Model checking the
probabilistic m-calculus

Gethin Norman Catuscia Palamidessi
Oxford University INRIA Futurs Saclay
Computing Laboratory LIX
Dave Parker Peng Wu
Oxford University CNRS
Computing Laboratory LIX

QEST'07

Overview

Probabilistic model checking
— Markov decision processes, PCTL, PRISM
- The probabilistic Tr-calculus
— syntax, symbolic semantics, example
- T1r—calculus tool support: MMC
- Adding tr-calculus support to PRISM

— extending MMC with probabilities
— a compositional approach: translation to PRISM

Experimental Results

Conclusions

QEST'07

Probabilistic model checking

- Automatic formal verification technique for analysis of
systems exhibiting probabilistic behaviour

Probabilistic

model
. e.g. MDP (Markov Probabilistic
High-level decisi >
o ecision process) model
description, > ——
C
e.g. in PRISM
modelling e.g. PRISM o
language @ :
e.g. PCTL Number of restorative stages
formula

QEST'07

Markov decision processes (MDPs)

Model supporting probabilistic and nondeterministic choice
— discrete state space and discrete time-steps

— nondeterministic choice between
(action-labelled) probability
distributions over successor states

- Well suited to modelling of:

{tails}

— randomised distributed algorithms,
probabilistic communication/security protocols, ...

- Verification using e.g. the logic PCTL

— P_.._, [F=t reply_count=k {"“init"{min}]
“what is the minimum probability, from any initial configuration
and under any scheduling, that the sender has received k
acknowledgements within t time units?”

QEST'07

PRISM modelling language

- Simple, state-based language for MDPs (and D/CTMCs)
— based on Reactive Modules [Alur/Henzinger]

- Modules (system components, composed in parallel)

- Variables (finite-valued - integer ranges or booleans)

- Guarded commands (labelled with probabilities/rates)

- Composition of modules: synchronisation (CSP-style) +
process—-algebraic operators (e.g. action hiding/renaming)

[send] (s=2) -> p,.. : (s'=3)&(lost’'=lost+1) + (1-p,_) : (s'=4);

< > < > — < > ——
action guard probability update probability update

QEST'07

The 11-Ccalculus

The 1r-calculus [Milner et al.]
— process algebra for concurrency and mobility
— single datatype, names, for both channels and variables

— allows dynamic creation of new channel names and
communication of channel names between processes

— ...and therefore dynamic communication topologies

— applications: e.g. cryptographic protocols, mobile
communication protocols, ...

Probabilistic Tt-calculus [Herescu/Palamidessi, ...]

— adds discrete probabilistic choice for modelling of random
choice (e.g. coin toss) or unpredictability (e.g. failures)

— applications: e.g. randomised security protocols,
mobile ad-hoc network protocols, ...

QEST'07

Simple probabilistic -calculus: Tr_

[Chatzikokolakis /Palamidessi]
- Processes: P :: =

— 0 | o.P | P+P | > p T.P |
(null) (prefix) (nondet. choice) (internal probabilistic choice)
— P[P | vx P | [x=ylP [Aly,...,y,)

(parallel) (restriction) (match) (identifier)
- Actions: & =

= in(x,y) | out(x,y) T
(inputon xtoy) (output ofyon x) (internal)

- Example: Q := va(Q, | Q)
— Q, = vecvd (Y2 T.0ut(a,0).in(c,v).0 + ¥2 T.out(a,d).in(d,w).0)
— Q, = vb (in(a,x).out(b,x).0 | in(b,y).out(y,e).0)

QEST'07

Simple probabilistic m-calculus: m_

“Simple” refers to restriction to “blind” probabilistic choice
— “sufficient” modelling power, but simpler semantics/analysis
Restrictions for model checking
— finite control (no recursion within parallel composition)

— input closed (no inputs from environment)

Semantics are in terms of Markov decision processes
— or, equivalently, (simple) probabilistic automata [Segala/Lynch]
- We use a symbolic semantics approach
— often better suited to proof systems, tool support
— extension of non-probabilistic case [Lin'00,Lin"'03]

— probabilistic symbolic transition graphs (PSTGs)

QEST'07

Symbolic semantics

- APSTG is a tuple (S, s.

init?

