

Automated Verification and Strategy Synthesis for Probabilistic Systems

Marta Kwiatkowska

Department of Computer Science, University of Oxford

Joint work with: Dave Parker

ATVA 2013, Hanoi, Vietnam, October 2013

Why automated verification?

Errors in computerised systems can be costly...

Pentium chip (1994) Bug found in FPU. Intel (eventually) offers to replace faulty chips. Estimated loss: \$475m

Infusion pumps
(2010)
Patients die because
of incorrect dosage.
Cause: software
malfunction.
79 recalls.

Toyota Prius (2010)
Software "glitch"
found in anti-lock
braking system.
185,000 cars recalled.

- Why verify?
 - "Testing can only show the presence of errors, not their absence." [Edsger Dijstra]

Probabilistic verification

Probabilistic verification

formal verification of systems exhibiting stochastic behaviour

Why probability?

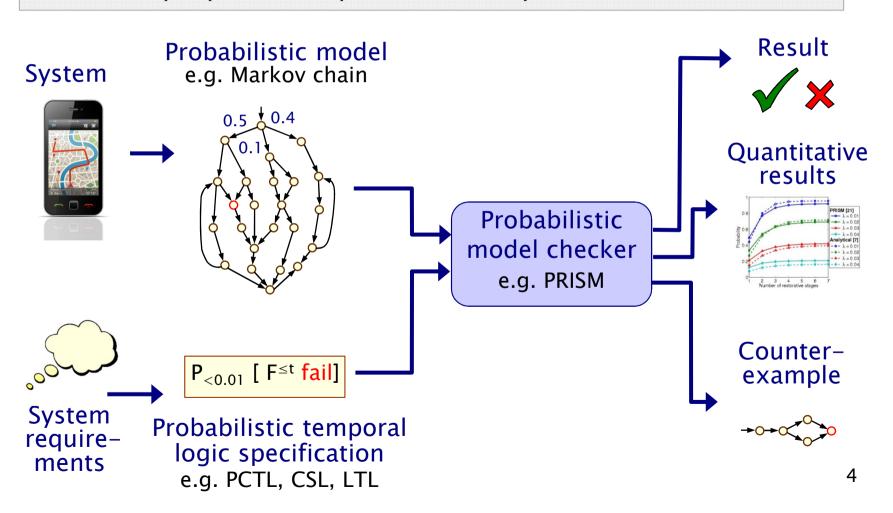
- unreliability (e.g. component failures)
- uncertainty (e.g. message losses/delays over wireless)
- randomisation (e.g. in protocols such as Bluetooth, ZigBee)

Quantitative properties

- reliability, performance, quality of service, ...
- "the probability of an airbag failing to deploy within 0.02s"
- "the expected time for a network protocol to send a packet"
- "the expected power usage of a sensor network over 1 hour"

Quantitative (probabilistic) verification

Automatic verification (aka model checking) of quantitative properties of probabilistic system models



Historical perspective

- First algorithms proposed in 1980s
 - algorithms [Vardi, Courcoubetis, Yannakakis, ...]
 - [Hansson, Jonsson, de Alfaro] & first implementations
- 2000: tools ETMCC (now MRMC) & PRISM released
 - PRISM: efficient extensions of symbolic model checking [Kwiatkowska, Norman, Parker, ...]
 - ETMCC: model checking for continuous-time Markov chains [Baier, Hermanns, Haverkort, Katoen, ...]
- Now mature area, of industrial relevance
 - successfully used by non-experts for many application domains,
 but full automation and good tool support essential
 - distributed algorithms, communication protocols, security protocols, biological systems, quantum cryptography, planning, ...
 - genuine flaws found and corrected in real-world systems

Quantitative probabilistic verification

What's involved

- specifying, extracting and building of quantitative models
- graph-based analysis: reachability + qualitative verification
- numerical solution, e.g. linear equations/linear programming
- typically computationally more expensive than the nonquantitative case

The state of the art

- fast/efficient techniques for a range of probabilistic models
- feasible for models of up to 10⁷ states (10¹⁰ with symbolic)
- extension to probabilistic real-time systems
- abstraction refinement (CEGAR) methods
- probabilistic counterexample generation
- assume-guarantee compositional verification
- tool support exists and is widely used, e.g. PRISM, MRMC

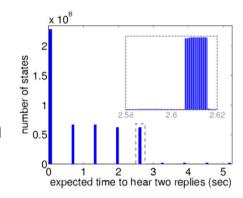
Tool support: PRISM

- PRISM: Probabilistic symbolic model checker [CAV11]
 - developed at Birmingham/Oxford University, since 1999
 - free, open source software (GPL), runs on all major OSs
- Support for:
 - models: DTMCs, CTMCs, MDPs, PTAs, SMGs, ...
 - properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, ...
- Features:
 - simple but flexible high-level modelling language
 - user interface: editors, simulator, experiments, graph plotting
 - multiple efficient model checking engines (e.g. symbolic)
 - New! strategy synthesis, stochastic game models (SMGs), multiobjective verification, parametric models
- See: http://www.prismmodelchecker.org/

Quantitative verification in action

Bluetooth device discovery protocol

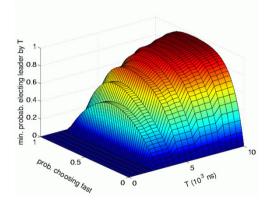
- frequency hopping, randomised delays
- low-level model in PRISM, based on detailed Bluetooth reference documentation
- numerical solution of 32 Markov chains,
 each approximately 3 billion states



identified worst-case time to hear one message, 2.5 seconds

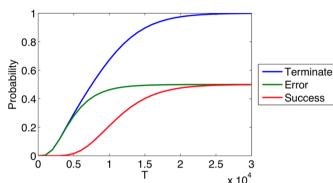
FireWire root contention

- wired protocol, uses randomisation
- model checking using PRISM
- optimum probability of leader election by time T for various coin biases

