
Automated Verification and Strategy Automated Verification and Strategy Automated Verification and Strategy Automated Verification and Strategy
Synthesis for Probabilistic SystemsSynthesis for Probabilistic SystemsSynthesis for Probabilistic SystemsSynthesis for Probabilistic Systems

Marta Kwiatkowska

Department of Computer Science, University of Oxford

Joint work with: Dave Parker

ATVA 2013, Hanoi, Vietnam, October 2013

2

Why automated verification?

• Errors in computerised systems can be costly…

Pentium chip (1994)
Bug found in FPU.

Intel (eventually) offers
to replace faulty chips.
Estimated loss: $475m

Infusion pumps
(2010)

Patients die because
of incorrect dosage.

Cause: software
malfunction.
79 recalls.

Toyota Prius (2010)
Software “glitch”

found in anti-lock
braking system.

185,000 cars recalled.

• Why verify?

• “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]

3

Probabilistic verification

• Probabilistic verification

− formal verification of systems exhibiting stochastic behaviour

• Why probability?

− unreliability (e.g. component failures)

− uncertainty (e.g. message losses/delays over wireless)

− randomisation (e.g. in protocols such as Bluetooth, ZigBee)

• Quantitative properties

− reliability, performance, quality of service, …

− “the probability of an airbag failing to deploy within 0.02s”

− “the expected time for a network protocol to send a packet”

− “the expected power usage of a sensor network over 1 hour”

4

Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.01 [F≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Automatic verification (aka model checking) of quantitative
properties of probabilistic system models

5

Historical perspective

• First algorithms proposed in 1980s

− algorithms [Vardi, Courcoubetis, Yannakakis, …]

− [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (now MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking
[Kwiatkowska, Norman, Parker, …]

− ETMCC: model checking for continuous-time Markov chains [Baier,

Hermanns, Haverkort, Katoen, …]

• Now mature area, of industrial relevance

− successfully used by non-experts for many application domains,
but full automation and good tool support essential

• distributed algorithms, communication protocols, security protocols,
biological systems, quantum cryptography, planning, …

− genuine flaws found and corrected in real-world systems

6

Quantitative probabilistic verification

• What’s involved

− specifying, extracting and building of quantitative models

− graph-based analysis: reachability + qualitative verification

− numerical solution, e.g. linear equations/linear programming

− typically computationally more expensive than the non-
quantitative case

• The state of the art

− fast/efficient techniques for a range of probabilistic models

− feasible for models of up to 107 states (1010 with symbolic)

− extension to probabilistic real-time systems

− abstraction refinement (CEGAR) methods

− probabilistic counterexample generation

− assume-guarantee compositional verification

− tool support exists and is widely used, e.g. PRISM, MRMC

7

Tool support: PRISM

• PRISM: Probabilistic symbolic model checker [CAV11]

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Support for:

− models: DTMCs, CTMCs, MDPs, PTAs, SMGs, …

− properties: PCTL, CSL, LTL, PCTL*, costs/rewards, rPATL, …

• Features:

− simple but flexible high-level modelling language

− user interface: editors, simulator, experiments, graph plotting

− multiple efficient model checking engines (e.g. symbolic)

− New! strategy synthesis, stochastic game models (SMGs) ,
multiobjective verification, parametric models

• See: http://www.prismmodelchecker.org/

8

Quantitative verification in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message, 2.5 seconds

• FireWire root contention

− wired protocol, uses randomisation

− model checking using PRISM

− optimum probability of leader election
by time T for various coin biases

− demonstrated that a biased coin can improve performance

9

Quantitative verification in action

• DNA transducer gate [Lakin et al, 2012]

− DNA computing with a restricted
class of DNA strand displacement
structures

− transducer design due to Cardelli

− automatically found and fixed
design error, using Microsoft’s DSD and PRISM

• Microgrid demand management protocol [TACAS12,FMSD13]

− designed for households to actively manage
demand while accessing a variety of energy
sources

− found and fixed a flaw in the protocol, due to
lack of punishment for selfish behaviour

− implemented in PRISM-games

10

Quantitative verification – Status

• Tools/techniques widely applicable, since real
software/systems are quantitative

− extensions/adaptations of model-based frameworks

− new application domains

• Analysis “quantitative” & “exhaustive”

− strength of mathematical proof

− best/worst-case scenarios, not
possible with simulation

− identifying trends and anomalies

• But

− the modelling phase time-consuming and error prone

− potential ‘disconnect’ between model and the artefact

− scalability continues to be hard to overcome

11

This lecture…

• We focus on the problem of strategy synthesis

− i.e. “can we construct a strategy to guarantee that a given
quantitative property is satisfied?”

