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Why automated verification?

• Errors in computerised systems can be costly…

Pentium chip (1994)
Bug found in FPU.

Intel (eventually) offers
to replace faulty chips.
Estimated loss: $475m

Infusion pumps 
(2010)

Patients die because 
of incorrect dosage.

Cause: software 
malfunction.
79 recalls.

Toyota Prius (2010)
Software “glitch”

found in anti-lock
braking system.

185,000 cars recalled.

• Why verify?

• “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]
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Probabilistic verification

• Probabilistic verification

− formal verification of systems exhibiting stochastic behaviour

• Why probability?

− unreliability (e.g. component failures)

− uncertainty (e.g. message losses/delays over wireless)

− randomisation (e.g. in protocols such as Bluetooth, ZigBee)

• Quantitative properties

− reliability, performance, quality of service, …

− “the probability of an airbag failing to deploy within 0.02s”

− “the expected time for a network protocol to send a packet”

− “the expected power usage of a sensor network over 1 hour”
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Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [ F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative 
properties of probabilistic system models
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Historical perspective

• First algorithms proposed in 1980s

− algorithms [Vardi, Courcoubetis, Yannakakis, …]

− [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (now MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking 
[Kwiatkowska, Norman, Parker, …]

− ETMCC: model checking for continuous-time Markov chains [Baier, 

Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains, 
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols, 
biological systems, quantum cryptography, planning, …

− genuine flaws found and corrected in real-world systems



6

Quantitative probabilistic verification

• What’s involved

− specifying, extracting and building of quantitative models

− graph-based analysis: reachability + qualitative verification

− numerical solution, e.g. linear equations/linear programming

− typically  computationally more expensive than the non-
quantitative case

• The state of the art

− fast/efficient techniques for a range of probabilistic models

− feasible for models of up to 107 states (1010 with symbolic)

− extension to probabilistic real-time systems 

− abstraction refinement (CEGAR) methods

− probabilistic counterexample generation 

− assume-guarantee compositional verification 

− tool support exists and is widely used, e.g. PRISM, MRMC
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Tool support: PRISM

• PRISM: Probabilistic symbolic model checker [CAV11]

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …

− properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

− New! strategy synthesis, stochastic game models (SMGs) , 
multiobjective verification, parametric models

• See: http://www.prismmodelchecker.org/
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Quantitative verification in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message, 2.5 seconds 

• FireWire root contention

− wired protocol, uses randomisation

− model checking using PRISM

− optimum probability of leader election 
by time T for various coin biases

− demonstrated that a biased coin can improve performance
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Quantitative verification in action

• DNA transducer gate [Lakin et al, 2012]

− DNA computing with a restricted 
class of DNA strand displacement 
structures

− transducer design due to Cardelli

− automatically found and fixed 
design error, using Microsoft’s DSD and PRISM

• Microgrid demand management protocol [TACAS12,FMSD13]

− designed for households to actively manage 
demand while accessing a variety of energy 
sources

− found and fixed a flaw in the protocol, due to
lack of punishment for selfish behaviour

− implemented in PRISM-games
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Quantitative verification – Status

• Tools/techniques widely applicable, since real 
software/systems are quantitative

− extensions/adaptations of model-based frameworks

− new application domains

• Analysis “quantitative” & “exhaustive” 

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies

• But

− the modelling phase time-consuming and error prone

− potential ‘disconnect’ between model and the artefact

− scalability continues to be hard to overcome
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This lecture…

• We focus on the problem of strategy synthesis

− i.e. “can we construct a strategy to guarantee that a given 
quantitative property is satisfied?”

− instead of “does the model satisfy a given quantitative property?”

