Performance Analysis of Probabilistic Timed Automata Using Digital Clocks

Marta Kwiatkowska, University of Birmingham Gethin Norman, University of Birmingham Dave Parker, University of Birmingham Jeremy Sproston, Università di Torino

- Probabilistic timed automata (PTAs)
- Expected time/cost properties
- Digital clocks
- Case study: IPv4 ZeroConf protocol

Motivation

In real-life systems, timing behaviour often coexists with probabilistic behaviour

- Randomized algorithms:
 - IEEE 1394 (FireWire) root contention protocol
 - Backoff strategies in communication protocols (Ethernet, IEEE 802.11)
 - Bluetooth wireless protocol
- Unpredictable environment:
 - Message loss in communication protocols
 - Failures/faults

Probabilistic Models

- Formalisms for probabilistic timed systems
 - Discrete-time Markov chains (DTMCs)
 - discrete time/probabilities
 - Continuous-time Markov chains (CTMCs)
 - exponential distributions
 - Markov decision processes (MDPs)
 - discrete time/probabilities + nondeterminism
 - Probabilistic timed automata (PTAs)
 - dense real time, discrete probabilities

Probabilistic Timed Automata

Timed automata with probabilistic branching over the edges

Traditionally, clocks take values in $R_{\rightarrow 0}$

Probabilistic Timed Automata

Formalism	Semantics
Timed automata	Transition systems
Probabilistic timed automata	Markov decision processes

- States: location, clock valuation pairs (I,v) (v is in $(R_{>=0})^{|clocks|}$)
 - Real-valued clocks give infinitely many states
- Transitions: 2 classes

Properties

Probabilistic timed reachability

Example : "With probability 0.05 or less, the system aborts within 30 seconds"

- PTA context: [KNS01, KNSS02, KNS03]

• Expected reachability

Example :	"The expected time elapsed before the first data packet is delivered is at most 0.1 seconds"
Example :	"The expected cost accumulated before a host chooses an IP address is at most 40"

- PTA context: this talk

Costs

- At the level of probabilistic timed automata
 - Cost pair: (r,e)
 - r is in R_{>=0}: rate at which cost is accumulated as time passes
 - e maps from events to R_{>=0}: event-cost function assigning a cost with each event
 - Special case: time=cost, with r=1 and e(.)=0
- Example: x=8 {x:=0} waited 1 SEND WAIT r=1 x<=5 x<=8 e(transmit)=2 x>=4 0.99 e(waited)=0 transmit 0.01 FAIL true

Expected Costs

 The coexistence of nondeterministic and probabilistic choice means that there is no unique probability space over paths

Probabilities in blue, costs in red

Accumulated cost from \bigcirc to \bigcirc Minimum expected cost = 2 Maximum expected cost = 2.5

 Therefore, we obtain the minimum and maximum expected accumulated costs before reaching a set of locations

Computing Expected Costs

- Compute: minimum/maximum expected cost accumulated before reaching a set of locations
 - Assume that probability of reaching this set is 1
- Challenge: infinite state space
 - We know how to compute expected accumulated costs for finite-state Markov decision processes [de Alfaro97]
- Solution: use digital clocks (digitization)
 - Digital clocks: take values in N, rather than $R_{>0}$
 - Results in a finite state space

Digital Clocks

l,v

1,v+1

Digital clocks:

elapse

single time-

transition

l.v

l,v+ď

• We consider time-elapse transitions of duration 1 only

Real clocks: infinitely-branching time-elapse transitions

- Can also assume clocks do not exceed max+1
 - where max is the maximal constant used in clock constraints

l,v+d

- Correctness based on [HMP92]: "digitization" maps between digitally-clocked and real-clocked behaviours
- Correctness requires: closed, diagonal-free (P)TA
 For example: x<5 NO x-y>=3 NO x>=4 YES