T) where:

— Sis a set of symbolic states

(tr-calculus processes) For a transition:

— s, . € Sis the initial state (Q,M o, {p:Q}) eT
— T < S x Cond x Act x Dist(S)
are transitions written:
- And: Moo
— Cond is the set of conditions Q *»{p:Q}

- finite conjunctions of

matches (name comparisons) “If M is true, Q can perform
action o and then with

— Act is the set of actions: probability p, evolve as Q”

- T, in(x,y), out(x,y), b_out(x,y)

for names x, y

QEST'07

Symbolic semantics

. A PSTG is a tuple (S, s, T) where: Example:
— Sis a set of symbolic states s T.0Ut(@.0).in(C.V).0
(Tr—calculus processes) + ¥ T.out(a,d).in(d,w).0
— s, . € Sis the initial state T
— T < S x Cond x Act x Dist(S) V2 V2
are transitions out(a,c).in(c,v).0 out(a,d).in(d,w).0
- And: out(a,c) L 1 1 Lout(a,d)
— Cond is the set of conditions : :
in(c,v).0 in(d,w).0
- finite conjunctions of]
matches (name comparisons) in(c.v) in(d.w)
— Act is the set of actions: 0
+ T, in(x,y), out(x,y), b_out(x,y)
for names x, y (empty) conditions omitted

QEST'07

MMC: Mobility Model Checker

Model checker for (finite control subset of) Tr-calculus
— against alternation-free r-p-calculus
Efficient implementation based on logic programming (XSB)

— names in Tt-calculus are represented as LP variables

- semantics of names matches variable handling in LP resolution

— direct LP encoding of 1r-calculus symbolic semantics

- efficient (XSB tabled resolution) and provably correct
Other features of MMC:
— identifies (some) state equivalences (structural congruence)
— symmetry reduction: associativity/commutativity of parallel

— additional support for spi-calculus

QEST'07

Translation — Part 1

MMC, : extension of MMC to support T__

— add probabilistic version of choice operator
- direct encoding of semantics, as for other operators
- modify “trans” rule of MMC to include (textual) probabilities

— add explicit generation/export of PSTG

— also identifies free/bound names

For input-closed process, direct input into PRISM
— PSTG for input-closed process is an MDP
— either: encode as a single module in PRISM language
— or: direct input of transition matrix into PRISM

Provides translation for any T, process

QEST'07

Translation - Part 2

Problems:
— for large models, enumerating state space in this way inefficient
— product state-space blow-up (at language level)

— lack of structure/regularity in model (and hence large MTBDDs)

Solution: a compositional approach to translation
— 1. assume process of form: P := vx, ...vx (P, | ... | P)
- where each P, contains no instances of v operator
- can use structural congruence to get process in this form
— 2. generate PSTG for each subprocess P, (using MMC_)
— 3. translate set of n PSTGs into n PRISM modules

— 4. final PRISM model is composition of n modules

QEST'07

Translation to PRISM

Construction of PRISM module for subprocess P::

— one local variable for state (program counter)
— one local variable per name bounded by input

— transitions of the PSTG for P, translated to PRISM commands

Map names datatype into PRISM's (basic) type system
— integer variables, integer constant for each free name
Model channel communication in PRISM
— Tr—calculus: binary synchronisation (CCS), name passing
— PRISM: multi-way synchronisation (CSP), no value passing

— our translation: encode all information in action names

QEST'07

Example

- Q = va(Q [Q)
— Q, = vecvd (Y2 T.0ut(a,0).in(c,v).0 + ¥2 T.out(a,d).in(d,w).0)
— Q, = vb (in(a,x).out(b,x).0 | in(b,y).out(y,e).0)

- Rewrite process Q as structurally congruent process P

-
I

vavb vcvd (P, | P, | P.)

