension of (non–probabilistic) temporal logic CTL
 – key addition is probabilistic operator P
 – quantitative extension of CTL’s A and E operators

• Example
 – send $\rightarrow P \geq 0.95 \ [\text{true } U \leq 10 \ \text{deliver}]$
 – “if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95”
PCTL syntax

- PCTL syntax:

 - $\phi ::= \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p} [\psi]$

 (state formulas)

 - $\psi ::= X \phi \mid \phi U^{\leq k} \phi \mid \phi U \phi$

 (path formulas)

- define $F \phi \equiv \text{true} U \phi$ (eventually), $G \phi \equiv \neg (F \neg \phi)$ (globally)
- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$

- A PCTL formula is always a state formula
 - path formulas only occur inside the P operator
PCTL semantics for DTMCs

- **PCTL formulas interpreted over states of a DTMC**
 - \(s \models \phi \) denotes \(\phi \) is “true in state \(s \)” or “satisfied in state \(s \)”

- **Semantics of (non-probabilistic) state formulas:**
 - for a state \(s \) of the DTMC \((S, s_{\text{init}}, P, L)\):
 - \(s \models a \) \iff \(a \in L(s) \)
 - \(s \models \phi_1 \land \phi_2 \) \iff \(s \models \phi_1 \) and \(s \models \phi_2 \)
 - \(s \models \neg \phi \) \iff \(s \models \phi \) is false

- **Examples**
 - \(s_3 \models \text{succ} \)
 - \(s_1 \models \text{try} \land \neg \text{fail} \)
PCTL semantics for DTMCs

• Semantics of path formulas:
 − for a path $\omega = s_0s_1s_2...$ in the DTMC:
 − $\omega \models X \phi \iff s_1 \models \phi$
 − $\omega \models \phi_1 U^{\leq k} \phi_2 \iff \exists i \leq k$ such that $s_i \models \phi_2$ and $\forall j < i$, $s_j \models \phi_1$
 − $\omega \models \phi_1 U \phi_2 \iff \exists k \geq 0$ such that $\omega \models \phi_1 U^{\leq k} \phi_2$

• Some examples of satisfying paths:
 − X succ
 {try} {succ} {succ} {succ}

 \[
 s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \ldots
 \]

 − \negfail U succ
 {try} {try} {succ} {succ}

 \[
 s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \ldots
 \]
PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - Informal definition: $s ⊨ P_{\sim p} [\psi]$ means that “the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$”
 - Example: $s ⊨ P_{<0.25} [X \text{ fail}] \iff \text{“the probability of atomic proposition \text{ fail} being true in the next state of outgoing paths from } s \text{ is less than 0.25”}$
 - Formally: $s ⊨ P_{\sim p} [\psi] \iff \text{Prob}(s, \psi) \sim p$
 - Where: $\text{Prob}(s, \psi) = \Pr_s \{ \omega \in \text{Path}(s) \mid \omega ⊨ \psi \}$
 - (Sets of paths satisfying ψ are always measurable [Var85])

\[
\text{Prob}(s, \psi) \sim p ?
\]
Quantitative properties

• Consider a PCTL formula $P_{\leq p} [\psi]$
 – if the probability is unknown, how to choose the bound p?
• When the outermost operator of a PTCL formula is P
 – we allow the form $P_{=} [\psi]$
 – “what is the probability that path formula ψ is true?”
• Model checking is no harder: compute the values anyway
• Useful to spot patterns, trends

• Example
 – $P_{=} [F \text{ err/total} > 0.1]$
 – “what is the probability that 10% of the NAND gate outputs are erroneous?”
PCTL model checking for DTMCs

- **Algorithm for PCTL model checking** [CY88,HJ94,CY95]
 - inputs: DTMC $D=(S,s_{init},P,L)$, PCTL formula ϕ
 - output: $\text{Sat}(\phi) = \{ s \in S \mid s \models \phi \} = \text{set of states satisfying } \phi$