− instead of “does the model satisfy a given quantitative property?”

− advantage: correct-by-construction

• Not a well known fact…

− can reuse the verification algorithms for strategy synthesis

• Many application domains

− robotics (controller synthesis from LTL/PCTL)

− security (generating attacks)

− dynamic power management (optimal policy synthesis)

• Move towards quantitative model synthesis

− simpler problems: strategy synthesis, parameter synthesis,
template-based synthesis, etc

12

Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Strategy

System
require-
ments

P<0.01 [F≤t fail]

Probabilistic
model checker

e.g. PRISM

Automatic verification and strategy synthesis from
quantitative properties for probabilistic models

0.5

0.1

0.4

13

Overview

• Motivation

• Overview of Markov decision processes (MDPs)

− MDPs: definition, paths & probability spaces

− Strategies (aka adversaries/policies): definition & classification

• Verification and strategy synthesis

− Properties and objectives

− Problem definition

− Algorithms for MDPs

• Strategy synthesis by example

− Reachability objectives

− LTL objectives

− Multiobjective strategy synthesis

− Strategy synthesis for stochastic games

• Conclusion

14

Markov decision processes (MDPs)

• Model nondeterministic as well as probabilistic behaviour
− e.g. for concurrency, under-specification, abstraction…

− extension of discrete-time Markov chains

− nondeterministic choice between probability distributions

• Formally, an MDP is a tuple
− (S, sinit, Act, δδδδ, L)

• where:
− S is a set of states

− sinit ∈ S is the initial state

− δ : : : : S x Act → Dist(S) is a (partial) transition probability
function

− L : S → 2AP is a labelling function

− Act is a set of actions, AP is a set of atomic propositions

− Dist(S) is the set of discrete probability distributions over S

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

15

Paths and strategies

• A (finite or infinite) path through an MDP

− is a sequence (s0...sn) of (connected)
states

− represents an execution of the system

− resolves both the probabilistic and
nondeterministic choices

• A strategy σ (aka. “adversary” or “policy”) of an MDP

− is a resolution of nondeterminism only

− is (formally) a mapping from finite paths to distributions

− induces a fully probabilistic model

− i.e. an (infinite-state) Markov chain over finite paths

− on which we can define a probability space over infinite paths

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

16

Classification of strategies

• Strategies are classified according to

• randomisation:

− σ is deterministic (pure) if σ(s0...sn) is a point distribution, and
randomised otherwise

• memory:

− σ is memoryless (simple) if σ(s0...sn) = σ(sn) for all s0...sn

− σ is finite memory if there are finitely many modes such as
σ(s0...sn) depends only on sn and the current mode, which is
updated each time an action is performed

− otherwise, σ is infinite memory

• A strategy σ induces, for each state s in the MDP:

− a set of infinite paths Pathσ (s)

− a probability space Prσ
s over Pathσ (s)

17

Example strategy

• Fragment of induced Markov chain for strategy which picks
b then c in s1

finite-memory,
deterministic

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s30.5
s0s1

0.7
s0s1s0

s0s1s1

0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

18

Running example

• Example MDP

− robot moving through terrain divided into 3 x 2 grid

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

States:

s0, s1, s2, s3, s4, s5

Actions:

north, east, south,
west, stuck

Labels

(atomic propositions):

hazard, goal1, goal2

19

Properties and objectives

• The syntax:

− φ ::= P~p [ψ] | R~r [ρ]

− ψ ::= true | a | ψ ∧ ψ | ¬ ψ | X ψ | ψ U≤k ψ | ψ U ψ

− ρ ::= F b | C | C≤k

− where b is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ,
and r ∈ ℝ≥0

− F b ≡ true U b

• We refer to φ as property, ψ and ρ as objectives

− (branching time more challenging for synthesis)

“until”

ψ is true with
probability ~p

“bounded
until”

“next”

expected
reward is ~r

“reachability” “cumulative”

20

Properties and objectives

• Semantics of the probabilistic operator P

− can only define probabilities for a specific strategy σ

− s ⊨ P~p [ψ] means “the probability, from state s, that ψ is
true for an outgoing path satisfies ~p for all strategies σ”

− formally s ⊨ P~p [ψ] ⇔ Prs
σ(ψ) ~ p for all strategies σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

• R~r [·] means “the expected value of · satisfies ~r”

• Some examples:

− P≥0.4 [F “goal”] “probability of reaching goal is at least 0.4”

− R<5 [C≤60] “expected power consumption over one hour is
below 5”

− R≤10 [F “end”] “expected time to termination is at most 10”

21

Verification and strategy synthesis

• The verification problem is:

− Given an MDP M and a property φ, does M satisfy φ for all
possible strategies σ?

