Rendezvous for Bluetooth devices

Marie Duflot
Outline

- Introduction
- Presentation of the lower layer
- How to connect Bluetooth devices
- Verification
Introduction
What is Bluetooth?

- Protocol for short range wireless communication
- Voice and Data
- Open specification
- Special Interest Group (Ericsson, IBM, Intel, Microsoft, Motorola, Nokia, Toshiba,...)
Bluetooth vs Wi-Fi, what is different?

Wi-Fi
- Replacement for ethernet
- More powerful: 100/400m, 11Mbps
- Higher power consumption

Bluetooth
- Peer to peer communication
- Shorter range and rate: 10m, 1Mbps
- Lower power consumption
Brief Overview
States of a Bluetooth device

- **Standby**: default operational state
- **Connected**: device ready to communicate in a piconet
Piconets
Piconets
Piconets and Scatternets
Piconets and Scatternets
Frequencies and Hopping

- Industrial Scientific Medical band
 - free
 - interference (microwaves, etc.)
- Solution: hop through sequence of frequencies
 - "common" to discover/be discovered by other devices
 - "unpredictable" to communicate in a piconet
Access Code

- Devices need to know if a message is intended for them
- An Access Code is prefixed to each message
 - Inquiry: general or dedicated,
 - Page: based on the address of the receiving device,
 - Connected: based on the address of the master.
- When receiving a message, a device “reads” it only if it has a correct Access Code
Clocks

- Independent free running clocks
 - synchronisation via an offset
- Rates are not exactly the same
 - need to readjust their estimations
- The role of the clock is to determine
 - when a device can/cannot transmit/receive a message
 - at which frequency
The rendezvous layer
Inquiry

- Inquiry frequency hopping sequence: common to all devices
 - Inquiring device: hops every $312.5\mu s$
 - Inquired device: hops every $1.28s$

- Inquiry Access Code:
 - either general (look for all devices)
 - or dedicated (look for a particular type of device)

- Inquiry response packet: contains address & clock of the inquired device

- Randomized aspect to avoid collisions
Inquiry
Inquiry

- Inquiry
- Inquiry Scan
- Inquiry Response

Rendezvous for Bluetooth devices
Inquiry

- Inquiry
- Inquiry Scan
- Inquiry Response
Inquiry

PROBLEM

- Inquiry
- Inquiry Scan
- Inquiry Response

Rendezvous for Bluetooth devices
Inquiry
Inquiry

Rand1 < Rand2
Inquiry

Rand1 < Rand2

- Inquiry
- Inquiry Scan
- Inquiry Response

Rendezvous for Bluetooth devices
Inquiry

Rand1 < Rand2
Page

- Page frequency hopping sequence: common to all devices
 - Paging device: hops every $312.5\mu s$
 - Paged device: hops every $1.28s$

- Access Code: uses the address of the paged device

- Master response packet: contains address & clock of the master
Rendezvous for Bluetooth devices
Rendezvous for Bluetooth devices
Verification of the protocol
Model-checking

Does the system satisfy the property?
Model-checking

Does the system satisfy the property?

Modelling
Model-checking

Does the system satisfy the property?
Model-checking

Does the system satisfy the property?
Model-checking

Does the system satisfy the property?

Modelling

Model-checking Algorithm

\[\varnothing \]
Abstraction using UPPAAL

The problems:
- Constants are too large.
- Too many states.

The solution: abstract the model

⇒ UPPAAL used to verify that the new model is really an abstraction

- Abstraction relation: trace refinement
- Transformation of probabilistic timed automata into “formerly probabilistic” ones
Abstraction using UPPAAL (2)

The aim: show that $Sys \leq AbsSys$

Problem: need to use Sys which is too big.

Solution: decompose the system Sys
Abstraction using UPPAAL (2)

The aim: show that $Sys \preceq AbsSys$

Problem: need to use Sys which is too big.

Solution: decompose the system

\[Sys = Send \parallel Rec \parallel Rec \]
Abstraction using UPPAAL (2)

The aim: show that $Sys \leq AbsSys$

Problem: need to use Sys which is too big.

Solution: decompose the system

$$Sys = Send \parallel Rec \parallel Rec$$

$$\mid \text{人} \mid \text{人} \mid \text{人}$$

$$AbsSend \parallel AbsRec \parallel AbsRec$$
Abstraction using UPPAAL (2)

The aim: show that $Sys \leq AbsSys$

Problem: need to use Sys which is too big.

Solution: decompose the system

$$Sys = Send \parallel Rec \parallel Rec$$

$$AbsSys = AbsSend \parallel AbsRec \parallel AbsRec$$
Abstraction using UPPAAL (2)

The aim: show that $Sys \preceq AbsSys$

Problem: need to use Sys which is too big.

Solution: decompose the system

$$Sys = Send \parallel Rec \parallel Rec$$

$$AbsSys = AbsSend \parallel AbsRec \parallel AbsRec$$
Verification using PRISM

Why use PRISM?

- The system contains probabilities
- Only digital clocks
- Simple translation from UPPAAL to PRISM

PRISM will be used to verify quantitative properties like
"The proba. of establishing a connection within t time units is at least p"
“The average power consumption before establishing a communication is n"

Challenge: PRISM needs to verify the complete abstract model
Summary

- Need a lot of abstraction
 - Large constants
 - Different time scales
- Other difficulties
 - Specification not precise enough
 - Broadcast synchronisation