- **What does it mean for a DTMC D to satisfy a formula ϕ?**
 - sometimes, want to check that $s \models \phi \ \forall \ s \in S$, i.e. $\text{Sat}(\phi) = S$
 - sometimes, just want to know if $s_{init} \models \phi$, i.e. if $s_{init} \in \text{Sat}(\phi)$

- **Sometimes, focus on quantitative results**
 - e.g. compute result of $P=? [F \text{ error}]$
 - e.g. compute result of $P=? [F^{\leq k} \text{ error}]$ for $0 \leq k \leq 100$
PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ϕ
 - example: $\phi = (\neg \text{fail} \land \text{try}) \rightarrow P_{>0.95} [\neg \text{fail} U \text{succ}]$

- For the non-probabilistic operators:
 - $\text{Sat}(\text{true}) = S$
 - $\text{Sat}(a) = \{ s \in S \mid a \in L(s) \}$
 - $\text{Sat}(\neg \phi) = S \setminus \text{Sat}(\phi)$
 - $\text{Sat}(\phi_1 \land \phi_2) = \text{Sat}(\phi_1) \cap \text{Sat}(\phi_2)$

- For the $P_{\neg p} [\psi]$ operator
 - need to compute the probabilities $\text{Prob}(s, \psi)$ for all states $s \in S$
 - focus here on “until” case: $\psi = \phi_1 U \phi_2$
PCTL until for DTMCs

• Computation of probabilities $\text{Prob}(s, \phi_1 U \phi_2)$ for all $s \in S$

• First, identify all states where the probability is 1 or 0

 $S_{\text{yes}} = \text{Sat}(P_{\geq 1} [\phi_1 U \phi_2])$
 $S_{\text{no}} = \text{Sat}(P_{\leq 0} [\phi_1 U \phi_2])$

• Then solve linear equation system for remaining states

• We refer to the first phase as “precomputation”

 – two algorithms: Prob_0 (for S_{no}) and Prob_1 (for S_{yes})
 – algorithms work on underlying graph (probabilities irrelevant)

• Important for several reasons

 – reduces the set of states for which probabilities must be computed numerically (which is more expensive)

 – gives exact results for the states in S_{yes} and S_{no} (no round-off)

 – for $P_{\sim p}[\cdot]$ where p is 0 or 1, no further computation required
PCTL until – Linear equations

• Probabilities $\text{Prob}(s, \phi_1 U \phi_2)$ can now be obtained as the unique solution of the following set of linear equations:

$$
\text{Prob}(s, \phi_1 U \phi_2) = \begin{cases}
1 & \text{if } s \in S^{\text{yes}} \\
0 & \text{if } s \in S^{\text{no}} \\
\sum_{s' \in S} \text{P}(s, s'). \text{Prob}(s', \phi_1 U \phi_2) & \text{otherwise}
\end{cases}
$$

– can be reduced to a system in $|S^2|$ unknowns instead of $|S|$ where $S^2 = S \setminus (S^{\text{yes}} \cup S^{\text{no}})$

• This can be solved with (a variety of) standard techniques
 – direct methods, e.g. Gaussian elimination
 – iterative methods, e.g. Jacobi, Gauss–Seidel, …
 (preferred in practice due to scalability)
Example: $P_{>0.8} \left[\neg a \cup b \right]$
PCTL until – Example

- Example: $P_{>0.8} [\neg a \cup b]$

$S_{\text{no}} = \text{Sat}(P_{\leq 0} [\neg a \cup b])$

$S_{\text{yes}} = \text{Sat}(P_{\geq 1} [\neg a \cup b])$
PCTL until – Example

- **Example:** $P_{>0.8} [\neg a \cup b]$

- Let $x_s = \text{Prob}(s, \neg a \cup b)$

- **Solve:**

 $x_4 = x_5 = 1$

 $x_1 = x_3 = 0$

 $x_0 = 0.1x_1 + 0.9x_2 = 0.8$

 $x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$

 $\text{Prob}(\neg a \cup b) = x = [0.8, 0, 8/9, 0, 1, 1]$

 $Sat(P_{\leq 0} [\neg a \cup b]) = \emptyset$

 $S_{\text{no}} = \{ s_2, s_4, s_5 \}$

 $Sat(P_{\geq 1} [\neg a \cup b]) = \emptyset$

 $S_{\text{yes}} = \{ s_2, s_4, s_5 \}$
PCTL model checking – Summary

• Computation of set $\text{Sat}(\Phi)$ for DTMC D and PCTL formula Φ
 – recursive descent of parse tree
 – combination of graph algorithms, numerical computation

