Model checking the probabilistic π-calculus

Gethin Norman

Oxford University Computing Laboratory

Dave Parker

Oxford University Computing Laboratory

Catuscia Palamidessi

INRIA Futurs Saclay LIX

> Peng Wu CNRS LIX

Overview

- Probabilistic model checking
 - Markov decision processes, PCTL, PRISM
- The probabilistic π -calculus
 - syntax, symbolic semantics, example
- π -calculus tool support: MMC
- Adding π -calculus support to PRISM
 - extending MMC with probabilities
 - a compositional approach: translation to PRISM
- Experimental Results
- Conclusions

Probabilistic model checking

 Automatic formal verification technique for analysis of systems exhibiting probabilistic behaviour

Markov decision processes (MDPs)

Model supporting probabilistic and nondeterministic choice

{heads}

{tails}

0.5

 $\{init\}_{a=1}$

 $0.7 \, h$

0.3

- discrete state space and discrete time-steps
- nondeterministic choice between (action-labelled) probability distributions over successor states
- Well suited to modelling of:
 - randomised distributed algorithms, probabilistic communication/security protocols, ...
- Verification using e.g. the logic PCTL
 - P_{min=?} [F≤t reply_count=k {"init"}{min}]
 "what is the minimum probability, from any initial configuration and under any scheduling, that the sender has received k acknowledgements within t time units?"

PRISM modelling language

- Simple, state-based language for MDPs (and D/CTMCs)
 - based on Reactive Modules [Alur/Henzinger]
- Modules (system components, composed in parallel)
- Variables (finite-valued integer ranges or booleans)
- Guarded commands (labelled with probabilities/rates)
- Composition of modules: synchronisation (CSP-style) + process-algebraic operators (e.g. action hiding/renaming)

The π -calculus

- The π -calculus [Milner et al.]
 - process algebra for **concurrency** and **mobility**
 - single datatype, names, for both channels and variables
 - allows dynamic creation of new channel names and communication of channel names between processes
 - ...and therefore dynamic communication topologies
 - applications: e.g. cryptographic protocols, mobile communication protocols, ...
- Probabilistic π -calculus [Herescu/Palamidessi, ...]
 - adds discrete probabilistic choice for modelling of random choice (e.g. coin toss) or unpredictability (e.g. failures)
 - applications: e.g. randomised security protocols, mobile ad-hoc network protocols, ...

Simple probabilistic π -calculus: π_{sp}

[Chatzikokolakis/Palamidessi]

- Processes: P :: =

 - $P | P | vx P | [x=y] P | A(y_1,...,y_n)$ (parallel) (restriction) (match) (identifier)
- Actions: α ::=
 - $\begin{array}{c|c} & in(x,y) & | & out(x,y) & | & \tau \\ (input on x to y) & (output of y on x) & (internal) \end{array}$
- Example: $Q := va (Q_1 | Q_2)$ - $Q_1 := vc vd (\frac{1}{2} \tau.out(a,c).in(c,v).0 + \frac{1}{2} \tau.out(a,d).in(d,w).0)$ - $Q_2 := vb (in(a,x).out(b,x).0 | in(b,y).out(y,e).0)$

Simple probabilistic π -calculus: π_{sp}

- "Simple" refers to restriction to "blind" probabilistic choice
 - "sufficient" modelling power, but simpler semantics/analysis
- Restrictions for model checking
 - finite control (no recursion within parallel composition)
 - input closed (no inputs from environment)
- Semantics are in terms of Markov decision processes
 - or, equivalently, (simple) probabilistic automata [Segala/Lynch]
- We use a symbolic semantics approach
 - often better suited to proof systems, tool support
 - extension of non-probabilistic case [Lin'00,Lin'03]
 - probabilistic symbolic transition graphs (PSTGs)

Symbolic semantics

- A PSTG is a tuple (S, s_{init}, T) where:
 - S is a set of symbolic states $(\pi$ -calculus processes)
 - **s**_{init} \in **S** is the initial state
 - T ⊆ S x Cond x Act x Dist(S) are transitions
- And:
 - Cond is the set of conditions
 - finite conjunctions of matches (name comparisons)
 - Act is the set of actions:
 - τ, in(x,y), out(x,y), b_out(x,y)
 for names x, y

For a transition: $(Q, M, \alpha, \{p_i : Q_i\}) \in T$ written: M,α $\mathbf{Q} \longrightarrow \{ \mathbf{p}_i : \mathbf{Q}_i \}$ "If M is true, Q can perform action α and then with probability p, evolve as Q,"

Symbolic semantics

- A PSTG is a tuple (S, s_{init}, T) where:
 - S is a set of symbolic states $(\pi$ -calculus processes)
 - **s**_{init} \in **S** is the initial state
 - T ⊆ S x Cond x Act x Dist(S) are transitions
- And:
 - Cond is the set of conditions
 - finite conjunctions of matches (name comparisons)
 - Act is the set of actions:
 - τ, in(x,y), out(x,y), b_out(x,y)
 for names x, y