− advantage: correct-by-construction

• Not a well known fact…

− can reuse the verification algorithms for strategy synthesis

• Many application domains

− robotics (controller synthesis from LTL/PCTL)

− security (generating attacks)

− dynamic power management (optimal policy synthesis)

• Move towards quantitative model synthesis

− simpler problems: strategy synthesis, parameter synthesis, 
template-based synthesis, etc
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Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Strategy

System
require-
ments

P<0.01 [ F≤t fail]

Probabilistic
model checker

e.g. PRISM

Automatic verification and strategy synthesis from 
quantitative properties for probabilistic models

0.5

0.1

0.4
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Overview

• Motivation

• Overview of Markov decision processes (MDPs)

− MDPs: definition, paths & probability spaces

− Strategies (aka adversaries/policies): definition & classification

• Verification and strategy synthesis

− Properties and objectives

− Problem definition 

− Algorithms for MDPs

• Strategy synthesis by example

− Reachability objectives

− LTL objectives

− Multiobjective strategy synthesis

− Strategy synthesis for stochastic games

• Conclusion
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Markov decision processes (MDPs)

• Model nondeterministic as well as probabilistic behaviour
− e.g. for concurrency, under-specification, abstraction…

− extension of discrete-time Markov chains

− nondeterministic choice between probability distributions

• Formally, an MDP is a tuple
− (S, sinit, Act, δδδδ, L)

• where:
− S is a set of states

− sinit ∈ S is the initial state

− δ : : : : S x Act → Dist(S) is a (partial) transition probability 
function

− L : S → 2AP is a labelling function

− Act is a set of actions, AP is a set of atomic propositions

− Dist(S) is the set of discrete probability distributions over S

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a
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Paths and strategies

• A (finite or infinite) path through an MDP

− is a sequence (s0...sn) of (connected) 
states

− represents an execution of the system

− resolves both the probabilistic and
nondeterministic choices

• A strategy σ (aka. “adversary” or “policy”) of an MDP

− is a resolution of nondeterminism only

− is (formally) a mapping from finite paths to distributions

− induces a fully probabilistic model

− i.e. an (infinite-state) Markov chain over finite paths

− on which we can define a probability space over infinite paths

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a
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Classification of strategies

• Strategies are classified according to

• randomisation: 

− σ is deterministic (pure) if σ(s0...sn) is a point distribution, and 
randomised otherwise

• memory: 

− σ is memoryless (simple) if σ(s0...sn) = σ(sn) for all s0...sn

− σ is finite memory if there are finitely many modes such as 
σ(s0...sn) depends only on sn and the current mode, which is 
updated each time an action is performed

− otherwise, σ is infinite memory

• A strategy σ induces, for each state s in the MDP:

− a set of infinite paths Pathσ (s)

− a probability space Prσ
s over Pathσ (s)
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Example strategy

• Fragment of induced Markov chain for strategy which picks 
b then c in s1

finite-memory, 
deterministic

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s30.5
s0s1

0.7
s0s1s0

s0s1s1

0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a
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Running example

• Example MDP

− robot moving through terrain divided into 3 x 2 grid

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

States:

s0, s1, s2, s3, s4, s5

Actions:

north, east, south,
west, stuck

Labels

(atomic propositions):

hazard, goal1, goal2
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Properties and objectives

• The syntax:

− φ  ::=  P~p [ ψ ]   |   R~r [ ρ ]

− ψ  ::=  true | a | ψ ∧ ψ | ¬ ψ |  X ψ  |    ψ U≤k ψ     |   ψ U ψ 

− ρ ::=  F b  | C  |  C≤k

− where b is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ, 
and r ∈ ℝ≥0

− F b ≡ true U b

• We refer to φ as property, ψ and ρ as objectives

− (branching time more challenging for synthesis)

“until”

ψ is true with 
probability ~p

“bounded 
until”

“next”

expected 
reward is ~r

“reachability” “cumulative”
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Properties and objectives

• Semantics of the probabilistic operator P

− can only define probabilities for a specific strategy σ

− s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is 
true for an outgoing path satisfies ~p for all strategies σ”

− formally  s ⊨ P~p [ ψ ]  ⇔  Prs
σ(ψ) ~ p for all strategies σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

• R~r [ · ] means “the expected value of · satisfies ~r”

• Some examples:

− P≥0.4 [ F “goal” ] “probability of reaching goal is at least 0.4” 

− R<5 [ C≤60 ] “expected power consumption over one hour is 
below 5”

− R≤10 [ F “end” ] “expected time to termination is at most 10”



21

Verification and strategy synthesis

• The verification problem is:

− Given an MDP M and a property φ, does M satisfy φ for all 
possible strategies σ?