• The synthesis problem is dual:

− Given an MDP M and a property φ, find, if it exists, a strategy
σ such that M satisfies φ under σ

• Verification and strategy synthesis is achieved using the
same techniques, namely computing optimal values for
probability objectives, i.e. for φ = P~p [ψ]:

− Prs
min(ψ) = infσ Prs

σ (ψ)

− Prs
max(ψ) = supσ Prs

σ (ψ)

• Expectations (reward objectives R~r[ψ]) are similar, omitted

0 1Prs
min(ψ) Prs

max(ψ)

22

Verification and strategy synthesis

• The verification problem is:

− Given an MDP M and a property φ, does M satisfy φ for all
possible strategies σ?

• The synthesis problem is dual:

− Given an MDP M and a property φ, find, if it exists, a strategy
σ such that M satisfies φ under σ

• In particular, we have

− M satisfies φ = P≥q[ψ] iff Prs
min(ψ) ≥ q

− There exists a strategy satisfying φ = P≥q[ψ] iff Prs
max(ψ) ≥ q

− then take optimal strategy

q
0 1Prs

min(ψ) Prs
max(ψ)

23

Computing reachability for MDPs

• Computation of probabilities Prs
max(F b) for all s ∈ S

• Step 1: pre-compute all states where probability is 1 or 0

− graph-based algorithms, yielding sets Syes, Sno

• Step 2: compute probabilities for remaining states (S?)

− (i) solve linear programming problem

− (i) approximate with value iteration

− (iii) solve with policy (strategy) iteration

• 1. Precomputation (for Prs
max):

− algorithm Prob1E computes Syes

• there exists a strategy for which the probability of "F b" is 1

− algorithm Prob0A computes Sno

• for all strategies, the probability of satisfying "F b" is 0

24

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example goal:

P≥0.4 [F goal1]

So compute:

Prs
max(F goal1)

Example - Reachability

25

Syes

Sno

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Example goal:

P≥0.4 [F goal1]

So compute:

Prs
max(F goal1)

Example - Precomputation

26

Reachability for MDPs

• 2. Numerical computation

− compute probabilities Prs
max(F b)

− for remaining states in S? = S \ (Syes ∪ Sno)

− obtained as the unique solution of the linear programming
(LP) problem:

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

minimize x
s
 subject to the constraints:

s∈ S?∑
x

s
≥ δ(s,a)(s’) ⋅ x

s’
+

s’∈S?

∑ δ(s,a)(s’)

s’∈Syes

∑

for all s ∈ S? and for all a ∈ A(s)

27

Example – Reachability (LP)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ 0.4·x0 + 0.6·x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)

● x1 ≥ 0 (east)

Example:

P≥0.4 [F goal1]

So compute:

Prs
max(F goal1)

28

Example - Reachability (LP)

x0

x1

0
0

1

1

x0 ≥ x1

x1 ≥ 0.5

x0

x1

0
0

1

1
x0

x1

0
0

1

1

x0 ≥ 0.1·x1

+ 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)

29

Example - Reachability (LP)

x0

x1

0
0

1

1

min

Solution:

(x0, x1) = (0.5, 0.5)

i.e.

