Model checking the probabilistic п-calculus

Gethin Norman
Oxford University
Computing Laboratory
Dave Parker
Oxford University
Computing Laboratory

Catuscia Palamidessi
INRIA Futurs Saclay LIX

Peng Wu
CNRS
LIX

Overview

- Probabilistic model checking
- Markov decision processes, PCTL, PRISM
- The probabilistic π-calculus
- syntax, symbolic semantics, example
- π-calculus tool support: MMC
- Adding π-calculus support to PRISM
- extending MMC with probabilities
- a compositional approach: translation to PRISM
- Experimental Results
- Conclusions

Probabilistic model checking

- Automatic formal verification technique for analysis of systems exhibiting probabilistic behaviour

QEST'07

Markov decision processes (MDPs)

- Model supporting probabilistic and nondeterministic choice
- discrete state space and discrete time-steps
- nondeterministic choice between (action-labelled) probability distributions over successor states
- Well suited to modelling of:
- randomised distributed algorithms,
 probabilistic communication/security protocols, ...
- Verification using e.g. the logic PCTL
- $P_{\text {min=? }}\left[F^{\leq t}\right.$ reply_count=k $\{$ "init" $\}$ min\}]
"what is the minimum probability, from any initial configuration and under any scheduling, that the sender has received k acknowledgements within t time units?"

PRISM modelling language

- Simple, state-based language for MDPs (and D/CTMCs)
- based on Reactive Modules [Alur/Henzinger]
- Modules (system components, composed in parallel)
- Variables (finite-valued - integer ranges or booleans)
- Guarded commands (labelled with probabilities/rates)
- Composition of modules: synchronisation (CSP-style) + process-algebraic operators (e.g. action hiding/renaming)

The π-calculus

- The π-calculus [Milner et al.]
- process algebra for concurrency and mobility
- single datatype, names, for both channels and variables
- allows dynamic creation of new channel names and communication of channel names between processes
- ...and therefore dynamic communication topologies
- applications: e.g. cryptographic protocols, mobile communication protocols, ...
- Probabilistic π-calculus [Herescu/Palamidessi, ...]
- adds discrete probabilistic choice for modelling of random choice (e.g. coin toss) or unpredictability (e.g. failures)
- applications: e.g. randomised security protocols, mobile ad-hoc network protocols, ...

Simple probabilistic π-calculus: π_{sp}

[Chatzikokolakis/Palamidessi]

- Processes: P :: =

$$
\begin{aligned}
& -0 \quad|\alpha . P| \quad P+P\left|\quad \sum_{i} p_{i} T . P_{i}\right| \\
& \text { (null) (prefix) (nondet. choice) (internal probabilistic choice) } \\
& -\quad P|P| \quad v x P \quad|[x=y] P| A\left(y_{1}, \ldots, y_{n}\right) \\
& \text { (parallel) (restriction) (match) (identifier) }
\end{aligned}
$$

- Actions: α ::=

- Example: $\mathrm{Q}:=$ va $\left(\mathrm{Q}_{1} \mid \mathrm{Q}_{2}\right)$
$-Q_{1}:=\operatorname{vc} \operatorname{vd}(1 / 2 \operatorname{t} . \operatorname{out}(a, c) \cdot i n(c, v) .0+1 / 2 \operatorname{T.out}(a, d) \cdot i n(d, w) .0)$
$-Q_{2}:=\operatorname{vb}(\operatorname{in}(a, x)$. out $(b, x) .0 \mid \operatorname{in}(b, y)$. out $(y, e) .0)$

Simple probabilistic π-calculus: π_{sp}

- "Simple" refers to restriction to "blind" probabilistic choice
- "sufficient" modelling power, but simpler semantics/analysis
- Restrictions for model checking
- finite control (no recursion within parallel composition)
- input closed (no inputs from environment)
- Semantics are in terms of Markov decision processes
- or, equivalently, (simple) probabilistic automata [Segala/Lynch]
- We use a symbolic semantics approach
- often better suited to proof systems, tool support
- extension of non-probabilistic case [Lin'00,Lin'03]
- probabilistic symbolic transition graphs (PSTGs)