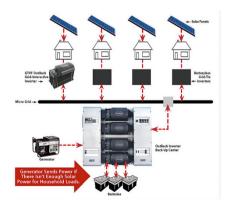


Quantitative verification in action

- DNA transducer gate [Lakin et al, 2012]
 - DNA computing with a restricted class of DNA strand displacement structures
 - transducer design due to Cardelli
 - automatically found and fixed design error, using Microsoft's DSD and PRISM

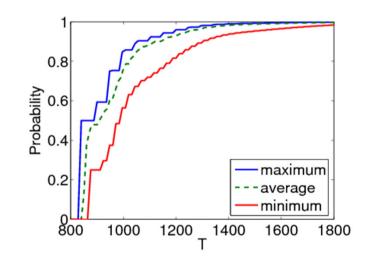


- Microgrid demand management protocol [TACAS12,FMSD13]
 - designed for households to actively manage demand while accessing a variety of energy sources
 - found and fixed a flaw in the protocol, due to lack of punishment for selfish behaviour
 - implemented in PRISM-games



Quantitative verification - Status

- Tools/techniques widely applicable, since real software/systems <u>are</u> quantitative
 - extensions/adaptations of model-based frameworks
 - new application domains
- Analysis "quantitative" & "exhaustive"
 - strength of mathematical proof
 - best/worst-case scenarios, not possible with simulation
 - identifying trends and anomalies



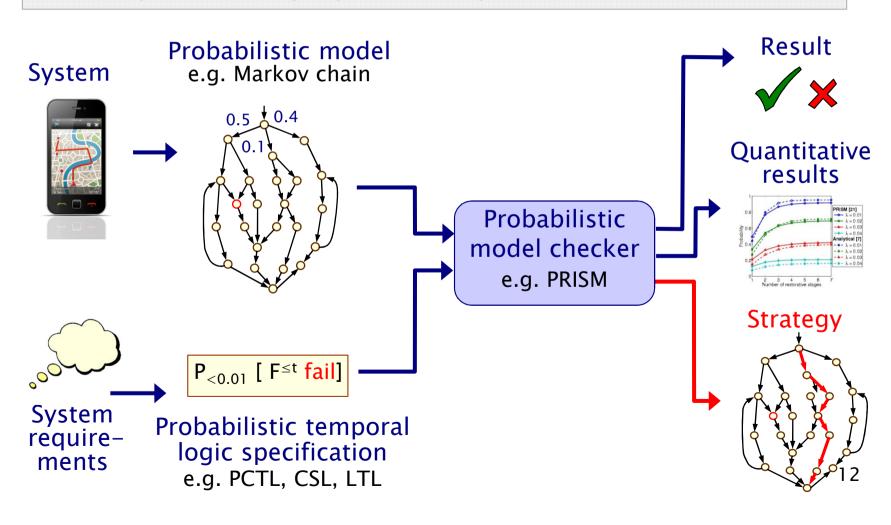
- But
 - the modelling phase time-consuming and error prone
 - potential 'disconnect' between model and the artefact
 - scalability continues to be hard to overcome

This lecture...

- We focus on the problem of strategy synthesis
 - i.e. "can we construct a strategy to guarantee that a given quantitative property is satisfied?"
 - instead of "does the model satisfy a given quantitative property?"
 - advantage: correct-by-construction
- Not a well known fact...
 - can <u>reuse</u> the verification algorithms for strategy synthesis
- Many application domains
 - robotics (controller synthesis from LTL/PCTL)
 - security (generating attacks)
 - dynamic power management (optimal policy synthesis)
- Move towards quantitative model synthesis
 - simpler problems: strategy synthesis, parameter synthesis, template-based synthesis, etc

Quantitative (probabilistic) verification

Automatic verification and strategy synthesis from quantitative properties for probabilistic models

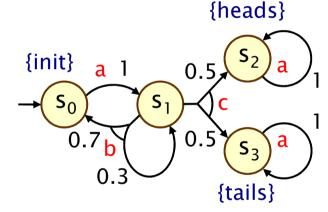


Overview

- Overview of Markov decision processes (MDPs)
 - MDPs: definition, paths & probability spaces
 - Strategies (aka adversaries/policies): definition & classification
- Verification and strategy synthesis
 - Properties and objectives
 - Problem definition
 - Algorithms for MDPs
- Strategy synthesis by example
 - Reachability objectives
 - LTL objectives
 - Multiobjective strategy synthesis
 - Strategy synthesis for stochastic games
- Conclusion

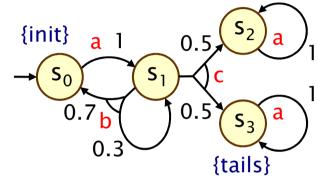
Markov decision processes (MDPs)

- Model nondeterministic as well as probabilistic behaviour
 - e.g. for concurrency, under-specification, abstraction...
 - extension of discrete-time Markov chains
 - nondeterministic choice between probability distributions
- Formally, an MDP is a tuple
 - (S, s_{init} , Act, δ , L)
- where:
 - S is a set of states
 - $-s_{init} \in S$ is the initial state
 - δ : S x Act → Dist(S) is a (partial) transition probability function
 - L : S → 2^{AP} is a labelling function
 - Act is a set of actions, AP is a set of atomic propositions
 - Dist(S) is the set of discrete probability distributions over S



