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Abstract

Neuro-symbolic approaches to artificial intelligence, which combine neural
networks with classical symbolic techniques, are growing in prominence, ne-
cessitating formal approaches to reason about their correctness. We pro-
pose a novel modelling formalism called neuro-symbolic concurrent stochastic
games (NS-CSGs), which comprise two probabilistic finite-state agents inter-
acting in a shared continuous-state environment. Each agent observes the
environment using a neural perception mechanism, which converts inputs
such as images into symbolic percepts, and makes decisions symbolically.
We focus on the class of NS-CSGs with Borel state spaces and prove the
existence and measurability of the value function for zero-sum discounted
cumulative rewards under piecewise-constant restrictions on the components
of this class of models. To compute values and synthesise strategies, we
present, for the first time, practical value iteration (VI) and policy itera-
tion (PI) algorithms to solve this new subclass of continuous-state CSGs.
These require a finite decomposition of the environment induced by the neu-
ral perception mechanisms of the agents and rely on finite abstract repre-
sentations of value functions and strategies closed under VI or PI. First,
we introduce a Borel measurable piecewise-constant (B-PWC) representa-
tion of value functions, extend minimax backups to this representation and
propose a value iteration algorithm called B-PWC VI. Second, we introduce
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two novel representations for the value functions and strategies, constant-
piecewise-linear (CON-PWL) and constant-piecewise-constant (CON-PWC)
respectively, and propose Minimax-action-free PI by extending a recent PI
method based on alternating player choices for finite state spaces to Borel
state spaces, which does not require normal-form games to be solved. We
illustrate our approach with a dynamic vehicle parking example by gener-
ating approximately optimal strategies using a prototype implementation of
the B-PWC VI algorithm.

Keywords: Stochastic games, neuro-symbolic systems, value iteration,
policy iteration, Borel state spaces

1. Introduction

Game theory offers an attractive framework for analysing strategic inter-
actions among agents, with application to, for instance, the game of Go [1],
autonomous driving [2] and robotics [3]. An important class of dynamic
games is stochastic games [4], which move between states according to tran-
sition probabilities controlled jointly by multiple agents (also called players).
Extending both strategic-form games to dynamic environments and Markov
decision processes (MDPs) to multiple players, stochastic games have long
been used to model sequential decision-making problems with more than one
agent, ranging from multi-agent reinforcement learning [5] to quantitative
verification and synthesis for equilibria [6].

Increasingly, agents in these settings incorporate machine learning com-
ponents. Recent years have witnessed encouraging advances in the use of
neural networks (NNs) to approximate either value functions or strategies [7]
for stochastic games that model large, complex environments. Such end-to-
end NNs directly map environment states to Q-values or actions. This means
that they have a relatively complex structure and a large number of weights
and biases, since they interweave multiple tasks (e.g., object detection and
recognition, decision making) within a single NN. An emerging trend in au-
tonomous and robotic systems is neuro-symbolic approaches, where some
components that are synthesized from data (e.g., perception modules) are
implemented as NNs, while others (e.g., nonlinear controllers) are formulated
using traditional symbolic methods. This can greatly simplify the design and
training process, and yield smaller NNs.

Even with the above advances, there remains a lack of modelling and
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verification frameworks which can reason formally about the correctness of
neuro-symbolic systems. Progress has been made on techniques for both
multi-agent verification [8, 9] and safe reinforcement learning [10] in this
context, but without the ability to reason formally about stochasticity, which
is crucial for modelling uncertainty. Elsewhere, concurrent stochastic games
(CSGs) have been widely studied [11, 12, 13, 14, 15], and also integrated into
formal modelling and verification frameworks [6], but primarily in the context
of finite state spaces, which are insufficient for many real-life systems.

We propose a new modelling formalism called neuro-symbolic concur-
rent stochastic games (NS-CSGs), overviewed in the conference paper [16],
which comprise two finite-state probabilistic agents interacting in a shared
continuous-state environment. Each agent observes the environment using
a neural perception mechanism, which classifies inputs such as images and
sensor values into symbolic percepts from a finite set and makes decisions
using a conventional, symbolic mechanism. During execution, the agents al-
ternate between invoking perception and symbolic decisions, and transition
between states according to joint transition probabilities. The agent’s tran-
sition to its next local state is based on the current local states of the agents
and the agent’s current percept, rather than directly accessing the continu-
ous environment, and can thus model knowledge acquisition from the neural
perception mechanism.