Expected Costs and Digital Clocks

- Let PTA be a closed, diagonal-free probabilistic timed automaton, L' be a set of its locations, (r,e) be a cost pair
- Central result using digitization, we prove that:
 - Minimum expected costs w.r.t (r,e) accumulated before reaching L' in real-clocked PTA and digitally-clocked PTA agree
 - Same for the maximum expected costs
- Proof idea:
 - for each scheduler of nondeterminism in real-clocked PTA, we can construct a discrete-clocked scheduler with a lower expected cost
 - How? Digitize real-clocked paths of the scheduler such that total duration along the path is always rounded down; then total timeelapse cost is also always rounded down
 - for maximum: symmetric (round durations up)

Case Study: IPv4 ZeroConf Protocol

- IPv4 ZeroConf protocol [Cheshire,Adoba,Guttman'02]
 - New IETF standard for dynamic network selfconfiguration
 - Link-local (no routers within the interface)
 - No need for an active DHCP server
 - Aimed at home networks, wireless ad-hoc networks, handheld devices
 - "Plug and play"
- Self-configuration
 - Performs assignment of IP addresses
 - Symmetric, distributed protocol
 - Uses random choice and timing delays

- Select an IP address out of 65024 at random
- Send a probe querying if address in use, and listen for 2 seconds
 - If positive reply received, restart
 - Otherwise, continue sending probes and listening (2 seconds)
- If K probes sent with no reply, start using the IP number
 - Send 2 packets, at 2 second intervals, asserting IP address is being used
 - If a conflicting assertion received, either:
 - defend (send another asserting packet)
 - defer (stop using the IP address and restart)

IPv4 ZeroConf Protocol...

- Possible problem...
 - IP number chosen may be already in use, but:
 - Probes or replies may get lost or delayed (host too busy)
- Issues:
 - Self-configuration delays may become unacceptable
 - Would you wait 8 seconds to self-configure your PDA?
 - No justification for parameters
 - for example K=4 in the standard

PTA Model of the Protocol

- Different models studied:
 - Discrete-time Markov chain and Markov reward models (analytical)
 - [Bohnenkamp-van der Stok-Hermanns-Vaandrager03] and [Andova-Katoen03]
 - Timed automata model using UPPAAL [Zhang-Vaandrager03]
 - PTA model with digital clocks using PRISM, this talk
- Parallel composition of two PTAs:
 - one (joining) host, modelled in detail
 - environment (communication medium + other hosts)
- Variables:
 - K (number of probes sent before the IP address is used)
 - the probability of message loss
 - the number of other hosts already in the network

Expected Costs

- Compute minimum/maximum expected cost accumulated before obtaining a valid IP address?
- Costs:
 - Time should be costly: the host should obtain a valid IP address as soon as possible
 - Using an IP address that is already in use should be very costly: minimise probability of error
- Cost pair: (r,e)
 - r=1 (t time units elapsing corresponds to a cost of t)
 - $e=10^{12}$ for the event corresponding to using an address which is already in use
 - e=0 for all other events

Performance Analysis

- Use the probabilistic model checker PRISM
 - prototype extension for cost-based properties
- PTAs with digital clocks can be encoded directly in the PRISM modelling language
 - as can PTA costs
- Implemented algorithms of [de Alfaro97]
 - stochastic shortest path problem for finite-state MDPs
 - similar to existing PCTL model checking algorithms

Results

- Sending a high number of probes increases the cost
 - increases delay before a fresh IP address can be used
- Sending a low number of probes increases the cost
 - increases probability of using an IP address already in use
- Similar results to the simpler model of [BvdSHV03]

Conclusions

- Computed expected-cost properties of probabilistic timed automata
- Employed digitally-clocked models to obtain results which also hold for real-clocked models
- More results available at the PRISM web-page

www.cs.bham.ac.uk/~dxp/prism

- Extensions:
 - Lift the restriction on constant time-elapse cost rates
 - Try other solution methods: regions, zones