— P, := Y2 T.0ut(a,0).in(c,v).0 + Y2 T.out(a,d).in(d,w).0
— P, := in(a,x).out(b,x).0
— P, := in(b,y).out(y,e).0

QEST'07

Example - PRISM model structure

P:=vavbvcvd (P, |P,|P,)
P, := Y2 T.out(a,c).in(c,v).0
+ Y2 1.out(a,d).in(d,w).0
P, :=in(a,x).out(b,x).0

P, := in(b,y).out(y,e).0

Free names in P, P,, P.:
a, b,c,d,e

Input-bound names:
v, w(P), x (P,),y (P,)

QEST'07

[

constinta = 1; constintb = 2;
constint c = 3; constintd = 4,
constinte = 5;

module P1
sl :[1..6] init1;
v : [0..5] init O;
w : [0..5] init O;
endmodule
module P2
s2 :[1..3]init 1
X [0..5] init O;
endmodule
module P3
s3:[1..2] init 1

- [0..5] init O:

endmodule

Example - A PRISM module

P —
Vz]T.out(a,c).in(c,v).O n Each PSTG transition is mapped to
15 T.out(a,d).in(d,w).0 one or more PRISM commands
PSTG: module P1
1 sl :[1..6]init1;
T v : [0..5] init O;
A Vs w : [0..5] init O;
\ [1(sT=1)->0.5:(s1"=2)+0.5:(s1" = 3);
9 3 [a_P1_P2_c] (s1 = 2) -> (s1' = 4);
[a_PT1_P2_d] (s1 = 3) -> (s1' = 5);
out(a,cw 11 + out(a,d) [c_P3_P1_e] (s1 =4) -> (s1' = 6) & (V' = e);
[d_P3_P1_e](s1 =5)->(s1'"=6) & (W = e);
endmodule

4 5
ncw) \]'/in(d,w)

6

QEST'07

Example - A PRISM module

P —
‘/;T.out(a,c).in(c,v).O n Each PSTG transition is mapped to
15 T.out(a,d).in(d,w).0 one or more PRISM commands
PSTG: module P1
1 sl :[1..6] init 1;
’/k: v : [0..5] init O;
1 1 W . [05] init O;
& ‘/2 [1(s1=1)->0.5:(s1"=2)+0.5:(s1' = 3);
2 3 [a_P1_P2_c] (s1 = 2) -> (s1' = 4);
[a_PT1_P2_d] (s1 = 3) -> (s1' = 5);
out(a,cw 11 + out(a,d) [c_P3_P1_e] (s1 =4)->(s1' = 6) & (V' = e);
[d_P3_P1_e](s1 =5)->(s1'"=6) & (W = e);
endmodule

4 5
ncw) \]'/in(d,w)
6

QEST'07

Example - A PRISM module

P —
Vz]T.out(a,c).in(c,v).O n Each PSTG transition is mapped to
15 T.out(a,d).in(d,w).0 one or more PRISM commands
PSTG: module P1
1 sl :[1..6]init1;
T v : [0..5] init O;
A Vs w : [0..5] init O;
\ [1(sT=1)->0.5:(s1"=2)+0.5:(s1" = 3);
9 3 [a_P1_P2_c] (s1 = 2) -> (s1' = 4);
[a_PT1_P2_d] (s1 = 3) -> (s1' = 5);
out(a,cw 11 + out(a,d) [c_P3_P1_e] (s1 =4)->(s1' = 6) & (V' = e);
[d_P3_P1_e](s1 =5)->(s1'"=6) & (W = e);
endmodule

4 5
ey \d]'/in(d,w)

