Automated Verification and Strategy Synthesis for Probabilistic Systems

Marta Kwiatkowska
Department of Computer Science, University of Oxford

Joint work with: Dave Parker

ATVA 2013, Hanoi, Vietnam, October 2013
Why automated verification?

• Errors in computerised systems can be costly...

 Pentium chip (1994)
 Bug found in FPU. Intel (eventually) offers to replace faulty chips. Estimated loss: $475m

 Infusion pumps (2010)
 Patients die because of incorrect dosage. Cause: software malfunction. 79 recalls.

 Toyota Prius (2010)
 Software “glitch” found in anti-lock braking system. 185,000 cars recalled.

• Why verify?
 • “Testing can only show the presence of errors, not their absence.” [Edsger Dijkstra]
Probabilistic verification

- Probabilistic verification
 - formal verification of systems exhibiting stochastic behaviour

- Why probability?
 - unreliability (e.g. component failures)
 - uncertainty (e.g. message losses/delays over wireless)
 - randomisation (e.g. in protocols such as Bluetooth, ZigBee)

- Quantitative properties
 - reliability, performance, quality of service, …
 - “the probability of an airbag failing to deploy within 0.02s”
 - “the expected time for a network protocol to send a packet”
 - “the expected power usage of a sensor network over 1 hour”
Quantitative (probabilistic) verification

Automatic verification (aka model checking) of quantitative properties of probabilistic system models

System → Probabilistic model
 e.g. Markov chain

System requirements → Probabilistic temporal logic specification
 e.g. PCTL, CSL, LTL

Probabilistic model checker
 e.g. PRISM

Result

Quantitative results

Counter-example

$P_{<0.01} \left[F \leq \text{fail} \right]$
Historical perspective

- First algorithms proposed in 1980s
 - algorithms [Vardi, Courcoubetis, Yannakakis, ...]
 - [Hansson, Jonsson, de Alfaro] & first implementations

- 2000: tools ETMCC (now MRMC) & PRISM released
 - PRISM: efficient extensions of symbolic model checking [Kwiatkowska, Norman, Parker, ...]
 - ETMCC: model checking for continuous-time Markov chains [Baier, Hermanns, Haverkort, Katoen, ...]

- Now mature area, of industrial relevance
 - successfully used by non-experts for many application domains, but full automation and good tool support essential
 - distributed algorithms, communication protocols, security protocols, biological systems, quantum cryptography, planning, ...
 - genuine flaws found and corrected in real-world systems
Quantitative probabilistic verification

• **What’s involved**
 – specifying, extracting and building of quantitative models
 – graph-based analysis: reachability + qualitative verification
 – numerical solution, e.g. linear equations/linear programming
 – typically computationally more expensive than the non-quantitative case

• **The state of the art**
 – fast/efficient techniques for a range of probabilistic models
 – feasible for models of up to 10^7 states (10^{10} with symbolic)
 – extension to probabilistic real-time systems
 – abstraction refinement (CEGAR) methods
 – probabilistic counterexample generation
 – assume-guarantee compositional verification
 – tool support exists and is widely used, e.g. PRISM, MRMC
Tool support: PRISM

- **PRISM**: Probabilistic symbolic model checker [CAV11]
 - developed at Birmingham/Oxford University, since 1999
 - free, open source software (GPL), runs on all major OSs
- **Support for:**
 - models: DTMCs, CTMCs, MDPs, PTAs, SMGs, ...
 - properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, ...
- **Features:**
 - simple but flexible high-level modelling language
 - user interface: editors, simulator, experiments, graph plotting
 - multiple efficient model checking engines (e.g. symbolic)
 - **New!** strategy synthesis, stochastic game models (SMGs), multiobjective verification, parametric models

- **See:** http://www.prismmodelchecker.org/
Quantitative verification in action

- **Bluetooth device discovery protocol**
 - frequency hopping, randomised delays
 - low-level model in PRISM, based on detailed Bluetooth reference documentation
 - numerical solution of 32 Markov chains, each approximately 3 billion states
 - identified **worst-case** time to hear one message, 2.5 seconds

- **FireWire root contention**
 - wired protocol, uses randomisation
 - model checking using PRISM
 - optimum probability of leader election by time T for various coin biases
 - demonstrated that a **biased coin** can improve performance
Quantitative verification in action