• Probabilistic operator P:
 – $\varnothing \Phi$: one matrix–vector multiplication, $O(|S|^2)$
 – $\Phi_1 \cup^k \Phi_2$: k matrix–vector multiplications, $O(k|S|^2)$
 – $\Phi_1 \cup \Phi_2$: linear equation system, at most $|S|$ variables, $O(|S|^3)$

• Complexity:
 – linear in $|\Phi|$ and polynomial in $|S|$
Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)

- More expressive logics can be used, for example:
 - LTL [Pnu77] – (non-probabilistic) linear-time temporal logic
 - PCTL* [ASB+95, BdA95] – which subsumes both PCTL and LTL
 - both allow path operators to be combined
 - (in PCTL, $P_{\neg p} […]$ always contains a single temporal operator)
 - supported by PRISM
 - (not covered in this lecture)

- Another direction: extend DTMCs with costs and rewards…
Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations

- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, …

- Costs? or rewards?
 - mathematically, no distinction between rewards and costs
 - when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 - we will consistently use the terminology “rewards” regardless
• Properties of DTMCs augmented with rewards
 – allow a wide range of quantitative measures of the system
 – basic notion: expected value of rewards
 – formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties
 – the expected value of the reward at some time point

• Cumulative properties
 – the expected cumulated reward over some period
For a DTMC \((S, s_{\text{init}}, P, L)\), a reward structure is a pair \((\rho, \iota)\)

- \(\rho : S \rightarrow \mathbb{R}_{\geq 0}\) is the state reward function (vector)
- \(\iota : S \times S \rightarrow \mathbb{R}_{\geq 0}\) is the transition reward function (matrix)

Example (for use with instantaneous properties)
- “size of message queue”: \(\rho\) maps each state to the number of jobs in the queue in that state, \(\iota\) is not used

Examples (for use with cumulative properties)
- “time-steps”: \(\rho\) returns 1 for all states and \(\iota\) is zero (equivalently, \(\rho\) is zero and \(\iota\) returns 1 for all transitions)
- “number of messages lost”: \(\rho\) is zero and \(\iota\) maps transitions corresponding to a message loss to 1
- “power consumption”: \(\rho\) is defined as the per-time-step energy consumption in each state and \(\iota\) as the energy cost of each transition
PCTL and rewards

- **Extend PCTL to incorporate reward-based properties**
 - add an R operator, which is similar to the existing P operator

\[
\phi ::= \ldots \mid P_p[\psi] \mid R_r[I=k] \mid R_r[C\leq k] \mid R_r[F\phi]
\]

- where \(r \in \mathbb{R}_{\geq 0}, \sim \in \{<,>,\leq,\geq\}, k \in \mathbb{N} \)

- \(R_r[\cdot] \) means “the expected value of \(\cdot \) satisfies \(\sim r \)”
Reward formula semantics

• **Formal semantics of the three reward operators**
 – based on random variables over (infinite) paths

• **Recall:**
 \[s \models P_{\sim p} \[\psi \] \iff Pr_s \{ \omega \in \text{Path}(s) \mid \omega \models \psi \} \sim p \]

• **For a state \(s \) in the DTMC (see [KNP07a] for full definition):**
 \[s \models R_{\sim r} \[I=^k \] \iff \text{Exp}(s, X_{I=^k}) \sim r \]
 \[s \models R_{\sim r} \[C^{\leq k} \] \iff \text{Exp}(s, X_{C^{\leq k}}) \sim r \]
 \[s \models R_{\sim r} \[F \Phi \] \iff \text{Exp}(s, X_{F\Phi}) \sim r \]

where: \(\text{Exp}(s, X) \) denotes the **expectation** of the random variable \(X : \text{Path}(s) \to \mathbb{R}_{\geq 0} \) with respect to the **probability measure** \(Pr_s \)
Model checking reward properties