Prs0
max(F goal1) = 0.5

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1

● x0 ≥ 0.1·x1 + 0.1

● x1 ≥ 0.5

30

Strategy synthesis

• Compute optimal probabilities Prs
max(F b) for all s ∈ S

• To compute the optimal strategy σ*, choose the locally
optimal action in each state

− in general depends on the method used to compute the
optimal probabilities

− i.e. policy iteration constructs the optimal strategy

− for max probabilities, adaptation of precomputation needed

• For reachability

− memoryless strategies suffice

• For step-bounded reachability

− need finite-memory strategies

− typically requires backward computation for a fixed number of
steps

31

Example - Strategy

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

x0

x1

0
0

1

12/3

min

x0 ≥ x1

(east)

x1 ≥ 0.5

(south)

Optimal strategy:

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : -

32

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example:

Pmax=? [F≤3 goal2]

So compute:

Prs
max(F≤3 goal2) = 0.99

Optimal strategy

is finite-memory:

s4 (after 1 step): east

s4 (after 2 steps): west

Example – Bounded reachability

Computation more involved

May need to choose a different action on successive visits

33

Strategy synthesis for LTL objectives

• Reduce to the problem of reachability on the product of
MDP M and an omega-automaton representing ψ

− for example, deterministic Rabin automaton (DRA)

• Need only consider computation of maximum probabilities
Prs

max(ψ)

− since Prs
min(ψ) = 1 - Prs

max(¬ψ)

• To compute the optimal strategy σ*

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy with one mode for each
state of the DRA for ψ

34

Example - LTL

• P≥0.05 [(G ¬hazard) ∧ (GF goal1)]

− avoid hazard and visit goal1 infinitely often

• Prs0
max((G ¬hazard) ∧ (GF goal1)) = 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Optimal strategy:

(in this instance,

memoryless)

s0 : south

s1 : -

s2 : -

s3 : -

s4 : east

s5 : west

35

Multi-objective strategy synthesis

• Consider conjunctions of probabilistic LTL formulas P~p [ψ]

− require all conjuncts to be satisfied

• Reduce to a multi-objective reachability problem on the
product of MDP M and the omega-automata representing
the conjuncts

− convert (by negation) to formulas with lower probability
bounds (≥, >), then to DRA

− need to consider all combinations of objectives

• The problem can be solved using LP methods [TACAS07] or
via approximations to Pareto curve [ATVA12]

− strategies may be finite memory and randomised

• Continue as for single-objectives to compute the strategy σ*

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy

36

Example – Multi-objective

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

• Multi-objective formula

− P≥0.7 [G ¬hazard] ∧ P≥0.2 [GF goal1] ? True (achievable)

• Numerical query

− Pmax=? [GF goal1] such that P≥0.7 [G ¬hazard] ? ~0.2278

• Pareto query

− for Pmax=? [G ¬hazard] ∧ Pmax=? [GF goal1] ?

0.80.60.4 10.20
0

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

37

Example – Multi-objective strategies

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Strategy 1

(deterministic)

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20
0

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

38

Example – Multi-objective strategies

Strategy 2

(deterministic)

s0 : south

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20
0

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

39

Example – Multi-objective strategies

Optimal strategy:

(randomised)

s0 : 0.3226 : east

0.6774 : south

s1 : 1.0 : south

s2 : -

s3 : -

s4 : 1.0 : east

s5 : 1.0 : west

0.80.60.4 10.20
0

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

40

Case study: Dynamic power management

• Synthesis of dynamic power management schemes

− for an IBM TravelStar VP disk drive

− 5 different power modes: active, idle, idlelp, stby, sleep

− power manager controller bases decisions on current power
mode, disk request queue, etc.

• Build controllers that

− minimise energy
consumption, subject to
constraints on e.g.

− probability that a request
waits more than K steps

− expected number of
lost disk requests

• See: http://www.prismmodelchecker.org/files/tacas11/

41

Stochastic multi-player games (SMGs)

• Stochastic multi-player games

− players control states; choose actions

− models competitive/collaborative behaviour

• Property specifications

− rPATL: extends Alternating Temporal Logic
(and PCTL with the R operator)

− ⟨⟨{ , }⟩⟩ P>1/3 [F ✓]

− “does the coalition have a strategy to ensure that the
probability of reaching end state is greater than 1/3,
regardless of the strategies of other players?”

• Applications

− controller synthesis (controller vs. environment),
security (system vs. attacker), distributed algorithms, …

• PRISM-games: www.prismmodelchecker.org/games

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

42

Model checking rPATL

• Basic algorithm: as for any branching-time temporal logic

− recursive descent of formula parse tree

− compute Sat(φ) = { s∈S | s⊨φ } for each subformula φ

• Main task: checking P and R operators

− reduction to solution of stochastic 2-player game GC

− e.g. ⟨⟨C⟩⟩P≥q[ψ] ⇔ supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (ψ) ≥q

− complexity: NP ∩ coNP (for sublogic)