• **DNA transducer gate** [Lakin et al, 2012]
 – DNA computing with a restricted class of DNA strand displacement structures
 – transducer design due to Cardelli
 – automatically found and fixed design error, using Microsoft’s DSD and PRISM

• **Microgrid demand management protocol** [TACAS12,FMSD13]
 – designed for households to actively manage demand while accessing a variety of energy sources
 – found and fixed a flaw in the protocol, due to lack of punishment for selfish behaviour
 – implemented in PRISM-games
Quantitative verification – Status

• Tools/techniques widely applicable, since real software/systems are quantitative
 – extensions/adaptations of model-based frameworks
 – new application domains

• Analysis “quantitative” & “exhaustive”
 – strength of mathematical proof
 – best/worst-case scenarios, not possible with simulation
 – identifying trends and anomalies

• But
 – the modelling phase time-consuming and error prone
 – potential ‘disconnect’ between model and the artefact
 – scalability continues to be hard to overcome
• We focus on the problem of **strategy synthesis**
 – i.e. “can we **construct** a strategy to guarantee that a given quantitative property is satisfied?”
 – instead of “does the model satisfy a given quantitative property?”
 – advantage: **correct-by-construction**

• **Not a well known fact...**
 – can **reuse** the verification algorithms for strategy synthesis

• **Many application domains**
 – robotics (controller synthesis from LTL/PCTL)
 – security (generating attacks)
 – dynamic power management (optimal policy synthesis)

• **Move towards quantitative model synthesis**
 – simpler problems: strategy synthesis, parameter synthesis, template-based synthesis, etc
Quantitative (probabilistic) verification

Automatic verification and strategy synthesis from quantitative properties for probabilistic models

System

Probabilistic model
e.g. Markov chain

0.5
0.4
0.1

Probabilistic model checker
e.g. PRISM

System requirements

P_{<0.01} \left[F \leq t \text{ fail} \right]

Probabilistic temporal logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative results

Strategy
Overview

• Motivation
• Overview of Markov decision processes (MDPs)
 – MDPs: definition, paths & probability spaces
 – Strategies (aka adversaries/policies): definition & classification
• Verification and strategy synthesis
 – Properties and objectives
 – Problem definition
 – Algorithms for MDPs
• Strategy synthesis by example
 – Reachability objectives
 – LTL objectives
 – Multiobjective strategy synthesis
 – Strategy synthesis for stochastic games
• Conclusion
Markov decision processes (MDPs)

- Model **nondeterministic as well as probabilistic behaviour**
 - e.g. for concurrency, under-specification, abstraction...
 - extension of discrete-time Markov chains
 - nondeterministic choice between probability distributions

- Formally, an MDP is a tuple
 - \((S, s_{init}, Act, \delta, L)\)

- where:
 - \(S\) is a set of states
 - \(s_{init} \in S\) is the initial state
 - \(\delta : S \times Act \rightarrow Dist(S)\) is a (partial) transition probability function
 - \(L : S \rightarrow 2^{AP}\) is a labelling function
 - \(Act\) is a set of actions, \(AP\) is a set of atomic propositions
 - \(Dist(S)\) is the set of discrete probability distributions over \(S\)
Paths and strategies

• A (finite or infinite) path through an MDP
 – is a sequence \((s_0...s_n)\) of (connected) states
 – represents an execution of the system
 – resolves both the probabilistic and nondeterministic choices

• A strategy \(\sigma\) (aka. “adversary” or “policy”) of an MDP
 – is a resolution of nondeterminism only
 – is (formally) a mapping from finite paths to distributions
 – induces a fully probabilistic model
 – i.e. an (infinite–state) Markov chain over finite paths
 – on which we can define a probability space over infinite paths
Classification of strategies

- Strategies are classified according to
 - randomisation:
 - σ is deterministic (pure) if $\sigma(s_0...s_n)$ is a point distribution, and randomised otherwise
 - memory:
 - σ is memoryless (simple) if $\sigma(s_0...s_n) = \sigma(s_n)$ for all $s_0...s_n$
 - σ is finite memory if there are finitely many modes such as $\sigma(s_0...s_n)$ depends only on s_n and the current mode, which is updated each time an action is performed
 - otherwise, σ is infinite memory