- **Instantaneous:** $R_{\sim r} [I=k]$
- **Cumulative:** $R_{\sim r} [C \leq k]$
 - variant of the method for computing bounded until probabilities
 - solution of recursive equations

- **Reachability:** $R_{\sim r} [F \phi]$
 - similar to computing until probabilities
 - precomputation phase (identify infinite reward states)
 - then reduces to solving a system of linear equation

- For more details, see e.g. [KNP07a]
 - complexity not increased wrt classical PCTL
PCTL model checking summary…

- Introduced probabilistic model checking for DTMCs
 - discrete time and probability only
 - PCTL model checking via linear equation solving
 - LTL also supported, via automata-theoretic methods

- Continuous-time Markov chains (CTMCs)
 - discrete states, continuous time
 - temporal logic CSL
 - model checking via uniformisation, a discretisation of the CTMC

- Markov decision processes (MDPs)
 - add nondeterminism to DTMCs
 - PCTL, LTL and PCTL* supported
 - model checking via linear programming
• **PRISM: Probabilistic symbolic model checker**
 – developed at Birmingham/Oxford University, since 1999
 – free, open source software (GPL), runs on all major OSs

• **Construction/analysis of probabilistic models...**
 – discrete-time Markov chains, continuous-time Markov chains,
 Markov decision processes, probabilistic timed automata,
 stochastic multi-player games, ...

• **Simple but flexible high-level modelling language**
 – based on guarded commands; see later...

• **Many import/export options, tool connections**
 – in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, ...
 – out: Matlab, MRMC, INFAMY, PARAM, ...
• Model checking for various temporal logics…
 – PCTL, CSL, LTL, PCTL*, rPATL, CTL, …
 – quantitative extensions, costs/rewards, …

• Various efficient model checking engines and techniques
 – symbolic methods (binary decision diagrams and extensions)
 – explicit-state methods (sparse matrices, etc.)
 – statistical model checking (simulation-based approximations)
 – and more: symmetry reduction, quantitative abstraction refinement, fast adaptive uniformisation, …

• Graphical user interface
 – editors, simulator, experiments, graph plotting

• See: http://www.prismmodelchecker.org/
 – downloads, tutorials, case studies, papers, …
• Simple, textual, state-based modelling language
 – used for all probabilistic models supported by PRISM
 – based on Reactive Modules [AH99]

• Language basics
 – system built as parallel composition of interacting modules
 – state of each module given by finite-ranging variables
 – behaviour of each module specified by guarded commands
 • annotated with probabilities/rates and (optional) action label
 – transitions are associated with state-dependent probabilities
 – interactions between modules through synchronisation

\[\text{[send]} \ (s=2) \rightarrow p_{\text{loss}} : (s'=3) \& (\text{lost}'=\text{lost}+1) + (1-p_{\text{loss}}) : (s'=4);\]
Simple example

dtmc

module M1
 x : [0..3] init 0;
 [a] x=0 -> (x’ =1);
 [b] x=1 -> 0.5 : (x’ =2) + 0.5 : (x’ =3);
endmodule

module M2
 y : [0..3] init 0;
 [a] y=0 -> (y’ =1);
 [b] y=1 -> 0.4 : (y’ =2) + 0.6 : (y’ =3);
endmodule
 Costs and rewards

- We augment models with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Costs? or rewards?
 - mathematically, no distinction between rewards and costs
 - when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 - we consistently use the terminology “rewards” regardless
- Properties (see later)
 - reason about expected cumulative/instantaneous reward
Rewards in the PRISM language

- **Rewards in the PRISM language**
 - *Rewards “total_queue_size”*
 - true: queue1 + queue2;
 - endrewards
 - (instantaneous, state rewards)

- **Rewards “time”**
 - true: 1;
 - endrewards
 - (cumulative, state rewards)