Symbolic semantics

- A PSTG is a tuple ($\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{T}$) where:
- S is a set of symbolic states (π-calculus processes)
$-s_{\text {init }} \in S$ is the initial state
$-\mathrm{T} \subseteq \mathrm{S} \times$ Cond $\times \operatorname{Act} \times \operatorname{Dist}(\mathrm{S})$ are transitions
- And:
- Cond is the set of conditions
- finite conjunctions of matches (name comparisons)
- Act is the set of actions:
- T , in(x, y), out($\mathrm{x}, \mathrm{y})$, b_out($\mathrm{x}, \mathrm{y})$ for names x, y

Symbolic semantics

- A PSTG is a tuple $\left(S, s_{\text {init }}, T\right)$ where: Example:
- S is a set of symbolic states (π-calculus processes)
$-s_{\text {init }} \in S$ is the initial state
$-\mathrm{T} \subseteq \mathrm{S} \times$ Cond \times Act $\times \operatorname{Dist}(\mathrm{S})$ are transitions
- And:
- Cond is the set of conditions
- finite conjunctions of matches (name comparisons)
- Act is the set of actions:

MMC: Mobility Model Checker

- Model checker for (finite control subset of) π-calculus
- against alternation-free $\pi-\mu$-calculus
- Efficient implementation based on logic programming (XSB)
- names in π-calculus are represented as LP variables
- semantics of names matches variable handling in LP resolution
- direct LP encoding of π-calculus symbolic semantics
- efficient (XSB tabled resolution) and provably correct
- Other features of MMC:
- identifies (some) state equivalences (structural congruence)
- symmetry reduction: associativity/commutativity of parallel
- additional support for spi-calculus

Translation - Part 1

- $\mathrm{MMC}_{\mathrm{sp}}$: extension of MMC to support π_{sp}
- add probabilistic version of choice operator
- direct encoding of semantics, as for other operators
- modify "trans" rule of MMC to include (textual) probabilities
- add explicit generation/export of PSTG
- also identifies free/bound names
- For input-closed process, direct input into PRISM
- PSTG for input-closed process is an MDP
- either: encode as a single module in PRISM language
- or: direct input of transition matrix into PRISM
- Provides translation for any $\pi_{\text {sp }}$ process

Translation - Part 2

- Problems:
- for large models, enumerating state space in this way inefficient
- product state-space blow-up (at language level)
- lack of structure/regularity in model (and hence large MTBDDs)
- Solution: a compositional approach to translation
- 1. assume process of form: $P:=v x_{1} \ldots v x_{k}\left(P_{1}|\ldots| P_{n}\right)$
- where each P_{i} contains no instances of v operator
- can use structural congruence to get process in this form
- 2. generate PSTG for each subprocess P_{i} (using $M M C ~_{s p}$)
- 3. translate set of n PSTGs into n PRISM modules
- 4. final PRISM model is composition of n modules

Translation to PRISM

- Construction of PRISM module for subprocess P_{i} :
- one local variable for state (program counter)
- one local variable per name bounded by input
- transitions of the PSTG for P_{i} translated to PRISM commands
- Map names datatype into PRISM's (basic) type system
- integer variables, integer constant for each free name
- Model channel communication in PRISM
- π-calculus: binary synchronisation (CCS), name passing
- PRISM: multi-way synchronisation (CSP), no value passing
- our translation: encode all information in action names

Example

- $\mathrm{Q}:=\operatorname{va}\left(\mathrm{Q}_{1} \mid \mathrm{Q}_{2}\right)$
$-Q_{1}:=\operatorname{vc} \operatorname{vd}(1 / 2 \operatorname{t.out}(a, c) \cdot i n(c, v) .0+1 / 2 \operatorname{T} .0 u t(a, d) \cdot i n(d, w) .0)$
$-Q_{2}:=\mathrm{vb}(\operatorname{in}(\mathrm{a}, \mathrm{x})$. out $(\mathrm{b}, \mathrm{x}) .0 \mid \operatorname{in}(\mathrm{b}, \mathrm{y})$. out $(\mathrm{y}, \mathrm{e}) .0)$
- Rewrite process Q as structurally congruent process P
- $P:=$ va vb vc vd $\left(P_{1}\left|P_{2}\right| P_{3}\right)$
- $P_{1}:=1 / 2 \operatorname{T}$.out(a,c).in(c,v). $0+1 / 2 \operatorname{T.out}(a, d) . \operatorname{in}(d, w) .0$
- $P_{2}:=\operatorname{in}(a, x)$.out $(b, x) .0$
- $P_{3}:=\operatorname{in}(b, y)$. out $(y, e) .0$