- A strategy σ induces, for each state s in the MDP:
 - a set of infinite paths $\text{Path}^{\sigma}(s)$
 - a probability space Pr^{σ}_s over $\text{Path}^{\sigma}(s)$
Example strategy

- Fragment of induced Markov chain for strategy which picks \(b \) then \(c \) in \(s_1 \)

finite-memory, deterministic
Running example

- **Example MDP**
 - robot moving through terrain divided into 3 x 2 grid

 ![Diagram of MDP with states and actions](image)

 States:
 \[s_0, s_1, s_2, s_3, s_4, s_5 \]

 Actions:
 \[\text{north, east, south, west, stuck} \]

 Labels (atomic propositions):
 \[\text{hazard, goal}_1, \text{goal}_2 \]
Properties and objectives

- The syntax:

 - $\phi ::= P_{\sim p}[\psi] \mid R_{\sim r}[\rho]$
 - $\psi ::= \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \Upsilon^{\leq k} \psi \mid \psi \Upsilon \psi$
 - $\rho ::= F b \mid C \mid C^{\leq k}$

- where b is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$, and $r \in \mathbb{R}_{\geq 0}$
 - $F b \equiv \text{true} \Upsilon b$

- We refer to ϕ as property, ψ and ρ as objectives
 - (branching time more challenging for synthesis)
Properties and objectives

• **Semantics of the probabilistic operator P**
 - can only define probabilities for a specific strategy σ
 - $s \models P_{\sim p} [\psi]$ means “the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all strategies σ”
 - formally $s \models P_{\sim p} [\psi] \iff Pr_s^{\sigma}(\psi) \sim p$ for all strategies σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma}\{\omega \in Path_s^{\sigma} | \omega \models \psi\}$

• $R_{\sim r} [\cdot]$ means “the expected value of \cdot satisfies $\sim r$”

• **Some examples:**
 - $P_{\geq 0.4} [F "goal"]$ “probability of reaching goal is at least 0.4”
 - $R_{<5} [C_{\leq 60}]$ “expected power consumption over one hour is below 5”
 - $R_{\leq 10} [F "end"]$ “expected time to termination is at most 10”
Verification and strategy synthesis

• The verification problem is:
 − Given an MDP M and a property \(\phi \), does M satisfy \(\phi \) for all possible strategies \(\sigma \)?

• The synthesis problem is dual:
 − Given an MDP M and a property \(\phi \), find, if it exists, a strategy \(\sigma \) such that M satisfies \(\phi \) under \(\sigma \)

• Verification and strategy synthesis is achieved using the same techniques, namely computing optimal values for probability objectives, i.e. for \(\phi = P_{\sim p} [\psi] \):
 − \(Pr_s^{\min}(\psi) = \inf_{\sigma} Pr_s^{\sigma}(\psi) \)
 − \(Pr_s^{\max}(\psi) = \sup_{\sigma} Pr_s^{\sigma}(\psi) \)

• Expectations (reward objectives \(R_{\sim r}[\psi] \)) are similar, omitted
Verification and strategy synthesis

• **The verification problem is:**
 – Given an MDP M and a property ϕ, does M satisfy ϕ for all possible strategies σ?

• **The synthesis problem is dual:**
 – Given an MDP M and a property ϕ, find, if it exists, a strategy σ such that M satisfies ϕ under σ.

• **In particular, we have**
 – M satisfies $\phi = P_{\geq q}[\psi]$ iff $Pr_s^{\min}(\psi) \geq q$
 – There exists a strategy satisfying $\phi = P_{\geq q}[\psi]$ iff $Pr_s^{\max}(\psi) \geq q$
 – then take optimal strategy

\[\begin{array}{c|c|c}
0 & Pr_s^{\min}(\psi) & Pr_s^{\max}(\psi) \\
\hline
q & & 1
\end{array} \]
Computing reachability for MDPs

- Computation of probabilities $\Pr_s^{\max}(F b)$ for all $s \in S$

- Step 1: **pre–compute** all states where probability is 1 or 0
 - graph–based algorithms, yielding sets S^{yes}, S^{no}

- Step 2: **compute** probabilities for remaining states ($S^?$)
 - (i) solve linear programming problem
 - (i) approximate with value iteration
 - (iii) solve with policy (strategy) iteration