- **Rewards "dropped"**
 - [receive] q = q_max: 1;
 - endrewards
 - (cumulative, transition rewards)
 (q = queue size, q_max = max. queue size, receive = action label)

- **Rewards “power”**
 - sleep=true: 0.25;
 - sleep=false: 1.2 * up;
 - [wake] true: 3.2;
 - endrewards
 - (cumulative, state/trans. rewards)
 (up = num. operational components, wake = action label)
PRISM – Property specification

- **Temporal logic–based property specification language**
 - subsumes PCTL, CSL, probabilistic LTL, PCTL*, …

- **Simple examples:**
 - \(P_{\leq 0.01} [F \text{“crash”}] \) – “the probability of a crash is at most 0.01”
 - \(S_{>0.999} [\text{“up”}] \) – “long–run probability of availability is >0.999”

- **Usually focus on quantitative (numerical) properties:**
 - \(P_= [F \text{“crash”}] \)
 “what is the probability of a crash occurring?”
 - then analyse trends in quantitative properties as system parameters vary
PRISM – Property specification

• Properties can combine numerical + exhaustive aspects
 – \(P_{\text{max}} = ? \ [F \leq 10 \ \text{“fail”}] \) – “worst-case probability of a failure occurring within 10 seconds, for any possible scheduling of system components”
 – \(P = ? \ [G \leq 0.02 \ \text{“deploy”} \{ \text{“crash”} \} \{ \text{max} \}] \) – “the maximum probability of an airbag failing to deploy within 0.02s, from any possible crash scenario”

• Reward-based properties (rewards = costs = prices)
 – \(R_{\{ \text{“time”} \}} = ? \ [F \ \text{“end”}] \) – “expected algorithm execution time”
 – \(R_{\{ \text{“energy”} \}} \{ \text{max} \} = ? \ [C \leq 7200] \) – “worst-case expected energy consumption during the first 2 hours”

• Properties can be combined with e.g. arithmetic operators
 – e.g. \(P = ? \ [F \text{ fail}_1] / P = ? \ [F \text{ fail}_\text{any}] \) – “conditional failure prob.”
PRISM GUI: Editing a model
PRISM GUI: The Simulator
PRISM GUI: Model checking and graphs
• Randomised distributed algorithms
 – consensus, leader election, self-stabilisation, …
• Randomised communication protocols
 – Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …
• Security protocols/systems
 – contract signing, anonymity, pin cracking, quantum crypto, …
• Biological systems
 – cell signalling pathways, DNA computation, …
• Planning & controller synthesis
 – robotics, dynamic power management, …
• Performance & reliability
 – nanotechnology, cloud computing, manufacturing systems, …

• See: www.prismmodelchecker.org/casestudies
Case study: Bluetooth

- **Device discovery between pair of Bluetooth devices**
 - performance essential for this phase

- **Complex discovery process**
 - two asynchronous 28-bit clocks
 - pseudo-random hopping between 32 frequencies
 - random waiting scheme to avoid collisions
 - 17,179,869,184 *initial* configurations
 (too many to sample effectively)

- **Probabilistic model checking**
 - e.g. “worst-case expected discovery time is at most 5.17s”
 - e.g. “probability discovery time exceeds 6s is always < 0.001”
 - shows weaknesses in simplistic analysis

freq = \([\text{CLK}_{15-12} + k + (\text{CLK}_{4-2} - \text{CLK}_{15-12}) \mod 16] \mod 32\)
Case study: DNA programming

- DNA: easily accessible, cheap to synthesise information processing material
- DNA Strand Displacement language, induces CTMC models
 - for designing DNA circuits [Cardelli, Phillips, et al.]
 - accompanying software tool for analysis/simulation
 - now extended to include auto-generation of PRISM models
- Transducer: converts input \(<t^x>\) into output \(<y t^>\)

\[
\begin{array}{c}
\text{t} \\
\text{t} \rightarrow \text{a} \\
\text{t} \rightarrow \text{t} \rightarrow \text{a} \rightarrow \text{a} \\
\text{t} \rightarrow \text{t} \rightarrow \text{y} \rightarrow \text{t} \rightarrow \text{a} \rightarrow \text{t}
\end{array}
\]