Paths and strategies

- A (finite or infinite) path through an MDP
 - is a sequence (s₀...s_n) of (connected)
 states
 - represents an execution of the system
 - resolves both the probabilistic and nondeterministic choices



{heads}

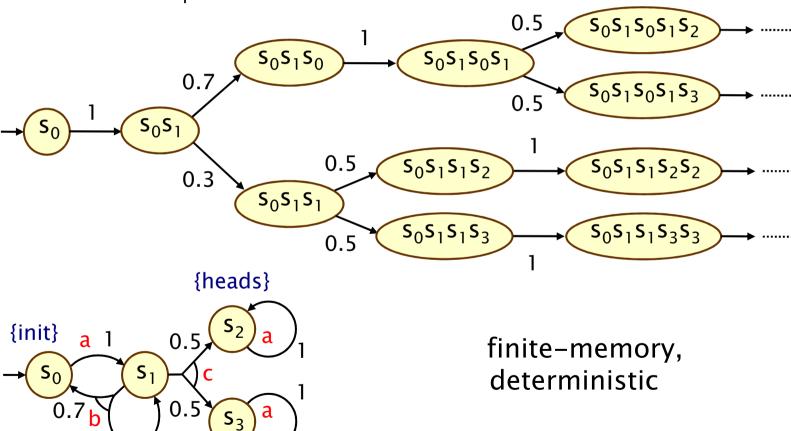
- A strategy σ (aka. "adversary" or "policy") of an MDP
 - is a resolution of nondeterminism only
 - is (formally) a mapping from finite paths to distributions
 - induces a fully probabilistic model
 - i.e. an (infinite-state) Markov chain over finite paths
 - on which we can define a probability space over infinite paths

Classification of strategies

- Strategies are classified according to
- randomisation:
 - σ is deterministic (pure) if $\sigma(s_0...s_n)$ is a point distribution, and randomised otherwise
- memory:
 - σ is memoryless (simple) if $\sigma(s_0...s_n) = \sigma(s_n)$ for all $s_0...s_n$
 - σ is finite memory if there are finitely many modes such as $\sigma(s_0...s_n)$ depends only on s_n and the current mode, which is updated each time an action is performed
 - otherwise, σ is infinite memory
- A strategy σ induces, for each state s in the MDP:
 - a set of infinite paths $Path^{\sigma}(s)$
 - a probability space Pr_s^{σ} over $Path_s^{\sigma}$ (s)

Example strategy

Fragment of induced Markov chain for strategy which picks
 b then c in s₁

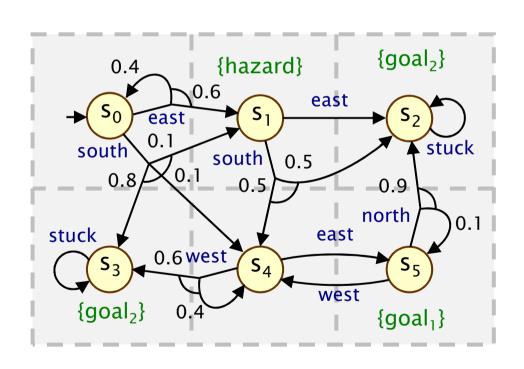


{tails}

Running example

Example MDP

- robot moving through terrain divided into 3 x 2 grid



States:

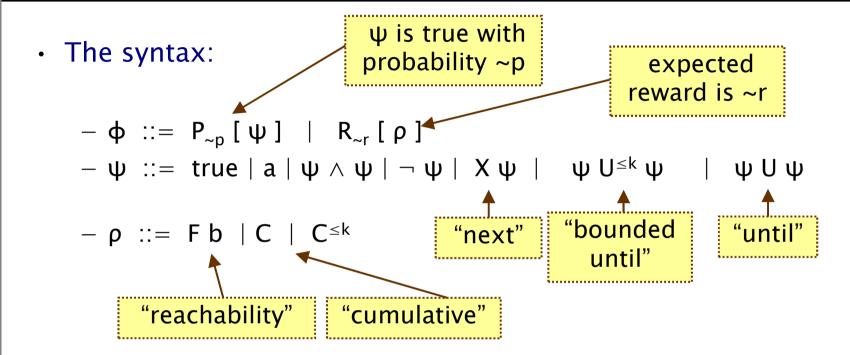
 $s_0, s_1, s_2, s_3, s_4, s_5$

Actions:

north, east, south, west, stuck

Labels
(atomic propositions):
hazard, goal₁, goal₂

Properties and objectives



- where b is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$, and $r \in \mathbb{R}_{>0}$
- $Fb \equiv true Ub$
- We refer to ϕ as property, ψ and ρ as objectives
 - (branching time more challenging for synthesis)

Properties and objectives

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific strategy σ
 - $-s ⊨ P_{-p}$ [ψ] means "the probability, from state s, that ψ is true for an outgoing path satisfies ~p for all strategies σ"
 - formally $s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s^{\sigma}(\psi) \sim p$ for all strategies σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma}\{\omega \in Path_s^{\sigma} \mid \omega \models \psi\}$
- R_{-r} [·] means "the expected value of · satisfies ~r"
- Some examples:
 - $-P_{\geq 0.4}$ [F "goal"] "probability of reaching goal is at least 0.4"
 - R_{<5} [C^{\leq 60}] "expected power consumption over one hour is below 5"
 - $-R_{\leq 10}$ [F "end"] "expected time to termination is at most 10"