Example:

(empty) conditions omitted

MMC: Mobility Model Checker

- Model checker for (finite control subset of) π -calculus
 - against alternation-free π - μ -calculus
- Efficient implementation based on logic programming (XSB)
 - names in π -calculus are represented as LP variables
 - $\cdot\,$ semantics of names matches variable handling in LP resolution
 - direct LP encoding of π -calculus symbolic semantics
 - $\cdot\,$ efficient (XSB tabled resolution) and provably correct
- Other features of MMC:
 - identifies (some) state equivalences (structural congruence)
 - symmetry reduction: associativity/commutativity of parallel
 - additional support for spi-calculus

Translation - Part 1

- MMC_{sp}: extension of MMC to support π_{sp}
 - add probabilistic version of choice operator
 - $\cdot\,$ direct encoding of semantics, as for other operators
 - $\cdot\,$ modify "trans" rule of MMC to include (textual) probabilities
 - add explicit generation/export of PSTG
 - also identifies free/bound names
- For input-closed process, direct input into PRISM
 - PSTG for input-closed process is an MDP
 - either: encode as a single module in PRISM language
 - or: direct input of transition matrix into PRISM
- Provides translation for any $\pi_{_{\text{sp}}}$ process

Translation - Part 2

- Problems:
 - for large models, enumerating state space in this way inefficient
 - product state-space blow-up (at language level)
 - lack of structure/regularity in model (and hence large MTBDDs)
- Solution: a compositional approach to translation
 - 1. assume process of form: $P := vx_1 \dots vx_k (P_1 \mid \dots \mid P_n)$
 - · where each P_i contains no instances of v operator
 - $\cdot\,$ can use structural congruence to get process in this form
 - 2. generate PSTG for each subprocess P_i (using MMC_{sp})
 - 3. translate set of n PSTGs into n PRISM modules
 - 4. final PRISM model is composition of n modules

Translation to PRISM

- Construction of PRISM module for subprocess P_i:
 - one local variable for state (program counter)
 - one local variable per name bounded by input
 - transitions of the PSTG for P_i translated to PRISM commands
- Map names datatype into PRISM's (basic) type system
 - integer variables, integer constant for each free name
- Model channel communication in PRISM
 - $-\pi$ -calculus: binary synchronisation (CCS), name passing
 - PRISM: multi-way synchronisation (CSP), no value passing
 - our translation: encode all information in action names

Example

- Q := va $(Q_1 | Q_2)$
 - $Q_1 := vc vd (\frac{1}{2} \tau.out(a,c).in(c,v).0 + \frac{1}{2} \tau.out(a,d).in(d,w).0)$
 - $Q_2 := vb (in(a,x).out(b,x).0 | in(b,y).out(y,e).0)$
- Rewrite process Q as structurally congruent process P
- $P := va vb vc vd (P_1 | P_2 | P_3)$
 - $P_1 := \frac{1}{2} \tau.out(a,c).in(c,v).0 + \frac{1}{2} \tau.out(a,d).in(d,w).0$
 - $P_2 := in(a,x).out(b,x).0$
 - $P_3 := in(b,y).out(y,e).0$

Example - PRISM model structure

Example – A PRISM module

P₁ := ½ τ.out(a,c).in(c,v).0 + ½ τ.out(a,d).in(d,w).0

Each PSTG transition is mapped to one or more PRISM commands

module P1 s1 : [1..6] init 1; v : [0..5] init 0; [] (s1 = 1) -> 0.5 : (s1' = 2) + 0.5 : (s1' = 3); [a_P1_P2_c] (s1 = 2) -> (s1' = 4); [a_P1_P2_d] (s1 = 3) -> (s1' = 5); [c_P3_P1_e] (s1 = 4) -> (s1' = 6) & (v' = e); [d_P3_P1_e] (s1 = 5) -> (s1' = 6) & (w' = e); endmodule

Example – A PRISM module

 $P_1 := \frac{1}{2} \tau.out(a,c).in(c,v).0 + \frac{1}{2} \tau.out(a,d).in(d,w).0$

Each PSTG transition is mapped to one or more PRISM commands

module P1 s1 : [1..6] init 1; v : [0..5] init 0; w : [0..5] init 0; [] (s1 = 1) -> 0.5 : (s1' = 2) + 0.5 : (s1' = 3); [a_P1_P2_c] (s1 = 2) -> (s1' = 4); [a_P1_P2_d] (s1 = 3) -> (s1' = 5); [c_P3_P1_e] (s1 = 4) -> (s1' = 6) & (v' = e); [d_P3_P1_e] (s1 = 5) -> (s1' = 6) & (w' = e); endmodule