- Formalising correctness: does it finish successfully?...
 - A [G "deadlock" => "all_done"]
 - E [F "all_done"] (CTL, but probabilistic also...)
Transducer flaw

- PRISM identifies a 5-step trace to the “bad” deadlock state
 - problem caused by “crosstalk” (interference) between DSD species from the two copies of the gates
 - previously found manually [Cardelli’10]
 - detection now fully automated

- Bug is easily fixed
 - (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,0,1,1,1,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0)
PRISM: Recent & new developments

- **Major new features:**
 1. multi-objective model checking
 2. parametric model checking
 3. real-time: probabilistic timed automata (PTAs)
 4. games: stochastic multi-player games (SMGs)

- **Further new additions:**
 - strategy (adversary) synthesis (see ATVA’13 invited lecture)
 - CTL model checking & counterexample generation
 - enhanced statistical model checking
 (approximations + confidence intervals, acceptance sampling)
 - efficient CTMC model checking
 (fast adaptive uniformisation) [Mateescu et al., CMSB'13]
 - benchmark suite & testing functionality [QEST'12]
 www.prismmodelchecker.org/benchmarks/
1. Multi-objective model checking

- **Markov decision processes (MDPs)**
 - generalise DTMCs by adding **nondeterminism**
 - for: control, concurrency, abstraction, …

- **Strategies** (or "adversaries", "policies")
 - resolve nondeterminism, i.e. choose an action in each state based on current history
 - a strategy induces an (infinite-state) DTMC

- **Verification** (probabilistic model checking) of MDPs
 - quantify over all possible strategies... (i.e. best/worst-case)
 - \(P_{<0.01}[\text{F err}] \): “the probability of an error is always < 0.01”

- **Strategy synthesis** (dual problem)
 - "does there exist a strategy for which the probability of an error occurring is < 0.01?"
 - “how to minimise expected run-time?”

![Diagram of MDP with states and transitions](image)
1. Multi-objective model checking

- **Multi-objective probabilistic model checking**
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards

- **Achievability queries**
 - e.g. “is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?”
 - $\text{multi}(P_{>0.95} \ [F \ \text{transmit}], \ R_{\text{time}>10} \ [C])$

- **Numerical queries**
 - e.g. “maximum probability of message transmission, assuming expected battery life–time is > 10 hrs?”
 - $\text{multi}(P_{\text{max=?}} \ [F \ \text{transmit}], \ R_{\text{time}>10} \ [C])$

- **Pareto queries**
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life–time"
 - $\text{multi}(P_{\text{max=?}} \ [F \ \text{transmit}], \ R_{\text{time max=?}} \ [C])
Case study: Dynamic power management

- **Synthesis of dynamic power management schemes**
 - for an IBM TravelStar VP disk drive
 - 5 different power modes: active, idle, idlep, stby, sleep
 - power manager controller bases decisions on current power mode, disk request queue, etc.

- **Build controllers that**
 - minimise energy consumption, subject to constraints on e.g.
 - probability that a request waits more than K steps
 - expected number of lost disk requests

- **See:** http://www.prismmodelchecker.org/files/tacas11/
2. Parametric model checking

- Can specify models in parametric form [TASE13]
 - parameters expressed as unevaluated constants
 - e.g. `const double x;`
 - transition probabilities specified as expressions over parameters, e.g. `0.5 + x`
- Properties are given in PCTL, with parameter constants
 - new construct `constfilter (min, x1*x2, prop)`
 - filters over parameter values, rather than states
- Determine parameter valuations to guarantee satisfaction of given properties, useful for model repair
- Two methods implemented in PRISM (‘explicit’ engine)
 - constraints–based approach is a reimplementation of PARAM 2.0 [Hahn et al]
 - sampling–based approaches are new implementation
Case study: parametric network virus