Verification and strategy synthesis

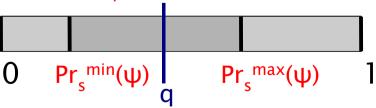
- The verification problem is:
 - Given an MDP M and a property ϕ , does M satisfy ϕ for all possible strategies σ ?
- The synthesis problem is dual:
 - Given an MDP M and a property ϕ , find, if it exists, a strategy σ such that M satisfies ϕ under σ
- Verification and strategy synthesis is achieved using the same techniques, namely computing optimal values for probability objectives, i.e. for $\phi = P_{\sim p} [\psi]$:
 - $\operatorname{Pr}_{s}^{\min}(\psi) = \inf_{\sigma} \operatorname{Pr}_{s}^{\sigma}(\psi)$
 - $Pr_s^{max}(\psi) = sup_{\sigma} Pr_s^{\sigma}(\psi)$

$$0 \quad Pr_s^{min}(\psi) \quad Pr_s^{max}(\psi)$$

• Expectations (reward objectives $R_{r}[\psi]$) are similar, omitted

Verification and strategy synthesis

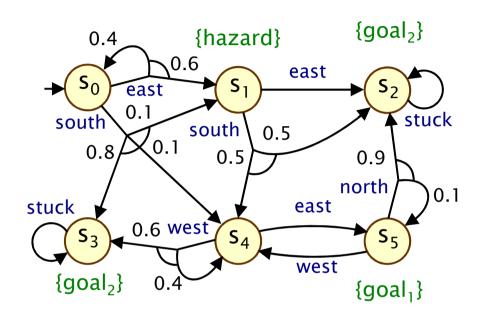
- The verification problem is:
 - Given an MDP M and a property ϕ , does M satisfy ϕ for all possible strategies σ ?
- The synthesis problem is dual:
 - Given an MDP M and a property ϕ , find, if it exists, a strategy σ such that M satisfies ϕ under σ
- In particular, we have
 - M satisfies $\phi = P_{\geq q}[\psi]$ iff $Pr_s^{min}(\psi) \geq q$
 - There exists a strategy satisfying $\phi = P_{\geq q}[\psi]$ iff $Pr_s^{max}(\psi) \geq q$
 - then take optimal strategy



Computing reachability for MDPs

- Computation of probabilities $Pr_s^{max}(F b)$ for all $s \in S$
- Step 1: pre-compute all states where probability is 1 or 0
 - graph-based algorithms, yielding sets Syes, Sno
- Step 2: compute probabilities for remaining states (S?)
 - (i) solve linear programming problem
 - (i) approximate with value iteration
 - (iii) solve with policy (strategy) iteration
- 1. Precomputation (for Pr_s^{max}):
 - algorithm Prob1E computes Syes
 - there exists a strategy for which the probability of "F b" is 1
 - algorithm Prob0A computes Sno
 - for all strategies, the probability of satisfying "F b" is 0

Example - Reachability



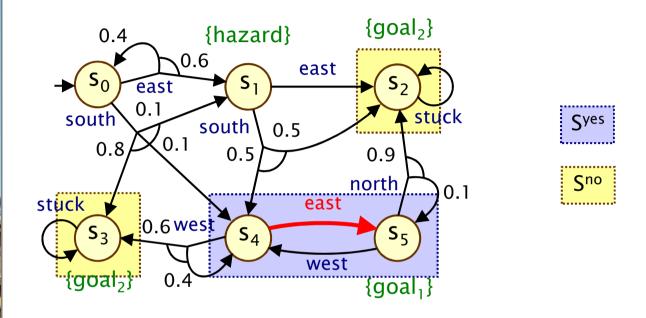
Example goal:

 $P_{\geq 0.4}$ [F goal₁]

So compute:

Pr_s^{max}(F goal₁)

Example - Precomputation



Example goal:

 $P_{\geq 0.4}$ [F goal₁]

So compute:

Pr_s^{max}(F goal₁)

Reachability for MDPs

- 2. Numerical computation
 - compute probabilities Pr_s^{max}(F b)
 - for remaining states in $S^? = S \setminus (S^{yes} \cup S^{no})$
 - obtained as the unique solution of the linear programming (LP) problem:

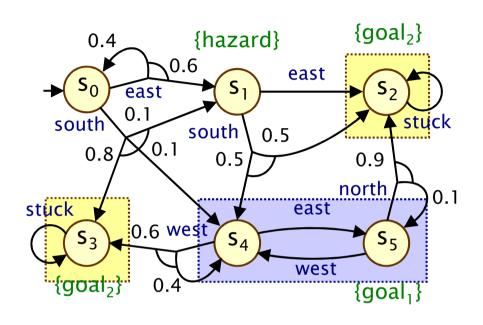
minimize $\sum_{s \in S^2} x_s$ subject to the constraints:

$$X_{s} \ge \sum_{s' \in S^{?}} \delta(s, a)(s') \cdot X_{s'} + \sum_{s' \in S^{yes}} \delta(s, a)(s')$$

for all $s \in S^{?}$ and for all $a \in A(s)$

- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut

Example - Reachability (LP)



Example:

 $P_{\geq 0.4}$ [F goal₁]

So compute:

Pr_s^{max}(F goal₁)

Let
$$x_i = Pr_{s_i}^{max}(F goal_1)$$

$$S^{yes}: x_4 = x_5 = 1$$

$$S^{no}: x_2 = x_3 = 0$$

For
$$S^? = \{x_0, x_1\}$$
:

Minimise $x_0 + x_1$ subject to:

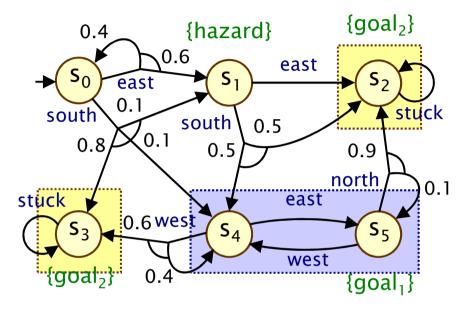
•
$$x_0 \ge 0.4 \cdot x_0 + 0.6 \cdot x_1$$
 (east)

•
$$x_0 \ge 0.1 \cdot x_1 + 0.1$$
 (south)

•
$$x_1 \ge 0.5$$
 (south)

•
$$x_1 \ge 0$$
 (east)

Example – Reachability (LP)



Let
$$x_i = Pr_{s_i}^{max}(F goal_1)$$

$$S^{yes}: x_4 = x_5 = 1$$

$$S^{no}: x_2 = x_3 = 0$$

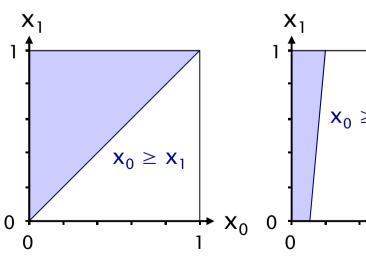
For
$$S^? = \{x_0, x_1\}$$
:

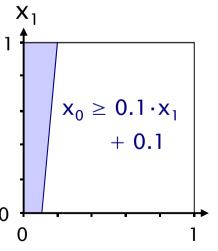
Minimise x_0+x_1 subject to:

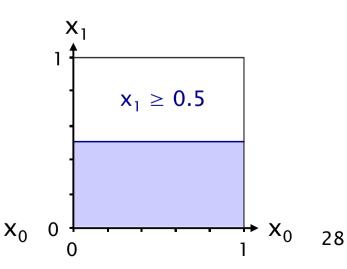
•
$$X_0 \ge X_1$$
 (east)

•
$$x_0 \ge 0.1 \cdot x_1 + 0.1$$
 (south)

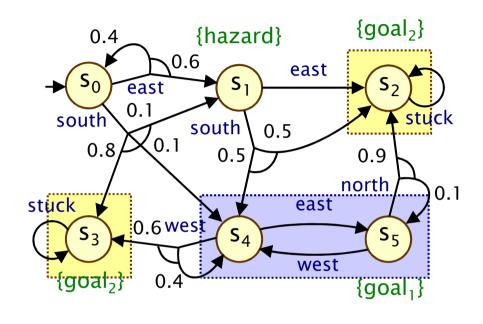
•
$$x_1 \ge 0.5$$
 (south)







Example – Reachability (LP)



Let
$$x_i = Pr_{s_i}^{max}(F goal_1)$$

$$S^{yes}: x_4 = x_5 = 1$$

$$S^{no}: x_2 = x_3 = 0$$

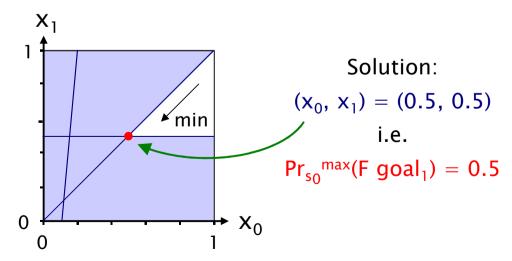
For
$$S^? = \{x_0, x_1\}$$
:

Minimise $x_0 + x_1$ subject to:

•
$$X_0 \ge X_1$$

•
$$x_0 \ge 0.1 \cdot x_1 + 0.1$$

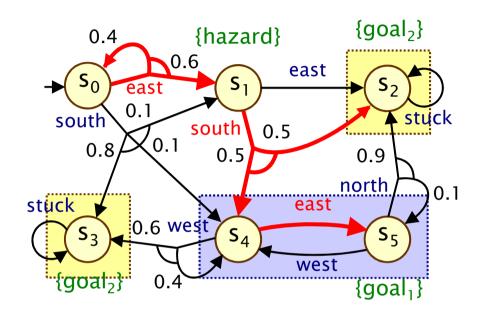
•
$$x_1 \ge 0.5$$



Strategy synthesis

- Compute optimal probabilities $Pr_s^{max}(F b)$ for all $s \in S$
- To compute the optimal strategy σ^* , choose the locally optimal action in each state
 - in general depends on the method used to compute the optimal probabilities
 - i.e. policy iteration constructs the optimal strategy
 - for max probabilities, adaptation of precomputation needed
- For reachability
 - memoryless strategies suffice
- For step-bounded reachability
 - need finite-memory strategies
 - typically requires backward computation for a fixed number of steps