6

QEST'07

Example - Module communication

Y2 T.0ut(a,c).in(c,v).0 +
¥2 T.out(a,d).in(d,w).0

P, := in(a,x).out(b,x).0

QEST'07

module P1
sl :[1..6] init 1;
v : [0..5] init O;
w : [0..5] init O;
[1(s1=1)->0.5:(s1"=2)+0.5:(s1'" = 3);
[a_P1_P2_c] (s1 = 2) -> (s1' = 4);
[a_PT1_P2_d] (s1 = 3) -> (s1' = 5);
[c_P3_P1_e](s1 =4)->(s1"=6) & (V' = e);
[d_P3_P1_e] (s1 =5)->(s1'"=6) & (W = e);
endmodule

module P2
s2 :[1..3]init 1
x : [0..5] init O;
[a_PT_P2_c](s2=1)->(s2'=2) & (X' = 0);
[a_PT_P2_d] (s2 =1)-> (s2'=2) & (x' = d);
[b_P2_P3_x] (s2 = 2) -> (s2' = 3);
endmodule

Translation optimisation

Basic form of translation makes no assumption about
which processes can send which names to each other

For example:
— action out(x,y) in process P, for bound x and free y

— results in a_Pi_Pj_y-labelled command for each j=1,...,n (j=i)
and each free name a
In practice, we optimise our translation
— by computing (an over-approximation of) which processes can
send which names to each other

— with a (finite) iterative analysis of possible values of each
input-bound name (and hence each outgoing channel/name)

QEST'07

Property translation

Currently, we restrict analysis of M, processes to:

— (min/max) probabilistic reachability of availability of actions

— e.g. “‘minimum probability of getting to state where one of the n
subprocesses has reached an error state”

— easily identified during construction of PSTGs

— check reachability using PRISM's P=? [F ... | operator

Possible extensions

— add test/watchdog processes to system for checking more
complex properties

— expected cost/reward properties

QEST'07

Results

Implementation: MMC_ + Java translator + PRISM

3 case studies from literature:

— dining cryptographers protocol, partial secrets exchange
algorithm, mobile communication network (MCN)

Largest MDP = 10° states = 40 seconds total construction
— full results in paper
- Analysis of results
— translation is fast and scalable
— MCN case study, although small, provides best test of approach

— efficiency of symbolic (MTBDD) representation from auto-
generated PRISM code needs improvement in some cases

QEST'07

Conclusions

First automated verification of probabilistic Tr-calculus
— combination of existing tools: MMC and PRISM

— encouraging experimental results

Future work
— MTBDD efficiency improvements
— polyadic variants of tr-calculus, e.g. out(x,(a,b))
— automatic translation of (PCTL) properties
— further properties, e.g. spatial logics, watchdog processes
— more complex (and bigger) case studies

— stochastic T-calculus, biological case studies

QEST'07

Full results

Model | N States Transitions MTBDD Construction time (sec.) Model checking
nodes PSTGs | PRISM | MDP time (sec.)

5 160,543 592,397 58.641 10.9 0.81 0.77 2.49
6 1.475.401 6,520,558 100,290 13.1 091 1.43 7.82
DCP 7 13,221,889 68,121,834 154,500 15.2 1.17 2.62 21.3
8 116,192,457 683,937,352 221,170 18.1 1.21 4.72 55.2
9 1.005.495,499 | 6,657,256911 | 463,425 19.1 1.37 19.3 732.9
3 9,321 32,052 37,008 4.86 0.75 1.60 1.89
PSE 4 89,025 419,172 103,779 6.60 091 3.95 4.47
5 837,361 5,028,700 173,644 8.12 1.20 3.47 11.5
3 9,328 32,059 37,251 5.29 0.75 2.38 2.16
PSE3 4 89,040 419,187 104,267 6.69 0.96 4.19 13.8
5 837,392 5,028,731 175,212 7.82 1.13 7.58 52.4
MCN 2 609 950 58.430 4.33 2.49 4.8 1.17
3 3,611 5.811 216,477 5.89 3.11 224 5.24

QEST'07

Structural congruences

- For example
— P, lvxP,=vx (P [|P,)

— if x does not occur in P,

QEST'07

