
Model checking theModel checking the
probabilistic probabilistic π-π-calculuscalculus

 Gethin Norman Catuscia Palamidessi
 Oxford University INRIA Futurs Saclay
 Computing Laboratory LIX

 Dave Parker Peng Wu
 Oxford University CNRS
 Computing Laboratory LIX

QEST'07QEST'07

QEST'07

Overview

• Probabilistic model checking
− Markov decision processes, PCTL, PRISM

• The probabilistic π-calculus
− syntax, symbolic semantics, example

• π-calculus tool support: MMC
• Adding π-calculus support to PRISM

− extending MMC with probabilities
− a compositional approach: translation to PRISM

• Experimental Results
• Conclusions

QEST'07

Probabilistic model checking

• Automatic formal verification technique for analysis of
systems exhibiting probabilistic behaviour

Results
Probabilistic

model
checker

Property

High-level
description,
e.g. in PRISM

modelling
language

e.g. PCTL
formula

e.g. MDP (Markov
decision process)

Probabilistic
model

e.g. PRISM

QEST'07

Markov decision processes (MDPs)

• Model supporting probabilistic and nondeterministic choice
− discrete state space and discrete time-steps
− nondeterministic choice between

(action-labelled) probability
distributions over successor states

• Well suited to modelling of:
− randomised distributed algorithms,

probabilistic communication/security protocols, ...
• Verification using e.g. the logic PCTL

− Pmin=? [F≤t reply_count=k {“init”}{min}]
“what is the minimum probability, from any initial configuration
and under any scheduling, that the sender has received k
acknowledgements within t time units?”

s1s0

s2

s3

0.5

0.50.7

1
1

{heads}

{tails}

{init}

0.3

1a

b
c

a

a

QEST'07

PRISM modelling language

• Simple, state-based language for MDPs (and D/CTMCs)
− based on Reactive Modules [Alur/Henzinger]

• Modules (system components, composed in parallel)
• Variables (finite-valued - integer ranges or booleans)
• Guarded commands (labelled with probabilities/rates)
• Composition of modules: synchronisation (CSP-style) +

process-algebraic operators (e.g. action hiding/renaming)

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

QEST'07

The π-calculus

• The π-calculus [Milner et al.]
− process algebra for concurrency and mobility
− single datatype, names, for both channels and variables
− allows dynamic creation of new channel names and

communication of channel names between processes
− ...and therefore dynamic communication topologies
− applications: e.g. cryptographic protocols, mobile

communication protocols, ...
• Probabilistic π-calculus [Herescu/Palamidessi, ...]

− adds discrete probabilistic choice for modelling of random
choice (e.g. coin toss) or unpredictability (e.g. failures)

− applications: e.g. randomised security protocols,
mobile ad-hoc network protocols, ...

QEST'07

Simple probabilistic π-calculus: πsp

• Processes: P :: =
− 0 | α.P | P + P | Σi pi τ.Pi |

(null) (prefix) (nondet. choice) (internal probabilistic choice)
− P | P | νx P | [x=y] P | A(y1,...,yn)

(parallel) (restriction) (match) (identifier)
• Actions: α ::=

− in(x,y) | out(x,y) | τ
(input on x to y) (output of y on x) (internal)

• Example: Q := νa (Q1 | Q2)
− Q1 := νc νd (½ τ.out(a,c).in(c,v).0 + ½ τ.out(a,d).in(d,w).0)
− Q2 := νb (in(a,x).out(b,x).0 | in(b,y).out(y,e).0)

[Chatzikokolakis/Palamidessi]

QEST'07

Simple probabilistic π-calculus: πsp

• “Simple” refers to restriction to “blind” probabilistic choice
− “sufficient” modelling power, but simpler semantics/analysis

• Restrictions for model checking
− finite control (no recursion within parallel composition)
− input closed (no inputs from environment)

• Semantics are in terms of Markov decision processes
− or, equivalently, (simple) probabilistic automata [Segala/Lynch]

• We use a symbolic semantics approach
− often better suited to proof systems, tool support
− extension of non-probabilistic case [Lin'00,Lin'03]
− probabilistic symbolic transition graphs (PSTGs)

QEST'07

Symbolic semantics

• A PSTG is a tuple (S, sinit, T) where:
− S is a set of symbolic states

(π-calculus processes)
− sinit ∈ S is the initial state
− T ⊆ S x Cond x Act x Dist(S)

are transitions
• And:

− Cond is the set of conditions
• finite conjunctions of

matches (name comparisons)
− Act is the set of actions:

• τ, in(x,y), out(x,y), b_out(x,y)
for names x, y

For a transition:

 (Q, M, α, { pi : Qi }) ∈ T

written:

 Q { pi : Qi }

“If M is true, Q can perform
action α and then with
probability pi evolve as Qi”

M,α

QEST'07

Symbolic semantics

• A PSTG is a tuple (S, sinit, T) where:
− S is a set of symbolic states

(π-calculus processes)
− sinit ∈ S is the initial state
− T ⊆ S x Cond x Act x Dist(S)

are transitions
• And:

− Cond is the set of conditions
• finite conjunctions of

matches (name comparisons)
− Act is the set of actions:

• τ, in(x,y), out(x,y), b_out(x,y)
for names x, y

½ ½
τ

in(c,v).0 in(d,w).0

 ½ τ.out(a,c).in(c,v).0
+ ½ τ.out(a,d).in(d,w).0

out(a,c) out(a,d)

in(d,w)in(c,v)

1 1

1 1

0

out(a,d).in(d,w).0out(a,c).in(c,v).0

(empty) conditions omitted

Example:

QEST'07

MMC: Mobility Model Checker

• Model checker for (finite control subset of) π-calculus
− against alternation-free π-μ-calculus

• Efficient implementation based on logic programming (XSB)
− names in π-calculus are represented as LP variables

• semantics of names matches variable handling in LP resolution
− direct LP encoding of π-calculus symbolic semantics

• efficient (XSB tabled resolution) and provably correct

• Other features of MMC:
− identifies (some) state equivalences (structural congruence)
− symmetry reduction: associativity/commutativity of parallel
− additional support for spi-calculus

QEST'07

Translation - Part 1

• MMCsp: extension of MMC to support πsp

− add probabilistic version of choice operator
• direct encoding of semantics, as for other operators
• modify “trans” rule of MMC to include (textual) probabilities

− add explicit generation/export of PSTG
− also identifies free/bound names

• For input-closed process, direct input into PRISM
− PSTG for input-closed process is an MDP
− either: encode as a single module in PRISM language
− or: direct input of transition matrix into PRISM

• Provides translation for any πsp process

QEST'07

Translation - Part 2

• Problems:
− for large models, enumerating state space in this way inefficient
− product state-space blow-up (at language level)
− lack of structure/regularity in model (and hence large MTBDDs)

• Solution: a compositional approach to translation
− 1. assume process of form: P := νx1 ... νxk (P1 | ... | Pn)

• where each Pi contains no instances of ν operator
• can use structural congruence to get process in this form

− 2. generate PSTG for each subprocess Pi (using MMCsp)
− 3. translate set of n PSTGs into n PRISM modules
− 4. final PRISM model is composition of n modules

QEST'07

Translation to PRISM

• Construction of PRISM module for subprocess Pi:
− one local variable for state (program counter)
− one local variable per name bounded by input
− transitions of the PSTG for Pi translated to PRISM commands

• Map names datatype into PRISM's (basic) type system
− integer variables, integer constant for each free name

• Model channel communication in PRISM
− π-calculus: binary synchronisation (CCS), name passing
− PRISM: multi-way synchronisation (CSP), no value passing
− our translation: encode all information in action names

QEST'07

Example

• Q := νa (Q1 | Q2)
− Q1 := νc νd (½ τ.out(a,c).in(c,v).0 + ½ τ.out(a,d).in(d,w).0)
− Q2 := νb (in(a,x).out(b,x).0 | in(b,y).out(y,e).0)

• Rewrite process Q as structurally congruent process P

• P := νa νb νc νd (P1 | P2 | P3)
− P1 := ½ τ.out(a,c).in(c,v).0 + ½ τ.out(a,d).in(d,w).0
− P2 := in(a,x).out(b,x).0
− P3 := in(b,y).out(y,e).0

QEST'07

Example - PRISM model structure
const int a = 1; const int b = 2;
const int c = 3; const int d = 4;
const int e = 5;
module P1

s1 : [1..6] init 1;
v : [0..5] init 0;
w : [0..5] init 0;
...

endmodule
module P2

s2 : [1..3] init 1
x : [0..5] init 0;
...

endmodule
module P3

s3 : [1..2] init 1
y : [0..5] init 0;
...

endmodule

P := νa νb νc νd (P1 | P2 | P3)
P1 := ½ τ.out(a,c).in(c,v).0

 + ½ τ.out(a,d).in(d,w).0
P2 := in(a,x).out(b,x).0
P3 := in(b,y).out(y,e).0

Free names in P1, P2, P3:
a, b, c, d, e

Input-bound names:
v, w (P1), x (P2), y (P3)

QEST'07

Example - A PRISM module
P1 :=
½ τ.out(a,c).in(c,v).0 +
½ τ.out(a,d).in(d,w).0

PSTG: module P1
s1 : [1..6] init 1;
v : [0..5] init 0;
w : [0..5] init 0;
[] (s1 = 1) -> 0.5 : (s1' = 2) + 0.5 : (s1' = 3);
[a_P1_P2_c] (s1 = 2) -> (s1' = 4);
[a_P1_P2_d] (s1 = 3) -> (s1' = 5);
[c_P3_P1_e] (s1 = 4) -> (s1' = 6) & (v' = e);
[d_P3_P1_e] (s1 = 5) -> (s1' = 6) & (w' = e);

endmodule

2 3

4 5

6

½ ½
τ

out(a,c) 1 1 out(a,d)