Under the assumption that agents have full state observability and work-
ing with Borel state spaces, we establish restrictions on the modelling for-
malism which ensure that NS-CSGs belong to a new subclass of uncountable
state-space CSGs [17] that are determined for zero-sum discounted cumula-
tive objectives, and therefore prove the existence and measurability of the
value function for such objectives.

Our assumptions on the NS-CSG model enable symbolic reasoning with
(exactly) learnt percepts (e.g., transition functions that preserve the decom-
position of continuous-state spaces into finitely many regions), and induce
finite representations of value functions that incorporate symbolic combina-
tions of percepts and knowledge acquired by the agents through symbolic
reasoning. We also show that our formalism can capture neural percep-
tion mechanisms instantiated as ReLU NN classifiers, which yield piecewise
constant perception functions and impose a finite decomposition of the con-
tinuous environment into polytopes via preimage computation.

Next, we develop computationally tractable algorithms for optimal strat-
egy synthesis for NS-CSGs, which exploit the Borel and piecewise constant
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structure of the transition, perception and reward functions. We propose a
new representation for the value function and show its closure under a min-
imax operator defined for it. Using this (finite) representation, we develop a
value iteration (VI) algorithm for NS-CSGs that approximates the value of
the game and prove the algorithm’s convergence.

Then, we present a policy iteration (PI) algorithm for NS-CSGs inspired
by recent work for finite state spaces [18], which we generalise by using novel
representations for the value functions and strategies, to ensure finite rep-
resentability and measurability. This allows us to overcome the main issue
that arises when solving Borel state space CSGs with PI, namely that the
value function may change from a Borel measurable function to a non-Borel
measurable function across iterations.

The PI algorithm adopts the alternating player choices proposed in [18]
and removes the need to solve normal-form games and MDPs at each itera-
tion. To the best of our knowledge, these are the first implementable algo-
rithms for solving zero-sum CSGs over Borel state spaces with convergence
guarantees. Finally, we illustrate our approach by modelling a dynamic vehi-
cle parking as an NS-CSG and synthesizing (approximately optimal) strate-
gies using a prototype implementation of our VI algorithm.

We note that we assume a fully observable game setting. While it is
relatively straightforward to generalise the NS-CSG model to partial observ-
ability, since NS-CSGs already include perception functions that generate
observations, there are no general algorithmic methods for value and strat-
egy computation in the partially observable game setting; see [19] for a one-
sided variant of neuro-symbolic partially observable stochastic games that
shares its syntax with NS-CSGs. In the general two-sided case, we believe
that an approach similar to [20, 21], which converts imperfect-information
games to perfect-information, can potentially be used to enable the solution
of partially observable NS-CSGs.

1.1. Executive summary

The modelling formalism of NS-CSGs introduced in this paper induces
a new class of stochastic games with discrete observations and uncountable
state spaces. The underlying continuous state space raises multiple technical
issues that need to be resolved to ensure determinacy and enable practical
algorithms for value computation and strategy synthesis, which are the main
goal of this work. This is achieved through placing appropriate structural
restrictions on NS-CSGs and relying on Borel measurability, which allows
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us to obtain finite abstract representations of the uncountable state space
during value computation.

The key modelling decisions that allowed us to obtain our results are
summarised below. To help navigate through the technical sections, we have
listed the main concepts and dependencies between them in Fig. 1. Table 1
summarises the role of the definitions, including where they are used.

In Section 3, the definition of NS-CSGs restricts the interface between
an agent’s neural perception mechanism and its symbolic decision-making
mechanism. In particular, when making decisions, the agent can only ac-
cess the continuous environment through its perception mechanism, which is
limited to a finite set of observations (percepts). This allows us to abstract
the (uncountable) continuous state space by partitioning it into a finite set
of regions (called a finite connected partition, or FCP), with the elements of
each region mapped to the same percept. The initial partition is obtained
via preimage computation applied to the perception mechanism and is then
refined in subsequent iterations.

Section 4 requires Borel measurability over the continuous environment to
constrain the abstractions of the environment to Borel FCPs (called BFCPs)
and restrict the choices that the strategies can make to ensure measurability
of the induced sets of paths. By requiring Borel measurability of the environ-
ment transition function and the fact that the structural BFCP property of
the abstraction of the environment is preserved under this transition function
(Assumption 1(i)), referred to as BFCP invertibility, we can derive a min-
imax operator for our setting. We can then apply, in Section 5, the result
of [17] to prove the existence of the value for discounted expected reward
as a fixed point of the minimax operator (Theorem 1) and convergence of
value iteration (Proposition 2). However, this result does not ensure finite
representability of the value functions.