1. **Precomputation (for \Pr_s^{\max}):**
 - algorithm Prob1E computes S^{yes}
 - there exists a strategy for which the probability of "F b" is 1
 - algorithm Prob0A computes S^{no}
 - for all strategies, the probability of satisfying "F b" is 0
Example goal:
\[P_{\geq 0.4} [F \text{ goal}_1] \]

So compute:
\[\Pr_s^{\max}(F \text{ goal}_1) \]
Example goal:

$$P_{\geq 0.4} \left[F \text{ goal}_1 \right]$$

So compute:

$$\Pr_s \text{max}(F \text{ goal}_1)$$
2. Numerical computation

- compute probabilities $Pr_s^{\text{max}}(F b)$
- for remaining states in $S^? = S \setminus (S^{\text{yes}} \cup S^{\text{no}})$
- obtained as the unique solution of the linear programming (LP) problem:

$$\text{minimize } \sum_{s \in S^?} x_s \text{ subject to the constraints:}$$

$$x_s \geq \sum_{s' \in S^?} \delta(s,a)(s') \cdot x_s, + \sum_{s' \in S^{\text{yes}}} \delta(s,a)(s')$$

for all $s \in S^?$ and for all $a \in A(s)$

- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut
Example – Reachability (LP)

Let $x_i = \Pr_{s_i}^{\text{max}}(F \text{ goal}_1)$

S_{yes}: $x_4 = x_5 = 1$

S_{no}: $x_2 = x_3 = 0$

For $S? = \{x_0 , x_1\}$:

Minimise $x_0 + x_1$ subject to:

- $x_0 \geq 0.4 \cdot x_0 + 0.6 \cdot x_1$ (east)
- $x_0 \geq 0.1 \cdot x_1 + 0.1$ (south)
- $x_1 \geq 0.5$ (south)
- $x_1 \geq 0$ (east)

Example:

$P \geq 0.4 \ [F \text{ goal}_1]$

So compute:

$\Pr_{s}^{\text{max}}(F \text{ goal}_1)$
Let $x_i = \Pr^\text{max}_{s_i}(F \text{ goal}_1)$

- S^yes: $x_4 = x_5 = 1$
- S^no: $x_2 = x_3 = 0$

For $S^? = \{x_0, x_1\}$:

Minimise $x_0 + x_1$ subject to:

- $x_0 \geq x_1$ (east)
- $x_0 \geq 0.1 \cdot x_1 + 0.1$ (south)
- $x_1 \geq 0.5$ (south)
Example – Reachability (LP)

Let $x_i = \text{Pr}_{s_i}^{\max}(F \text{ goal}_1)$

S^{yes}: $x_4 = x_5 = 1$

S^{no}: $x_2 = x_3 = 0$

For $S^? = \{x_0, x_1\}$:

Minimise $x_0 + x_1$ subject to:

- $x_0 \geq x_1$
- $x_0 \geq 0.1 \cdot x_1 + 0.1$
- $x_1 \geq 0.5$

Solution:

$(x_0, x_1) = (0.5, 0.5)$

i.e.

$\text{Pr}_{s_0}^{\max}(F \text{ goal}_1) = 0.5$
Strategy synthesis

• Compute optimal probabilities $P_r^\text{max}(F b)$ for all $s \in S$

• To compute the optimal strategy σ^*, choose the locally optimal action in each state
 – in general depends on the method used to compute the optimal probabilities
 – i.e. policy iteration constructs the optimal strategy
 – for max probabilities, adaptation of precomputation needed

• For reachability
 – memoryless strategies suffice

• For step-bounded reachability
 – need finite-memory strategies
 – typically requires \textit{backward} computation for a fixed number of steps
Example – Strategy

Optimal strategy:

- \(s_0 \): east
- \(s_1 \): south
- \(s_2 \): –
- \(s_3 \): –
- \(s_4 \): east
- \(s_5 \): –

\[x_0 \geq x_1 \]
(east)

\[x_1 \geq 0.5 \]
(south)
Example – Bounded reachability

Example:
\[P_{\text{max}} = \text{?} \left[F^{\leq 3} \text{ goal}_2 \right] \]

So compute:
\[\Pr_{s_{\text{max}}}(F^{\leq 3} \text{ goal}_2) = 0.99 \]

Optimal strategy is finite-memory:
- \(s_4 \) (after 1 step): east
- \(s_4 \) (after 2 steps): west