1 1 in(d,w)in(c,v)

1

Each PSTG transition is mapped to
one or more PRISM commands

QEST'07

Example - A PRISM module
P1 :=
½ τ.out(a,c).in(c,v).0 +
½ τ.out(a,d).in(d,w).0

PSTG: module P1
s1 : [1..6] init 1;
v : [0..5] init 0;
w : [0..5] init 0;
[] (s1 = 1) -> 0.5 : (s1' = 2) + 0.5 : (s1' = 3);
[a_P1_P2_c] (s1 = 2) -> (s1' = 4);
[a_P1_P2_d] (s1 = 3) -> (s1' = 5);
[c_P3_P1_e] (s1 = 4) -> (s1' = 6) & (v' = e);
[d_P3_P1_e] (s1 = 5) -> (s1' = 6) & (w' = e);

endmodule

2 3

4 5

6

½ ½
τ

out(a,c) 1 1 out(a,d)

1 1 in(d,w)in(c,v)

1

Each PSTG transition is mapped to
one or more PRISM commands

QEST'07

Example - A PRISM module
P1 :=
½ τ.out(a,c).in(c,v).0 +
½ τ.out(a,d).in(d,w).0

PSTG: module P1
s1 : [1..6] init 1;
v : [0..5] init 0;
w : [0..5] init 0;
[] (s1 = 1) -> 0.5 : (s1' = 2) + 0.5 : (s1' = 3);
[a_P1_P2_c] (s1 = 2) -> (s1' = 4);
[a_P1_P2_d] (s1 = 3) -> (s1' = 5);
[c_P3_P1_e] (s1 = 4) -> (s1' = 6) & (v' = e);
[d_P3_P1_e] (s1 = 5) -> (s1' = 6) & (w' = e);

endmodule

2 3

4 5

6

½ ½
τ

out(a,c) 1 1 out(a,d)

1 1 in(d,w)in(c,v)

1

Each PSTG transition is mapped to
one or more PRISM commands

QEST'07

Example - Module communication

module P2
s2 : [1..3] init 1
x : [0..5] init 0;
[a_P1_P2_c] (s2 = 1) -> (s2' = 2) & (x' = c);
[a_P1_P2_d] (s2 = 1) -> (s2' = 2) & (x' = d);
[b_P2_P3_x] (s2 = 2) -> (s2' = 3);

endmodule

P1 :=
½ τ.out(a,c).in(c,v).0 +
½ τ.out(a,d).in(d,w).0

P2 := in(a,x).out(b,x).0

module P1
s1 : [1..6] init 1;
v : [0..5] init 0;
w : [0..5] init 0;
[] (s1 = 1) -> 0.5 : (s1' = 2) + 0.5 : (s1' = 3);
[a_P1_P2_c] (s1 = 2) -> (s1' = 4);
[a_P1_P2_d] (s1 = 3) -> (s1' = 5);
[c_P3_P1_e] (s1 = 4) -> (s1' = 6) & (v' = e);
[d_P3_P1_e] (s1 = 5) -> (s1' = 6) & (w' = e);

endmodule

QEST'07

Translation optimisation

• Basic form of translation makes no assumption about
which processes can send which names to each other

• For example:
− action out(x,y) in process Pi for bound x and free y
− results in a_Pi_Pj_y-labelled command for each j=1,...,n (j≠i)

and each free name a
• In practice, we optimise our translation

− by computing (an over-approximation of) which processes can
send which names to each other

− with a (finite) iterative analysis of possible values of each
input-bound name (and hence each outgoing channel/name)

QEST'07

Property translation

• Currently, we restrict analysis of πsp processes to:
− (min/max) probabilistic reachability of availability of actions
− e.g. “minimum probability of getting to state where one of the n

subprocesses has reached an error state”
− easily identified during construction of PSTGs
− check reachability using PRISM's P=? [F ...] operator

• Possible extensions
− add test/watchdog processes to system for checking more

complex properties
− expected cost/reward properties

QEST'07

Results

• Implementation: MMCsp + Java translator + PRISM
• 3 case studies from literature:

− dining cryptographers protocol, partial secrets exchange
algorithm, mobile communication network (MCN)

• Largest MDP = 109 states = 40 seconds total construction
− full results in paper

• Analysis of results
− translation is fast and scalable
− MCN case study, although small, provides best test of approach
− efficiency of symbolic (MTBDD) representation from auto-

generated PRISM code needs improvement in some cases

QEST'07

Conclusions

• First automated verification of probabilistic π-calculus
− combination of existing tools: MMC and PRISM
− encouraging experimental results

• Future work
− MTBDD efficiency improvements
− polyadic variants of π-calculus, e.g. out(x,(a,b))
− automatic translation of (PCTL) properties
− further properties, e.g. spatial logics, watchdog processes
− more complex (and bigger) case studies
− stochastic π-calculus, biological case studies

QEST'07

Full results

QEST'07

Structural congruences

• For example
− P1 | νx P2 ≡ νx (P1 | P2)
− if x does not occur in P1