In Section 6, structural assumptions are placed on the model to require
Borel measurable piecewise constant (B-PWC) perception and reward func-
tions (Assumption 1(ii) and (iii)). These assumptions allow us to derive
BFCPs, in which the states in each region are equivalent with respect to
either the perception, reward or transition function. Working with B-PWC
functions as a finite representation of the value functions, in conjunction with
proving that B-PWC functions are closed with respect to the minimax oper-
ator, we show that the value can be approximated by a sequence of B-PWC
functions (Theorem 2), although the optimal value is not necessarily B-PWC
representable.
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Section 6 demonstrates that the above assumptions and requirements
allow us to derive B-PWC VI (Algorithm 1), which uses the B-PWC repre-
sentation of value functions. The algorithm refines the BFCP induced by the
value function at each iteration by computing the preimage of the transition
function (Algorithm 2). The refinement step is necessary because, for a given
action, two states with the same percept may result in states that are not
observationally equivalent.

In Section 7 we introduce two representations, CON-PWC (constant-
piecewise-constant) for Borel measurable strategies and CON-PWL (constant-
piecewise-linear) for Borel measurable functions, and, under the assumptions
and requirements above, prove that these representations are closed under
Max-Min and Min-Max operators (Theorem 3). This allows us to generalise
the recent Minimax-action-free PI algorithm [18] for finite CSGs to NS-CSGs
(Algorithm 3) by ensuring finite representability and Borel measurability at
each iteration. At each iteration, the algorithm refines the BCFPs used for
representing strategies and value functions through a preimage computation
(Algorithm 4) and then computes values for regions in the resulting BFCPs
by Max-Min and Min-Max operators (Algorithm 5).

Finally, we show that our framework is amenable to neural perception
mechanisms instantiated as ReLU NNs trained from data. This yields poly-
tope BFCPs (Section 6), which suffice as a symbolic representation of per-
ception BFCPs, thus enabling value computation and policy iteration with
the (exactly) learnt percepts. We also provide a prototype implementation
of Algorithm 1 and evaluate it on a dynamic parking example with the sim-
pler perception mechanism given by a regression function, demonstrating the
feasibility of strategy synthesis for NS-CSGs in practice.

1.2. Related work

Stochastic games were introduced by Shapley [4], who assumed a finite
state space. Since then, many researchers have considered CSGs with un-
countable state spaces, e.g., [17, 22, 23]. Maitra and Parthasarathy [22] were
the first to study discounted zero-sum CSGs in this setting, assuming that the
state space is a compact metric space. Following this, more general results
for discounted zero-sum CSGs with Borel state spaces have been derived,
e.g., [17, 24, 23, 25]. These aim at providing sufficient conditions for the
existence of either values or optimal strategies for players.

Another important and practical problem for zero-sum CSGs with un-
countable state spaces is the computation of values and optimal strategies.
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Figure 1: Outline of the main concepts and contributions of our paper, as well as depen-
dencies between them.

Since the seminal policy iteration (PI) methods were introduced by Hoffman
and Karp [26] and Pollatschek and Avi-Itzhak [27], a wide range of fixed-point
algorithms have been developed for zero-sum CSGs with finite state spaces
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Section 2: Background

1: FCP and Borel FCP
Decomposes uncountable state spaces into finite sets of
regions for a finite abstraction of the environment.
Used in Definitions 2, 3, 13-17.

2: PWC Borel measureable
Provides measurable finite representations.
Used in Definitions 13-17; Lemmas 2, 3, 6-9, 11
Theorems 2-4.

3: PWL Borel measureable
Provides measurable finite representations.
Used in Definitions 13, 15; Lemmas 6-9;
Theorems 3, 4.

4: BFCP invertible
Preserves the BFCP representation.
Used in Assumption 1

5: CSGs Recalls the definition of discrete CSGs.

Section 3: NS-CSGss

6: NS-CSGs Introduces our new neuro-symbolic game model.

7: Semantics of an NS-CSG A formal semantic definition for the model.

8: Strategy Defines the stationary strategy for each agent.

Section 5: Values of zero-sum NS-CSGs

9: Value function
Formal definition of the game’s value.
Used in Theorems 1, 2, 4; Proposition 2.