Example - Strategy



Optimal strategy:

s₀: east

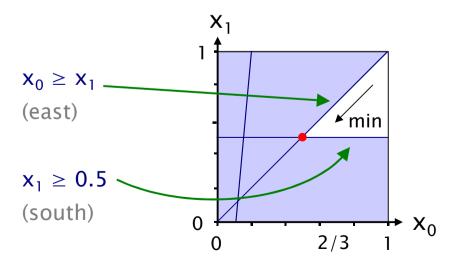
 s_1 : south

s₂: -

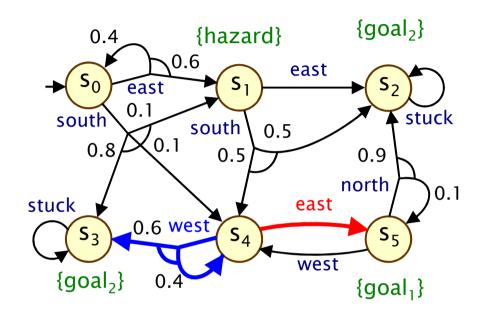
s₃: -

s₄: east

 S_5 : -



Example - Bounded reachability



Example:

$$P_{\text{max}=?}$$
 [$F^{\leq 3}$ goal₂]

So compute:

$$Pr_s^{max}(F^{\leq 3} goal_2) = 0.99$$

Optimal strategy is finite-memory:

s₄ (after 1 step): east

s₄ (after 2 steps): west

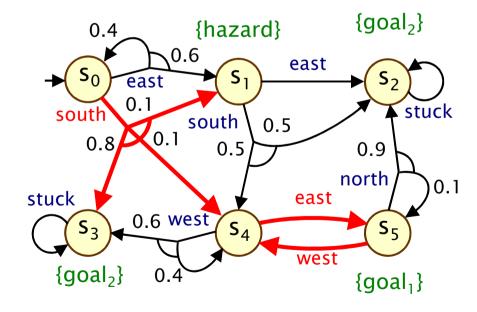
Computation more involved

May need to choose a different action on successive visits

- Reduce to the problem of reachability on the product of MDP M and an omega-automaton representing ψ
 - for example, deterministic Rabin automaton (DRA)
- Need only consider computation of maximum probabilities $Pr_s^{max}(\psi)$
 - since $Pr_s^{min}(\psi) = 1 Pr_s^{max}(\neg \psi)$
- To compute the optimal strategy σ*
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy with one mode for each state of the DRA for $\boldsymbol{\psi}$

Example – LTL

- $P_{\geq 0.05}$ [(G \neg hazard) \wedge (GF goal₁)]
 - avoid hazard and visit goal₁ infinitely often
- $Pr_{s_0}^{max}((G \neg hazard) \land (GF goal_1)) = 0.1$



Optimal strategy: (in this instance, memoryless)

 s_0 : south

 $s_1 : -$

 s_2 : -

S₃: -

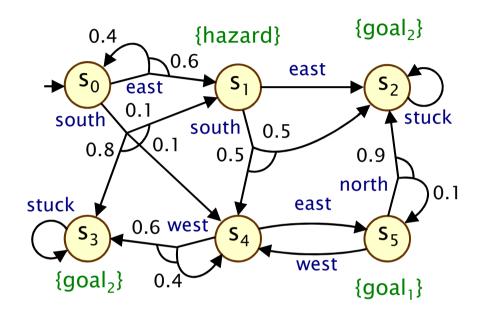
s₄: east

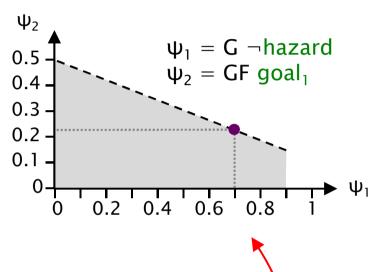
s₅: west

Multi-objective strategy synthesis

- Consider conjunctions of probabilistic LTL formulas $P_{\sim p}$ [ψ]
 - require all conjuncts to be satisfied
- Reduce to a multi-objective reachability problem on the product of MDP M and the omega-automata representing the conjuncts
 - convert (by negation) to formulas with lower probability bounds (\geq , >), then to DRA
 - need to consider all combinations of objectives
- The problem can be solved using LP methods [TACAS07] or via approximations to Pareto curve [ATVA12]
 - strategies may be finite memory and randomised
- Continue as for single-objectives to compute the strategy σ*
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy

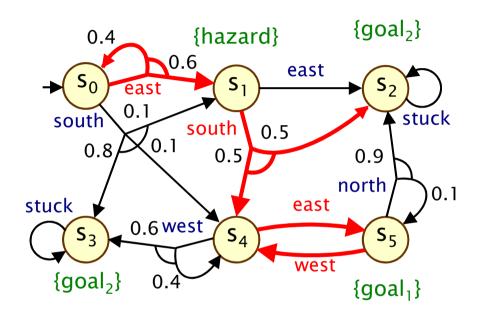
Example - Multi-objective

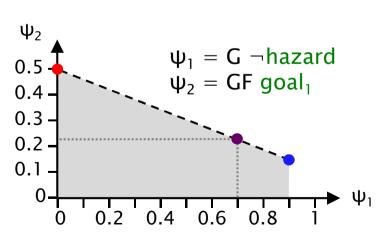




- Multi-objective formula
 - $-P_{\geq 0.7}$ [G \neg hazard] $\wedge P_{\geq 0.2}$ [GF goal₁] ? True (achievable)
- Numerical query
 - $-P_{max=?}$ [GF goal₁] such that $P_{\geq 0.7}$ [G \neg hazard] ? ~0.2278
- Pareto query
 - for $P_{max=?}$ [$G \neg hazard$] $\land P_{max=?}$ [$GF goal_1$]?