Example - PRISM model structure

$$
\begin{aligned}
& P:=\text { va vb vc vd }\left(P_{1}\left|P_{2}\right| P_{3}\right) \\
& P_{1}:=1 / 2 \operatorname{T.out}(a, c) \cdot \operatorname{in}(c, v) \cdot 0 \\
&+1 / 2 \operatorname{T.out}(a, d) \cdot \operatorname{in}(d, w) \cdot 0 \\
& P_{2}:=\operatorname{in}(a, x) \cdot \operatorname{out}(b, x) \cdot 0 \\
& P_{3}:=\operatorname{in}(b, y) \cdot \operatorname{out}(y, e) \cdot 0
\end{aligned}
$$

Free names in P_{1}, P_{2}, P_{3} : a, b, c, d, e

Input-bound names:
v , w $\left(\mathrm{P}_{1}\right), \mathrm{x}\left(\mathrm{P}_{2}\right)$, y $\left(\mathrm{P}_{3}\right)$

Example - A PRISM module

$P_{1}:=$
$1 / 2$ t.out $(a, c) . \operatorname{in}(c, v) .0+$
$1 / 2$ t.out(a,d).in(d,w). 0

Each PSTG transition is mapped to one or more PRISM commands

```
module P1
    s1 : [1..6] init 1;
    v : [0..5] init 0;
    w: [0..5] init 0;
    [] (s1 = 1) -> 0.5:( s1' = 2) + 0.5:( ( 1' = 3);
    [a_P1_P2_c] (s1 = 2) -> (s1' = 4);
    [a_P1_P2_d] (s1 = 3) -> (s1' = 5);
    [c_P3_P1_e] (s1 = 4) -> (s 1' = 6) & (v' = e);
    [d_P3_P1_e] (s1 = 5) -> ( s1' = 6) & ( }\mp@subsup{w}{}{\prime}=e)
endmodule
```


Example - A PRISM module

$P_{1}:=$
$1 / 2$ T.out $(a, c) \cdot \operatorname{in}(c, v) \cdot 0+$
$1 / 2 T \cdot \operatorname{out}(a, d) \cdot \operatorname{in}(d, w) \cdot 0$

Each PSTG transition is mapped to

 one or more PRISM commands

```
module P1
    s1 : [1..6] init 1;
    v : [0..5] init 0;
    w: [0..5] init 0;
    [] (s1 = 1) -> 0.5:( s1' = 2) + 0.5:( ( 1' = 3);
    [a_P1_P2_c] (s1 = 2) -> (s1' = 4);
    [a_P1_P2_d] (s1 = 3) -> (s1' = 5);
    [c_P3_P1_e] (s1 = 4) -> (s1' = 6) & (v' = e);
    [d_P3_P1_e] (s1 = 5) -> (s1' = 6) & (w' = e);
endmodule
```


Example - A PRISM module

$P_{1}:=$
$1 / 2 \operatorname{t.out}(a, c) \cdot \operatorname{in}(c, v) .0+$
$1 / 2 \operatorname{T.out}(a, d) \cdot \operatorname{in}(d, w) .0$
PSTG:

out(a,c) $\downarrow 1$
4

```
module P1
    s1 :[1..6] init 1;
    v : [0..5] init 0;
    w : [0..5] init 0;
    [] (s1 = 1) -> 0.5:( s1' = 2) + 0.5:( ( 1' = 3);
    [a_P1_P2_c] (s1 = 2) -> (s1' = 4);
    [a_P1_P2_d] (s1 = 3) -> (s1' = 5);
    [c_P3_P1_e] (s1 = 4) -> (s 1' = 6) & (v' = e);
    [d_P3_P1_e] (s1 = 5) -> (s 1' = 6) & (w' = e);
endmodule
```