• The synthesis problem is dual:

− Given an MDP M and a property φ, find, if it exists, a strategy 
σ such that M satisfies φ under σ

• Verification and strategy synthesis is achieved using the 
same techniques, namely computing optimal values for 
probability objectives, i.e. for φ  =  P~p [ ψ ]:

− Prs
min(ψ) = infσ Prs

σ (ψ)

− Prs
max(ψ) = supσ Prs

σ (ψ)

• Expectations (reward objectives R~r[ψ]) are similar, omitted

0 1Prs
min(ψ) Prs

max(ψ)



22

Verification and strategy synthesis

• The verification problem is:

− Given an MDP M and a property φ, does M satisfy φ for all 
possible strategies σ?

• The synthesis problem is dual:

− Given an MDP M and a property φ, find, if it exists, a strategy 
σ such that M satisfies φ under σ

• In particular, we have

− M satisfies φ = P≥q[ ψ ] iff Prs
min(ψ) ≥ q

− There exists a strategy satisfying φ = P≥q[ ψ ] iff Prs
max(ψ) ≥ q

− then take optimal strategy

q
0 1Prs

min(ψ) Prs
max(ψ)
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Computing reachability for MDPs

• Computation of probabilities Prs
max(F b) for all s ∈ S

• Step 1: pre-compute all states where probability is 1 or 0

− graph-based algorithms, yielding sets Syes, Sno

• Step 2: compute probabilities for remaining states (S?)

− (i) solve linear programming problem

− (i) approximate with value iteration

− (iii) solve with policy (strategy) iteration

• 1. Precomputation (for Prs
max):

− algorithm Prob1E computes Syes

• there exists a strategy for which the probability of "F b" is 1

− algorithm Prob0A computes Sno

• for all strategies, the probability of satisfying "F b" is 0
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s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example goal:

P≥0.4 [ F goal1 ]

So compute:

Prs
max(F goal1)

Example - Reachability



25

Syes

Sno

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Example goal:

P≥0.4 [ F goal1 ]

So compute:

Prs
max(F goal1)

Example - Precomputation
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Reachability for MDPs

• 2. Numerical computation

− compute probabilities Prs
max(F b)

− for remaining states in S? = S \ (Syes ∪ Sno)

− obtained as the unique solution of the linear programming 
(LP) problem:

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

minimize x
s
 subject to the constraints:

s∈ S?∑
x

s
≥ δ(s,a)(s’) ⋅ x

s’
+

s’∈S?

∑ δ(s,a)(s’)

s’∈Syes

∑

for all s ∈ S?  and for all a ∈ A(s)
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Example – Reachability (LP)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ 0.4·x0 + 0.6·x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)

● x1 ≥ 0 (east)

Example:

P≥0.4 [ F goal1 ]

So compute:

Prs
max(F goal1)
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Example - Reachability (LP)

x0

x1

0
0

1

1

x0 ≥ x1

x1 ≥ 0.5

x0

x1

0
0

1

1
x0

x1

0
0

1

1

x0 ≥ 0.1·x1

+ 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)
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Example - Reachability (LP)

x0

x1

0
0

1

1

min

Solution:

(x0, x1) = (0.5, 0.5)

i.e.