Example - Multi-objective strategies





Strategy 1 (deterministic)

s₀: east

 s_1 : south

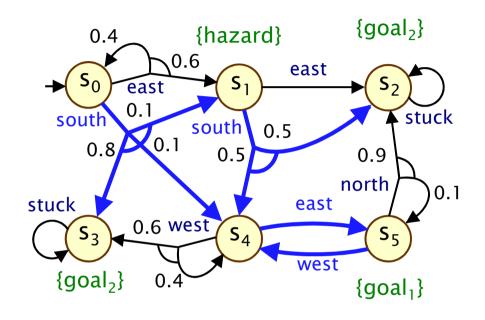
 S_2 : -

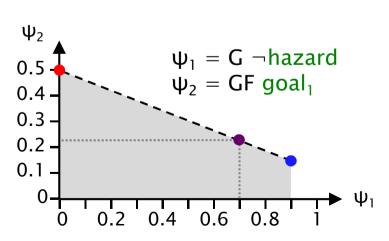
S₃: -

s₄: east

s₅: west

Example - Multi-objective strategies





Strategy 2 (deterministic)

 s_0 : south

 s_1 : south

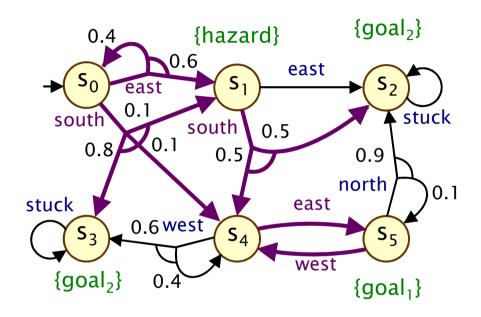
 S_2 : -

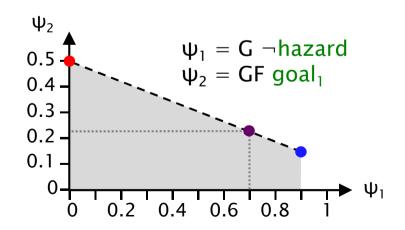
S₃: -

s₄: east

s₅: west

Example – Multi-objective strategies





Optimal strategy: (randomised)

 s_0 : 0.3226: east

0.6774 : south

 s_1 : 1.0 : south

 S_2 : -

 s_3 : -

 s_4 : 1.0 : east

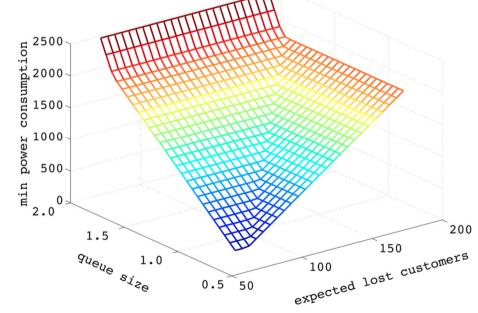
 $s_5 : 1.0 : west$

Case study: Dynamic power management

- Synthesis of dynamic power management schemes
 - for an IBM TravelStar VP disk drive
 - 5 different power modes: active, idle, idlelp, stby, sleep
 - power manager controller bases decisions on current power mode, disk request queue, etc.

Build controllers that

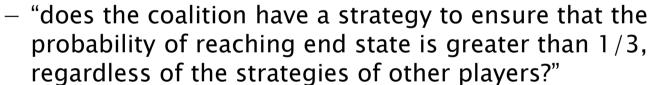
- minimise energy consumption, subject to constraints on e.g.
- probability that a request waits more than K steps
- expected number of lost disk requests



See: http://www.prismmodelchecker.org/files/tacas11/

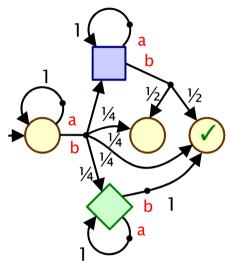
Stochastic multi-player games (SMGs)

- players control states; choose actions
- models competitive/collaborative behaviour
- Property specifications
 - rPATL: extends Alternating Temporal Logic (and PCTL with the R operator)
 - $-\langle\langle\langle\{\bigcirc, \bigcirc, \bigcirc\rangle\rangle\rangle\rangle$ $P_{>1/3}[F \checkmark]$



Applications

- controller synthesis (controller vs. environment),
 security (system vs. attacker), distributed algorithms, ...
- PRISM-games: www.prismmodelchecker.org/games



Model checking rPATL

- Basic algorithm: as for any branching-time temporal logic
 - recursive descent of formula parse tree
 - compute $Sat(φ) = { s∈S | s⊨φ }$ for each subformula φ
- Main task: checking P and R operators
 - reduction to solution of stochastic 2-player game G_C
 - $-\text{ e.g. } \langle\langle C\rangle\rangle P_{\geq q}[\psi] \ \Leftrightarrow \ sup_{\sigma_1\in\Sigma_1} \text{ inf}_{\sigma_2\in\Sigma_2} \text{ Pr}_s^{\,\sigma_1,\sigma_2}\left(\psi\right) \geq q$
 - complexity: NP ∩ coNP (for sublogic)
 - compared to, e.g. P for Markov decision processes
 - complexity for full logic: NEXP ∩ coNEXP
- In practice though:
 - evaluation of numerical fixed points ("value iteration")
 - up to a desired level of convergence
 - usual approach taken in probabilistic model checking tools

Probabilities for P operator

- E.g. $\langle\langle C\rangle\rangle P_{\geq q}[F \varphi]$: max/min reachability probabilities
 - compute $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1, \sigma_2} (F \varphi)$ for all states s
 - deterministic memoryless strategies suffice
- Value is:
 - 1 if s ∈ Sat(ϕ), and otherwise least fixed point of:

$$f(s) = \begin{cases} \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\ \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_2 \end{cases}$$