Example - Module communication

$$
\begin{aligned}
& P_{1}:= \\
& 1 / 2 \operatorname{t.out}(a, c) \cdot \operatorname{in}(c, v) .0+ \\
& 1 / 2 \operatorname{T.out}(a, d) \cdot i n(d, w) .0
\end{aligned}
$$

```
module P1
    s1 : [1..6] init 1;
    v : [0..5] init 0;
    w: [0..5] init 0;
    [] (s1 = 1) -> 0.5:(s1' = 2) + 0.5:(s1' = 3);
    [a_P1_P2_c] (s1 = 2) -> (s1' = 4);
    [a_P1_P2_d] (s1 = 3) -> (s1' = 5);
    [c_P3_P1_e] (s1 = 4) -> (s1' = 6) & ( v' = e);
    [d_P3_P1_e] (s1 = 5) -> ( }s\mp@subsup{1}{}{\prime}=6)&(\mp@subsup{w}{}{\prime}=e)
endmodule
```

module P2
s2: [1..3] init 1
x : [0..5] init 0;
[a_P1_P2_c] $(s 2=1)->\left(s 2^{\prime}=2\right) \&\left(x^{\prime}=c\right) ;$
[a_P1_P2_d] $(s 2=1)->\left(s 2^{\prime}=2\right) \&\left(x^{\prime}=d\right) ;$
[b_P2_P3_x] (s2 = 2) -> (s2' = 3);
endmodule

Translation optimisation

- Basic form of translation makes no assumption about which processes can send which names to each other
- For example:
- action out (x, y) in process P_{i} for bound x and free y
- results in a_Pi_Pj_y-labelled command for each $\mathrm{j}=1, \ldots, \mathrm{n}(\mathrm{j} \neq \mathrm{i})$ and each free name a
- In practice, we optimise our translation
- by computing (an over-approximation of) which processes can send which names to each other
- with a (finite) iterative analysis of possible values of each input-bound name (and hence each outgoing channel/name)

Property translation

- Currently, we restrict analysis of $\pi_{\text {sp }}$ processes to:
- ($\mathrm{min} / \mathrm{max}$) probabilistic reachability of availability of actions
- e.g. "minimum probability of getting to state where one of the n subprocesses has reached an error state"
- easily identified during construction of PSTGs
- check reachability using PRISM's $\mathrm{P}=$? [$\mathrm{F} . .$.] operator
- Possible extensions
- add test/watchdog processes to system for checking more complex properties
- expected cost/reward properties

Results

- Implementation: $\mathrm{MMC}_{\mathrm{sp}}+$ Java translator + PRISM
- 3 case studies from literature:
- dining cryptographers protocol, partial secrets exchange algorithm, mobile communication network (MCN)
- Largest MDP $=10^{9}$ states $=40$ seconds total construction
- full results in paper
- Analysis of results
- translation is fast and scalable
- MCN case study, although small, provides best test of approach
- efficiency of symbolic (MTBDD) representation from autogenerated PRISM code needs improvement in some cases

Conclusions

- First automated verification of probabilistic π-calculus
- combination of existing tools: MMC and PRISM
- encouraging experimental results
- Future work
- MTBDD efficiency improvements
- polyadic variants of π-calculus, e.g. out(x,(a,b))
- automatic translation of (PCTL) properties
- further properties, e.g. spatial logics, watchdog processes
- more complex (and bigger) case studies
- stochastic π-calculus, biological case studies

Full results

Model	N	States	Transitions	MTBDD	Construction time (sec.)		Model checking	
				nodes	PSTGs	PRISM	MDP	time (sec.)
DCP	5	160,543	592,397	58,641	10.9	0.81	0.77	2.49
	6	$1,475,401$	$6,520,558$	100,290	13.1	0.91	1.43	7.82
	7	$13,221,889$	$68,121,834$	154,500	15.2	1.17	2.62	21.3
	8	$116,192,457$	$683,937,352$	221,170	18.1	1.21	4.72	55.2
	9	$1,005,495,499$	$6,657,256,911$	463,425	19.1	1.37	19.3	732.9
PSE	3	9,321	32,052	37,008	4.86	0.75	1.60	1.89
	4	89,025	419,172	103,779	6.60	0.91	3.95	4.47
	5	837,361	$5,028,700$	173,644	8.12	1.20	8.47	11.5
PSE $_{3}$	3	9,328	32,059	37,251	5.29	0.75	2.38	2.16
	4	89,040	419,187	104,267	6.69	0.96	4.19	13.8
	5	837,392	$5,028,731$	175,212	7.82	1.13	7.58	52.4

QEST'07

Structural congruences

- For example
$-P_{1} \mid v x P_{2} \equiv v x\left(P_{1} \mid P_{2}\right)$
- if x does not occur in P_{1}