- **Parametric model of a network virus**
 - a grid of connected nodes
 - virus spawns/multiplies
 - once infected, virus repeatedly tries to spread to neighbouring nodes
 - there are ‘high’ and ‘low’ nodes, with barrier nodes from ‘high’ to ‘low’
 - choice of infection by virus probabilistic
 - choice of which node to infect nondeterministic

- **Property specification**
 - minimal expected number of attacks until infection of (1,1), starting from (N,N), is upper bounded by 20
 - probability of detection and of barrier nodes subject to repair by increasing p_{lhadd} and p_{baadd}
Case study: parametric models

Checking if minimal exp. number of attacks ≥ 20

Property $\text{constfilter}(\min,\ldots, R_{\text{"attacks"}} \geq 20 \ [\ F \ "end"])$

Model (network virus) has 809 states, $\varepsilon = 0.05$

Optimal value found in 2mins, showing optimal parameter values
3. Probabilistic timed automata (PTAs)

- **Probability + nondeterminism + real-time**
 - timed automata + discrete probabilistic choice, or...
 - probabilistic automata + real-valued clocks

- **PTA example**: message transmission over faulty channel

```
States • locations + data variables
Transitions • guards and action labels
Real-valued clocks • state invariants, guards, resets
Probability • discrete probabilistic choice
```
Modelling PTAs in PRISM

- PRISM modelling language
 - textual language, based on guarded commands

```
pta
const int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
  [send] s=0 & tries≤N & x≥1 → 0.9 : (s'=3) + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
  [retry] s=1 & x≥3 → (s' =0) & (x' =0);
  [quit] s=0 & tries>N → (s' =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```
Modelling PTAs in PRISM

• PRISM modelling language
 – textual language, based on guarded commands

```plaintext
pta
const int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
  [send] s=0 & tries≤N & x≥1
    → 0.9 : (s’=3)
    + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
  [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
  [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```

Basic ingredients:
• modules
• variables
• commands
Modelling PTAs in PRISM

- PRISM modelling language
 - textual language, based on guarded commands

```plaintext
pta
const int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
  [send] s=0 & tries≤N & x≥1 → 0.9 : (s'=3)
                        + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
  [retry] s=1 & x≥3 → (s' =0) & (x' =0);
  [quit] s=0 & tries>N → (s' =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```

Basic ingredients:
- modules
- variables
- commands

New for PTAs:
- clocks
- invariants
- guards/resets
Modelling PTAs in PRISM

- **PRISM modelling language**
 - textual language, based on guarded commands