Computation more involved
May need to choose a different action on successive visits
Strategy synthesis for LTL objectives

- Reduce to the problem of reachability on the product of MDP M and an omega-automaton representing ψ
 - for example, deterministic Rabin automaton (DRA)

- Need only consider computation of maximum probabilities $Pr_s^{max}(\psi)$
 - since $Pr_s^{min}(\psi) = 1 - Pr_s^{max}(\neg\psi)$

- To compute the optimal strategy σ^*
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy with one mode for each state of the DRA for ψ
Example – LTL

- \(P_{\geq 0.05} [(G \neg \text{hazard}) \land (GF \text{ goal}_1)] \)
 - avoid hazard and visit goal\(_1\) infinitely often

- \(\Pr_{s_0}^{\text{max}}((G \neg \text{hazard}) \land (GF \text{ goal}_1)) = 0.1 \)

 Optimal strategy:
 (in this instance, memoryless)

 - \(s_0 : \text{south} \)
 - \(s_1 : - \)
 - \(s_2 : - \)
 - \(s_3 : - \)
 - \(s_4 : \text{east} \)
 - \(s_5 : \text{west} \)
Multi-objective strategy synthesis

- Consider conjunctions of probabilistic LTL formulas \(P_{\sim p} [\psi] \)
 - require all conjuncts to be satisfied
- Reduce to a multi-objective reachability problem on the product of MDP \(M \) and the omega-automata representing the conjuncts
 - convert (by negation) to formulas with lower probability bounds (\(\geq, > \)), then to DRA
 - need to consider all combinations of objectives
- The problem can be solved using LP methods [TACAS07] or via approximations to Pareto curve [ATVA12]
 - strategies may be finite memory and randomised
- Continue as for single-objectives to compute the strategy \(\sigma^* \)
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy
Example – Multi-objective

- **Multi-objective formula**
 - \(P_{\geq 0.7} [G \neg \text{hazard}] \land P_{\geq 0.2} [GF \text{ goal}_1] \) ? True (achievable)

- **Numerical query**
 - \(P_{\text{max}=?} [GF \text{ goal}_1] \) such that \(P_{\geq 0.7} [G \neg \text{hazard}] \) ? \(~0.2278\)

- **Pareto query**
 - for \(P_{\text{max}=?} [G \neg \text{hazard}] \land P_{\text{max}=?} [GF \text{ goal}_1] \)?
Example – Multi-objective strategies

Strategy 1
(deterministic)

\[\text{s}_0 : \text{east} \]
\[\text{s}_1 : \text{south} \]
\[\text{s}_2 : - \]
\[\text{s}_3 : - \]
\[\text{s}_4 : \text{east} \]
\[\text{s}_5 : \text{west} \]

\[\psi_1 = G \neg \text{hazard} \]
\[\psi_2 = GF \text{ goal}_1 \]
Example – Multi–objective strategies

Strategy 2
(deterministic)

- \(s_0 : \text{south} \)
- \(s_1 : \text{south} \)
- \(s_2 : - \)
- \(s_3 : - \)
- \(s_4 : \text{east} \)
- \(s_5 : \text{west} \)

\[\psi_1 = G \neg \text{hazard} \]
\[\psi_2 = GF \text{goal}_1 \]
Example – Multi-objective strategies

Optimal strategy:
(randomised)

- $s_0 : 0.3226 : \text{east}$
- $0.6774 : \text{south}$

- $s_1 : 1.0 : \text{south}$
- $s_2 : -$ (stuck)
- $s_3 : -$ (stuck)
- $s_4 : 1.0 : \text{east}$
- $s_5 : 1.0 : \text{west}$

$\psi_1 = G \neg \text{hazard}$
$\psi_2 = GF \text{goal}_1$
Case study: Dynamic power management

- **Synthesis of dynamic power management schemes**
 - for an IBM TravelStar VP disk drive
 - 5 different power modes: active, idle, idlelp, stby, sleep
 - power manager controller bases decisions on current power mode, disk request queue, etc.