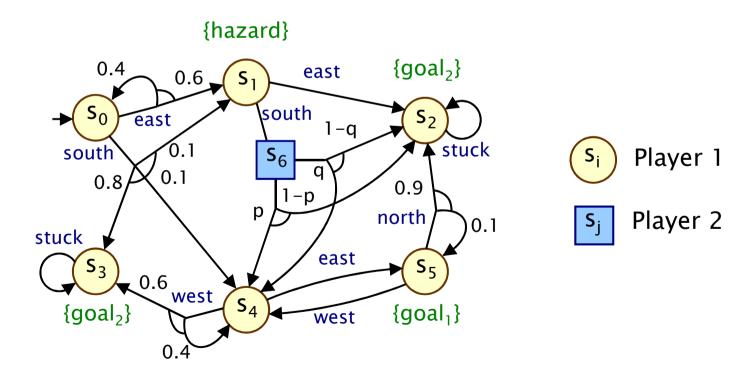
- Computation:
 - start from zero, propagate probabilities backwards
 - guaranteed to converge, similarly to value iteration for MDPs

Strategy synthesis for stochastic games

- · Generate strategies for individual players, or for a coalition
- Problem statement:
 - Given a game G and an rPATL property $((C))P_{q}[\psi]$, does there exist a strategy σ_1 for players in C such that, for all strategies σ_2 outside C, the probability of satisfying ψ under σ_1 and σ_2 meets the bound \sim q
- Compute optimal probabilities
 - for reachability, value or policy iteration, similar to that for MDPs
 - for LTL ψ, again work via product with the Rabin automaton for the formula
- To compute the optimal strategy
 - compute parity objectives for parity automaton from DRA
 - for reachability, memoryless deterministic strategies suffice

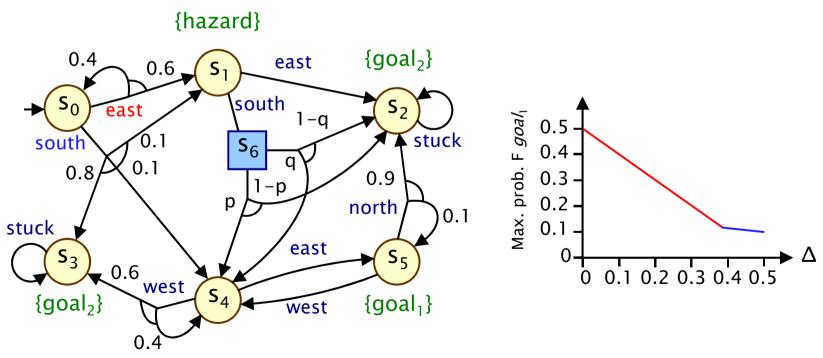
Example - Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - when taking action south in state s₆
 - probability of (correctly) going to s₄ is in interval [p,q]
 - rPATL: $\langle\langle\{1\}\rangle\rangle$ P_{max=?} [F goal₁]



Example - Stochastic games

- rPATL: $\langle\langle\{1\}\rangle\rangle$ Pmax=? [F goal₁]
 - let [p,q] = [0.5-Δ, 0.5+Δ]; vary Δ
 - optimal strategy: if $\Delta \ge 7/18$ (i.e. if p $\le 1/9$), then pick south in s_0 , otherwise pick east



Conclusion

- Overview of strategy synthesis
 - for probabilistic LTL and reward objectives
 - multi-objective properties
 - Markov decision process and stochastic games models
- Highlighting new features of PRISM
 - strategy (adversary) synthesis
 - multi-objective verification
- Further/related work
 - task graph scheduling [FMSD'13]
 - probabilistic parameter synthesis [TASE'13]
 - strategy generation for autonomous driving [QEST'13,MFCS'13]
 - template-based synthesis for UAV missions [ESEC/FSE'13]

References

Tutorial papers

- V. Forejt, M. Kwiatkowska, G. Norman and D. Parker. *Automated Verification Techniques for Probabilistic Systems*. In SFM'11, pp 53–113, Springer, 2011.
- V. Forejt, M. Kwiatkowska, G. Norman, D. Parker and H. Qu. *Quantitative Multi-Objective Verification for Probabilistic Systems*. In Proc. TACAS'11, pp 112–127, Springer, 2011.
- V. Forejt, M. Kwiatkowska and D. Parker. *Pareto Curves for Probabilistic Model Checking*. In Proc. ATVA'12, pp 317–332, Springer, 2012.
- T. Chen, V. Forejt, M. Kwiatkowska, D. Parker and A. Simaitis. *Automatic Verification of Competitive Stochastic Systems*. FMSD, 43(1), pp 61–92, Springer, 2013.
- G. Norman, D. Parker and J. Sproston. *Model Checking for Probabilistic Timed Automata*. FMSD, 43(2), pp 164–190, Springer, 2013.

PRISM tool paper

M. Kwiatkowska, G. Norman and D. Parker. *PRISM 4.0: Verification of Probabilistic Real-time Systems*. In Proc. CAV'11, volume 6806 of LNCS, pages 585-591, Springer. July 2011.

48

Acknowledgements

- My group and collaborators in this work
- Project funding
 - ERC, EPSRC, Microsoft Research
 - Oxford Martin School, Institute for the Future of Computing
- See also
 - VERWARE www.veriware.org
 - PRISM <u>www.prismmodelchecker.org</u>
 - PRISM-games: <u>www.prismmodelchecker.org/games</u>