```plaintext
pta
const int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
  [send] s=0 & tries≤N & x≥1
  → 0.9 : (s'=3)
  + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
  [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
  [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards "energy" (s=0) : 2.5; endrewards
```

Basic ingredients:
- modules
- variables
- commands

New for PTAs:
- clocks
- invariants
- guards/resets

Also:
- rewards
 (i.e. costs, prices)
Model checking PTAs in PRISM

- **Properties for PTAs:**
 - min/max probability of reaching X (within time T)
 - min/max expected cost/reward to reach X
 (for “linearly-priced” PTAs, i.e. reward gain linear with time)

- **PRISM has two different PTA model checking techniques...**

- **“Digital clocks” – conversion to finite-state MDP**
 - preserves min/max probability + expected cost/reward/price
 - (for PTAs with closed, diagonal-free constraints)
 - efficient, in combination with PRISM’s symbolic engines

- **Quantitative abstraction refinement**
 - zone-based abstractions of PTAs using stochastic games
 - provide lower/upper bounds on quantitative properties
 - automatic iterative abstraction refinement
Case study: FireWire root contention

- **FireWire (IEEE 1394)**
 - high-performance serial bus for networking multimedia devices; originally by Apple
 - "hot-pluggable" – add/remove devices at any time
 - no requirement for a single PC (but need acyclic topology)

- **Root contention protocol**
 - leader election algorithm, when nodes join/leave
 - symmetric, distributed protocol
 - uses randomisation (electronic coin tossing) and timing delays
 - nodes send messages: "be my parent"
 - root contention: when nodes contend leadership
 - random choice: "fast"/"slow" delay before retry
Case study: FireWire root contention

- **Detailed probabilistic model:**
 - probabilistic timed automaton (PTA), including:
 - concurrency: messages between nodes and wires
 - timing delays taken from official standard
 - underspecification of delays (upper/lower bounds)
 - maximum model size: 170 million states

- **Probabilistic model checking (with PRISM)**
 - verified that root contention always resolved with probability 1
 - \(P_{\geq 1} [F (\text{end } \land \text{elected})] \)
 - investigated worst-case expected time taken for protocol to complete
 - \(R_{\text{max}} = ? [F (\text{end } \land \text{elected})] \)
 - investigated the effect of using biased coin
Case study: FireWire root contention

“minimum probability of electing leader by time T”

(using a biased coin)

“maximum expected time to elect a leader”

(using a biased coin)
4. Stochastic multi-player games (SMGs)

- **Stochastic multi-player games**
 - players control states; choose actions
 - models competitive/collaborative behaviour

- **Probabilistic model checking**
 - automated methods to reason about complex player strategies and interaction with probabilities

- **Property specifications**
 - rPATL: extends Alternating Temporal Logic (and PCTL)
 - ⟨⟨{yellow, blue}⟩⟩ P > 1/3 [F ✓]
 - “do players ‘yellow’ and ‘blue’ have a strategy to ensure that the probability of reaching end state is greater than 1/3, regardless of the strategies of other players?”

- **Applications**
 - controller synthesis, security (system vs. attacker), ...

- **PRISM-games**: www.prismmodelchecker.org/games
Case study: Energy management

• Energy management protocol for Microgrid
 – Microgrid: local energy management
 – randomised demand management protocol [Hildmann/Saffre'11]
 – probability: randomisation, demand model, …

• Existing analysis
 – simulation-based
 – assumes all clients are unselfish

• Our analysis
 – stochastic multi-player game
 – clients can cheat (and cooperate)
 – exposes protocol weakness
 – propose/verify simple fix
Microgrid demand-side management

- **The model**
 - SMG with \(N\) players (one per household)
 - analyse 3-day period, using piecewise approximation of daily demand curve
 - add rewards for value \(V\)

- **Built/analysed models**
 - for \(N=2,\ldots,7\) households

- **Step 1:** assume all households follow algorithm of [HS’11] (MDP)
 - obtain optimal value for \(P_{\text{start}}\)

- **Step 2:** introduce competitive behaviour (SMG)
 - allow coalition \(C\) of households to deviate from algorithm

<table>
<thead>
<tr>
<th>(N)</th>
<th>States</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>743,904</td>
<td>2,145,120</td>
</tr>
<tr>
<td>6</td>
<td>2,384,369</td>
<td>7,260,756</td>
</tr>
<tr>
<td>7</td>
<td>6,241,312</td>
<td>19,678,246</td>
</tr>
</tbody>
</table>
Results: Competitive behaviour

- The original algorithm does **not** discourage selfish behaviour...
Results: Competitive behaviour

- **Algorithm fix: simple punishment mechanism**
 - distribution manager can cancel some tasks

```
All follow alg.

Better to collaborate (with all)

Deviations of varying size
```
Conclusion

• Introduction to probabilistic model checking
• Overview of PRISM
• New developments
 1. multi-objective model checking
 2. parametric model checking
 3. real-time: probabilistic timed automata (PTAs)
 4. games: stochastic multi-player games (SMGs)
• Related/future work
 – quantitative runtime verification [TSE’11,CACM’12]
 – statistical model checking [TACAS’04,STTT’06]
 – multi-objective stochastic games [MFCS’13,QEST’13]
 – verification of cardiac pacemakers [RTSS’12, HSCC’13]
 – probabilistic hybrid automata [CPSWeek’13 tutorial]
References

• Tutorial papers

• PRISM tool paper
Acknowledgements

• My group and collaborators in this work
• Project funding
 – ERC, EPSRC, Microsoft Research
 – Oxford Martin School, Institute for the Future of Computing

• See also
 – VERIWARE www.veriware.org
 – PRISM www.prismmodelchecker.org