- **Build controllers that**
 - minimise energy consumption, subject to constraints on e.g.
 - probability that a request waits more than K steps
 - expected number of lost disk requests

Stochastic multi–player games (SMGs)

• Stochastic multi–player games
 – players control states; choose actions
 – models competitive/collaborative behaviour

• Property specifications
 – rPATL: extends Alternating Temporal Logic (and PCTL with the R operator)
 – \(\langle\langle\{\square, \square\}\rangle\rangle P_{>1/3} [F \checkmark] \)
 – “does the coalition have a strategy to ensure that the probability of reaching end state is greater than 1/3, regardless of the strategies of other players?”

• Applications
 – controller synthesis (controller vs. environment), security (system vs. attacker), distributed algorithms, …

• PRISM–games: www.prismmodelchecker.org/games
Model checking rPATL

- **Basic algorithm:** as for any branching-time temporal logic
 - recursive descent of formula parse tree
 - compute $\text{Sat}(\phi) = \{ s \in S \mid s \models \phi \}$ for each subformula ϕ

- **Main task:** checking P and R operators
 - reduction to solution of stochastic 2-player game G_C
 - e.g. $\langle\langle C \rangle\rangle_{\geq q}[\psi] \iff \sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_{s_{\sigma_1,\sigma_2}}(\psi) \geq q$
 - complexity: NP \cap coNP (for sublogic)
 - compared to, e.g. P for Markov decision processes
 - complexity for full logic: NEXP \cap coNEXP

- **In practice though:**
 - evaluation of numerical **fixed points** (“value iteration”)
 - up to a desired level of convergence
 - usual approach taken in probabilistic model checking tools
Probabilities for P operator

- E.g. $\langle\langle C \rangle\rangle P_{\geq q}[F \phi]$: max/min reachability probabilities
 - compute $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1,\sigma_2} (F \phi)$ for all states s
 - deterministic memoryless strategies suffice

- Value is:
 - 1 if $s \in \text{Sat}(\phi)$, and otherwise least fixed point of:
 \[
 f(s) = \begin{cases}
 \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s,a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\
 \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s,a)(s') \cdot f(s') \right) & \text{if } s \in S_2
 \end{cases}
 \]

- Computation:
 - start from zero, propagate probabilities backwards
 - guaranteed to converge, similarly to value iteration for MDPs
Strategy synthesis for stochastic games

• Generate strategies for individual players, or for a coalition

• Problem statement:
 – Given a game G and an rPATL property $\langle \langle C \rangle \rangle_{P \sim q}[\psi]$, does there exist a strategy σ_1 for players in C such that, for all strategies σ_2 outside C, the probability of satisfying ψ under σ_1 and σ_2 meets the bound $\sim q$

• Compute optimal probabilities
 – for reachability, value or policy iteration, similar to that for MDPs
 – for LTL ψ, again work via product with the Rabin automaton for the formula

• To compute the optimal strategy
 – compute parity objectives for parity automaton from DRA
 – for reachability, memoryless deterministic strategies suffice
Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - when taking action south in state s_6
 - probability of (correctly) going to s_4 is in interval $[p,q]$
 - rPATL: $\langle\langle\{1\}\rangle\rangle P_{\text{max}}=? [F \text{goal}_1]$
Example – Stochastic games

- **rPATL**: \(\langle\langle 1 \rangle\rangle \ P_{\text{max}} = ? [\ F \ \text{goal}_1] \)
 - let \([p,q] = [0.5-\Delta, 0.5+\Delta]\); vary \(\Delta\)
 - optimal strategy: if \(\Delta \geq 7/18\) (i.e. if \(p \leq 1/9\)), then pick south in \(s_0\), otherwise pick east
Conclusion

- **Overview of strategy synthesis**
 - for probabilistic LTL and reward objectives
 - multi-objective properties
 - Markov decision process and stochastic games models

- **Highlighting new features of PRISM**
 - strategy (adversary) synthesis
 - multi-objective verification

- **Further/related work**
 - task graph scheduling [FMSD’13]
 - probabilistic parameter synthesis [TASE’13]
 - strategy generation for autonomous driving [QEST’13, MFCS’13]
 - template-based synthesis for UAV missions [ESEC/FSE’13]
References

• **Tutorial papers**

• **PRISM tool paper**
Acknowledgements

• My group and collaborators in this work
• Project funding
 – ERC, EPSRC, Microsoft Research
 – Oxford Martin School, Institute for the Future of Computing

• See also
 – VERIWARE www.veriware.org
 – PRISM www.prismmodelchecker.org
 – PRISM-games: www.prismmodelchecker.org/games