10: Minimax operator
Characterises and compute the value function.
Used in Theorems 1, 2; Proposition 2.

Section 7: Policy iteration

11: Operator for the Max-min value
Induces max-min policy evaluation of maximizer.
Used in Lemma 6; Theorem 3; Corollary 2.

12: Operator for the Min-max value
Induces min-max policy evaluation of minimizer.
Used in Lemma 8; Theorem 3; Corollary 2.

13: CON-PWL Borel measurable function
Finite representations for minimizer’s functions.
Used in Definitions 15; Lemmas 6-9;
Theorem 3; Corollary 2.

14: CON-PWC stochastic kernel
Finite representation for minimizer’s strategies.
Used in Lemmas 8, 9; Theorem 3; Corollary 2.

15: CON-1 solution
Induces policy improvement of maximizer.
Used in Lemma 7; Theorem 3; Corollary 2.

16: CON-2 solution
Induces policy improvement of minimizer.
Used in Lemma 9; Theorem 3; Corollary 2.

17: CON-3 solution
Extracts PWC strategies from value functions
Used in Lemma 11.

Table 1: Listing of definitions (by section) and their roles.

[11, 12, 13, 14]. Recent work by Bertsekas [18] proposed a distributed opti-
mistic abstract PI algorithm, which inherits the attractive structure of the
Pollatschek and Avi-Itzhak algorithm while resolving its convergence difficul-
ties. Value iteration (VI) and PI algorithms have been improved for simple
stochastic games [28, 29]. However, all of the above approaches assume fi-
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nite state spaces and, to the best of our knowledge, there are no existing
VI or PI algorithms for CSGs with uncountable, or more specifically Borel,
state spaces. VI and PI algorithms for stochastic control (i.e., the one player
case) with Borel state spaces can be found in [30, 31]. Other problems for
zero-sum CSGs with uncountable state spaces have been studied and include
information structure [32], specialized strategy spaces [33], continuous time
setup [34] and payoff criteria [25].

A variety of other objectives, for instance, mean-payoff [35, 36], ratio [36]
and reachability [37, 38] objectives, have also been studied for CSGs [11, 12,
13, 14]. But these are primarily in the context of finite/countable state spaces
which, as argued above, are insufficient for our setting, where uncountable
real vector spaces are usually supplied as inputs to NNs. Building on an
earlier version of this work [39], there has been recent progress on solving
NS-CSGs [40], but focusing on finite-horizon objectives and using equilibria-
based (nonzero-sum) properties.

Compared to the above works, NS-CSGs are shown in Section 3 to form
a new subclass of uncountable state-space CSGs, whose determinacy (see
Section 5) relies on [17] under some restrictions. The closure of B-PWC
functions under the minimax operator in Section 6 is a new result; combining
the closure with determinacy, the new B-PWC VI algorithm directly relies on
Banach’s fixed point theorem. Our Minimax-action-free PI algorithm takes
ideas from recent work [18], which proposed a new PI method to solve zero-
sum stochastic games with finite state spaces, but has to resolve a number of
issues (see Section 7) due to the uncountability of the underlying state space
and the need to ensure Borel measurability at each iteration, including finite
representability of measurable functions and strategies, strategy generation
in the policy improvement and the division of the uncountable state space
into a finite set of regions at each iteration.

Finally, we note that this paper assumes a fully observable game setting;
a natural extension would be partially observable stochastic games (POSGs),
for which there are no general VI and PI computation algorithms. A vari-
ant of POSGs, called factored-observation stochastic games (FOSGs), was
recently proposed [21] that distinguishes between private and public obser-
vations in a similar fashion to our model, but for finite-state models without
NNs. Partial observability in FOSGs is dealt with via a mechanism that con-
verts imperfect-information games into continuous-state (public belief state)
perfect-information games [20, 21], such that many techniques for perfect-
information games can also be applied. Our fully observable model can ar-
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guably serve as a vehicle to later solve the more complex case with imperfect
information. In recent work [19], a point-based value iteration algorithm was
presented for one-sided neuro-symbolic POSGs, thus dealing with partial
observability under some mild assumptions.

2. Background

In this section we summarise the background notation, definitions and
concepts used in this paper. Our results crucially rely on Borel measurabil-
ity over the continuous environment and piecewise constant functions as a
representation of value functions. The latter is inspired by the observation
that a neural perception mechanism such as an NN classifier is a piecewise
constant function of the environment and results in a finite decomposition of
the environment into regions.