Example – A PRISM module

P₁ := ½ τ.out(a,c).in(c,v).0 + ½ τ.out(a,d).in(d,w).0

Each PSTG transition is mapped to one or more PRISM commands

module P1 s1 : [1..6] init 1; v : [0..5] init 0; [] (s1 = 1) -> 0.5 : (s1' = 2) + 0.5 : (s1' = 3); [a_P1_P2_c] (s1 = 2) -> (s1' = 4); [a_P1_P2_d] (s1 = 3) -> (s1' = 5); [c_P3_P1_e] (s1 = 4) -> (s1' = 6) & (v' = e); [d_P3_P1_e] (s1 = 5) -> (s1' = 6) & (w' = e); endmodule

Example – Module communication

P₁ := ½ τ.out(a,c).in(c,v).0 + ½ τ.out(a,d).in(d,w).0

module P1 s1 : [1..6] init 1; v : [0..5] init 0; w : [0..5] init 0; [] (s1 = 1) -> 0.5 : (s1' = 2) + 0.5 : (s1' = 3); [a_P1_P2_C] (s1 = 2) -> (s1' = 4); [a_P1_P2_d] (s1 = 3) -> (s1' = 5); [c_P3_P1_e] (s1 = 4) -> (s1' = 6) & (v' = e); [d_P3_P1_e] (s1 = 5) -> (s1' = 6) & (w' = e); endmodule

module P2
 s2 : [1..3] init 1
 x : [0..5] init 0;
 [a_P1_P2_c] (s2 = 1) -> (s2' = 2) & (x' = c);
 [a_P1_P2_d] (s2 = 1) -> (s2' = 2) & (x' = d);
 [b_P2_P3_x] (s2 = 2) -> (s2' = 3);
endmodule

 $P_2 := in(a,x).out(b,x).0$

Translation optimisation

- Basic form of translation makes no assumption about which processes can send which names to each other
- For example:
 - action out(x,y) in process P_i for bound x and free y
 - results in a_Pi_Pj_y-labelled command for each j=1,...,n ($j\neq i$) and each free name a
- In practice, we optimise our translation
 - by computing (an over-approximation of) which processes can send which names to each other
 - with a (finite) iterative analysis of possible values of each input-bound name (and hence each outgoing channel/name)

Property translation

- Currently, we restrict analysis of π_{sp} processes to:
 - (min/max) probabilistic reachability of availability of actions
 - e.g. "minimum probability of getting to state where one of the n subprocesses has reached an error state"
 - easily identified during construction of PSTGs
 - check reachability using PRISM's P=? [F ...] operator

Possible extensions

- add test/watchdog processes to system for checking more complex properties
- expected cost/reward properties

Results

- Implementation: MMC_{sp} + Java translator + PRISM
- 3 case studies from literature:
 - dining cryptographers protocol, partial secrets exchange algorithm, mobile communication network (MCN)
- Largest $MDP = 10^9$ states = 40 seconds total construction
 - full results in paper
- Analysis of results
 - translation is fast and scalable
 - MCN case study, although small, provides best test of approach
 - efficiency of symbolic (MTBDD) representation from autogenerated PRISM code needs improvement in some cases

Conclusions

- First automated verification of probabilistic π -calculus
 - combination of existing tools: MMC and PRISM
 - encouraging experimental results
- Future work
 - MTBDD efficiency improvements
 - polyadic variants of π -calculus, e.g. out(x,(a,b))
 - automatic translation of (PCTL) properties
 - further properties, e.g. spatial logics, watchdog processes
 - more complex (and bigger) case studies
 - stochastic π -calculus, biological case studies

Full results

Model	N	States	Transitions	MTBDD	Construction time (sec.)			Model checking
				nodes	PSTGs	PRISM	MDP	time (sec.)
DCP	5	160,543	592,397	58,641	10.9	0.81	0.77	2.49
	6	1,475,401	6,520,558	100,290	13.1	0.91	1.43	7.82
	7	13,221,889	68,121,834	154,500	15.2	1.17	2.62	21.3
	8	116,192,457	683,937,352	221,170	18.1	1.21	4.72	55.2
	9	1,005,495,499	6,657,256,911	463,425	19.1	1.37	19.3	732.9
PSE	3	9,321	32,052	37,008	4.86	0.75	1.60	1.89
	4	89,025	419,172	103,779	6.60	0.91	3.95	4.47
	5	837,361	5,028,700	173,644	8.12	1.20	8.47	11.5
PSE_3	3	9,328	32,059	37,251	5.29	0.75	2.38	2.16
	4	89,040	419,187	104,267	6.69	0.96	4.19	13.8
	5	837,392	5,028,731	175,212	7.82	1.13	7.58	52.4
MCN	2	609	950	58,430	4.33	2.49	4.8	1.17
	3	3,611	5,811	216,477	5.89	3.11	22.4	5.24

3

Structural congruences

• For example

 $- P_1 \mid vx P_2 \equiv vx (P_1 \mid P_2)$

- if x does not occur in P₁