Prs0
max(F goal1) = 0.5

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1

● x0 ≥ 0.1·x1 + 0.1

● x1 ≥ 0.5
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Strategy synthesis

• Compute optimal probabilities Prs
max(F b) for all s ∈ S

• To compute the optimal strategy σ*, choose the locally 
optimal action in each state

− in general depends on the method used to compute the 
optimal probabilities

− i.e. policy iteration constructs the optimal strategy

− for max probabilities, adaptation of precomputation needed

• For reachability

− memoryless strategies suffice

• For step-bounded reachability

− need finite-memory strategies

− typically requires backward computation for a fixed number of 
steps
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Example - Strategy

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

x0

x1

0
0

1

12/3

min

x0 ≥ x1

(east)

x1 ≥ 0.5

(south)

Optimal strategy:

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : -
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s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example:

Pmax=? [ F≤3 goal2 ]

So compute:

Prs
max(F≤3 goal2) = 0.99

Optimal strategy

is finite-memory:

s4 (after 1 step): east

s4 (after 2 steps): west

Example – Bounded reachability

Computation more involved

May need to choose a different action on successive visits
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Strategy synthesis for LTL objectives

• Reduce to the problem of reachability on the product of 
MDP M and an omega-automaton representing ψ

− for example, deterministic Rabin automaton (DRA)

• Need only consider computation of maximum probabilities 
Prs

max(ψ)

− since Prs
min(ψ) = 1 - Prs

max(¬ψ)

• To compute the optimal strategy σ* 

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy with one mode for each 
state of the DRA for ψ
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Example - LTL

• P≥0.05 [ (G ¬hazard) ∧ (GF goal1) ]

− avoid hazard and visit goal1 infinitely often

• Prs0
max((G ¬hazard) ∧ (GF goal1)) = 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Optimal strategy:

(in this instance,

memoryless)

s0 : south

s1 : -

s2 : -

s3 : -

s4 : east

s5 : west
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Multi-objective strategy synthesis

• Consider conjunctions of probabilistic LTL formulas P~p [ψ] 

− require all conjuncts to be satisfied

• Reduce to a multi-objective reachability problem on the 
product of MDP M and the omega-automata representing 
the conjuncts

− convert (by negation) to formulas with lower probability 
bounds (≥, >), then to DRA

− need to consider all combinations of objectives

• The problem can be solved using LP methods [TACAS07] or 
via approximations to Pareto curve [ATVA12]

− strategies may be finite memory and randomised

• Continue as for single-objectives to compute the strategy σ* 

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy
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Example – Multi-objective

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

• Multi-objective formula

− P≥0.7 [ G ¬hazard ] ∧ P≥0.2 [ GF goal1 ] ? True (achievable)

• Numerical query

− Pmax=? [ GF goal1 ] such that P≥0.7 [ G ¬hazard ] ? ~0.2278

• Pareto query

− for Pmax=? [ G ¬hazard ] ∧ Pmax=? [ GF goal1 ] ?

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1
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Example – Multi-objective strategies

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Strategy 1

(deterministic)

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1
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Example – Multi-objective strategies

Strategy 2

(deterministic)

s0 : south

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north
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Example – Multi-objective strategies

Optimal strategy:

(randomised)

s0 : 0.3226 : east

0.6774 : south

s1 : 1.0 : south

s2 : -

s3 : -

s4 : 1.0 : east

s5 : 1.0 : west

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north
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Case study: Dynamic power management

• Synthesis of dynamic power management schemes

− for an IBM TravelStar VP disk drive

− 5 different power modes: active, idle, idlelp, stby, sleep

− power manager controller bases decisions on current power 
mode, disk request queue, etc.

• Build controllers that

− minimise energy
consumption, subject to
constraints on e.g.

− probability that a request
waits more than K steps

− expected number of
lost disk requests

• See: http://www.prismmodelchecker.org/files/tacas11/
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Stochastic multi-player games (SMGs)

• Stochastic multi-player games

− players control states; choose actions

− models competitive/collaborative behaviour

• Property specifications

− rPATL: extends Alternating Temporal Logic 
(and PCTL with the R operator)

− ⟨⟨{ ,      }⟩⟩ P>1/3 [ F ✓ ] 

− “does the coalition have a strategy to ensure that the 
probability of reaching end state is greater than 1/3, 
regardless of the strategies of other players?”