− compared to, e.g. P for Markov decision processes

− complexity for full logic: NEXP ∩ coNEXP

• In practice though:

− evaluation of numerical fixed points (“value iteration”)

− up to a desired level of convergence

− usual approach taken in probabilistic model checking tools

43

Probabilities for P operator

• E.g. ⟨⟨C⟩⟩P≥q[F φ] : max/min reachability probabilities

− compute supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (F φ) for all states s

− deterministic memoryless strategies suffice

• Value is:

− 1 if s ∈ Sat(φ), and otherwise least fixed point of:

• Computation:

− start from zero, propagate probabilities backwards

− guaranteed to converge, similarly to value iteration for MDPs

f(s) =

maxa∈A(s) ∆(s,a)(s') ⋅ f(s')
s'∈S

∑



 




  if s ∈ S1

mina∈A(s) ∆(s,a)(s') ⋅ f(s')
s'∈S

∑



 




  if s ∈ S2















44

Strategy synthesis for stochastic games

• Generate strategies for individual players, or for a coalition

• Problem statement:

− Given a game G and an rPATL property ⟨⟨C⟩⟩P∼q[ψ], does
there exist a strategy σ1 for players in C such that, for all
strategies σ2 outside C, the probability of satisfying ψ under
σ1 and σ2 meets the bound ∼q

• Compute optimal probabilities

− for reachability, value or policy iteration, similar to that for
MDPs

− for LTL ψ, again work via product with the Rabin automaton
for the formula

• To compute the optimal strategy

− compute parity objectives for parity automaton from DRA

− for reachability, memoryless deterministic strategies suffice

45

Example – Stochastic games

• Two players: 1 (robot controller), 2 (environment)

− when taking action south in state s6

− probability of (correctly) going to s4 is in interval [p,q]

− rPATL: ⟨⟨{1}⟩⟩ Pmax=? [F goal1]

s0

s4

s3

p

east

s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

1-p

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9

north

s6
q

1-q

si Player 1

sj Player 2

46

Example – Stochastic games

• rPATL: ⟨⟨{1}⟩⟩ Pmax=? [F goal1]

− let [p,q] = [0.5-∆, 0.5+∆]; vary ∆

− optimal strategy: if ∆ ≥ 7/18 (i.e. if p ≤ 1/9),
then pick south in s0, otherwise pick east

s0

s4

s3

p

east

s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

1-p

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9

north

s6
q

1-q

0.40.30.2 0.50.10
0

0.2

0.4

0.5

0.3

0.1

∆

M
a
x
.

p
ro

b
.
F
 g

o
a
l 1

47

Conclusion

• Overview of strategy synthesis

− for probabilistic LTL and reward objectives

− multi-objective properties

− Markov decision process and stochastic games models

• Highlighting new features of PRISM

− strategy (adversary) synthesis

− multi-objective verification

− Further/related work

− task graph scheduling [FMSD’13]

− probabilistic parameter synthesis [TASE’13]

− strategy generation for autonomous driving [QEST’13,MFCS’13]

− template-based synthesis for UAV missions [ESEC/FSE’13]

48

References

• Tutorial papers

− V. Forejt, M. Kwiatkowska, G. Norman and D. Parker. Automated
Verification Techniques for Probabilistic Systems. In SFM'11, pp 53-113,
Springer, 2011.

− V. Forejt, M. Kwiatkowska, G. Norman, D. Parker and H. Qu. Quantitative
Multi-Objective Verification for Probabilistic Systems. In Proc. TACAS'11,
pp 112-127, Springer, 2011.

− V. Forejt, M. Kwiatkowska and D. Parker. Pareto Curves for Probabilistic
Model Checking. In Proc. ATVA'12, pp 317-332, Springer, 2012.

− T. Chen, V. Forejt, M. Kwiatkowska, D. Parker and A. Simaitis. Automatic
Verification of Competitive Stochastic Systems. FMSD, 43(1), pp 61-92,
Springer, 2013.

− G. Norman, D. Parker and J. Sproston. Model Checking for Probabilistic
Timed Automata. FMSD, 43(2), pp 164-190, Springer, 2013.

• PRISM tool paper

− M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In Proc. CAV'11, volume 6806 of LNCS,
pages 585-591, Springer. July 2011.

49

Acknowledgements

• My group and collaborators in this work

• Project funding

− ERC, EPSRC, Microsoft Research

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org

− PRISM-games: www.prismmodelchecker.org/games