• Applications

− controller synthesis (controller vs. environment),
security (system vs. attacker), distributed algorithms, …

• PRISM-games: www.prismmodelchecker.org/games
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Model checking rPATL

• Basic algorithm: as for any branching-time temporal logic

− recursive descent of formula parse tree

− compute Sat(φ) = { s∈S | s⊨φ } for each subformula φ

• Main task: checking P and R operators

− reduction to solution of stochastic 2-player game GC

− e.g. ⟨⟨C⟩⟩P≥q[ψ]  ⇔  supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (ψ) ≥q

− complexity: NP ∩ coNP (for sublogic)

− compared to, e.g. P for Markov decision processes

− complexity for full logic: NEXP ∩ coNEXP

• In practice though:

− evaluation of numerical fixed points (“value iteration”)

− up to a desired level of convergence

− usual approach taken in probabilistic model checking tools
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Probabilities for P operator

• E.g. ⟨⟨C⟩⟩P≥q[ F φ ] : max/min reachability probabilities

− compute supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (F φ) for all states s

− deterministic memoryless strategies suffice

• Value is:

− 1 if s ∈ Sat(φ), and otherwise least fixed point of:

• Computation:

− start from zero, propagate probabilities backwards

− guaranteed to converge, similarly to value iteration for MDPs

  

f(s) =

maxa∈A(s) ∆(s,a)(s' ) ⋅ f(s' )
s'∈S

∑
 

 
  

 

 
  if s ∈ S1

mina∈A(s) ∆(s,a)(s' ) ⋅ f(s' )
s'∈S

∑
 

 
  

 

 
  if s ∈ S2

 

 

 

 

 

 

 
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Strategy synthesis for stochastic games

• Generate strategies for individual players, or for a coalition

• Problem statement:

− Given a game G and an rPATL property ⟨⟨C⟩⟩P∼q[ ψ ], does 
there exist a strategy σ1 for players in C such that, for all 
strategies σ2 outside C, the probability of satisfying ψ under 
σ1 and σ2 meets the bound ∼q

• Compute optimal probabilities 

− for reachability, value or policy iteration, similar to that for 
MDPs

− for LTL ψ, again work via product with the Rabin automaton 
for the formula

• To compute the optimal strategy

− compute parity objectives for parity automaton from DRA

− for reachability, memoryless deterministic strategies suffice
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Example – Stochastic games

• Two players: 1 (robot controller), 2 (environment)

− when taking action south in state s6

− probability of (correctly) going to s4 is in interval [p,q]

− rPATL: ⟨⟨{1}⟩⟩ Pmax=? [ F goal1 ]
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0.1

{goal1}
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0.1
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stuck
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stuck

0.4

0.6
west

west
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s6
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1-q
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sj Player 2



46

Example – Stochastic games

• rPATL: ⟨⟨{1}⟩⟩ Pmax=? [ F goal1 ] 

− let [p,q] = [0.5-∆, 0.5+∆]; vary ∆

− optimal strategy: if ∆ ≥ 7/18 (i.e. if p ≤ 1/9),
then pick south in s0, otherwise pick east
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Conclusion

• Overview of strategy synthesis

− for probabilistic LTL and reward objectives

− multi-objective properties

− Markov decision process and stochastic games models

• Highlighting new features of PRISM

− strategy (adversary) synthesis

− multi-objective verification

− Further/related work

− task graph scheduling [FMSD’13]

− probabilistic parameter synthesis [TASE’13]

− strategy generation for autonomous driving [QEST’13,MFCS’13]

− template-based synthesis for UAV missions [ESEC/FSE’13]
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