2.1. Borel measurable spaces and functions

Given a non-empty set X, we denote its Borel σ-algebra by B(X), and the
sets in B(X) are called Borel sets of X. The pair (X,B(X)) is a (standard)
Borel space if there exists a metric on X that makes it a complete separable
metric space (unless required for clarity, B(X) will be omitted). For con-
venience we will work with real vector spaces; however, this is not essential
and any complete separable metric spaces could be used. For Borel spaces
X and Y , a function f : X → Y is Borel measurable if f−1(B) ∈ B(X) for
all B ∈ B(Y ) and bimeasurable if it is Borel measurable and f(B) ∈ B(Y )
for all B ∈ B(X).

We denote by F(X) the space of all bounded, Borel measurable real-
valued functions on a Borel space X, with respect to the unweighted sup-
norm ∥J∥ = supx∈X |J(x)| for J ∈ F(X). For functions J,K ∈ F(X), we use
max[J,K] and min[J,K] to denote the respective pointwise maximum and
minimum functions of J and K, i.e., we have opt[J,K](x) := opt{J(x), K(x)}
for opt ∈ {min,max} and x ∈ X.

We now introduce notation and definitions for concepts that are fun-
damental to the abstraction on which our algorithms are performed. The
abstraction is based on a decomposition of the uncountable state space into
finitely many abstract regions. In the definitions below, let X ⊆ Rn1 and
Y ⊆ Rn2 for n1, n2 ∈ N.

Definition 1 (FCP and Borel FCP). A finite connected partition (FCP)
of X, denoted Φ, is a finite collection of disjoint connected subsets (regions)
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that cover X. Furthermore, Φ is a Borel FCP (BFCP) if each region ϕ ∈ Φ
is a Borel set of X.

Definition 2 (PWC Borel measurable). A function f : X → Y is piece-
wise constant Borel measurable (B-PWC) if there exists a BFCP Φ of X such
that f : ϕ→ Y is constant for all ϕ ∈ Φ and Φ is called a constant-BFCP of
X for f .

Definition 3 (PWL Borel measurable). A function f : X → Y is piece-
wise linear Borel measurable (B-PWL) if there exists a BFCP Φ of X such
that f : ϕ→ Y is linear and bounded for all ϕ ∈ Φ.

Definition 4 (BFCP invertible). A function f : X → Y is BFCP in-
vertible if, for any BFCP ΦY of Y , there exists a BFCP ΦX of X, called a
preimage BFCP of ΦY for f , such that for any ϕX ∈ ΦX we have {f(x) |
x ∈ ϕX} ⊆ ϕY for some ϕY ∈ ΦY .

For BFCPs Φ1 and Φ2 of X, we denote by Φ1 + Φ2 the smallest BFCP of X
such that Φ1 + Φ2 is a refinement of both Φ1 and Φ2, which can be obtained
by taking all the intersections between regions of Φ1 and Φ2.

2.2. Probability measures

Let X be a Borel space. A function f : B(X) → [0, 1] is a probability
measure on X if f(X) = 1 and

∑
i∈I f(Bi) = f(∪i∈IBi) for any countable

disjoint family of Borel sets (Bi)i∈I . We denote the space of all probability
measures on a Borel space X by P(X). For Borel spaces X and Y , a Borel
measurable function σ : Y → P(X) is called a stochastic kernel on X given Y
(also known as a transition probability function from Y to X), and we denote
by P(X | Y ) the set of all stochastic kernels on X given Y . If σ ∈ P(X | Y ),
y ∈ Y and B ∈ B(X), then we write σ(B | y) for σ(y)(B). It follows that
σ ∈ P(X | Y ) if and only if σ( · | y) ∈ P(X) for all y ∈ Y and σ(B | · ) is
Borel measurable for all B ∈ B(X).

2.3. Neural networks

A neural network (NN) is a real vector-valued function f : Rm → Rc,
where m, c ∈ N, composed of a sequence of layers h1, . . . , hk, where hi :
Rmi → Rci for 1 ≤ i ≤ k, m1 = m, ci = mi+1 for 1 ≤ i ≤ k − 1 and
ck = c. Each layer hi is a data-processing module explicitly formulated as
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hi(xi) = acti(Wixi + bi), where xi is the input to the ith layer given by the
output hi−1(xi−1) of the (i − 1)th layer, acti is an activation function, and
Wixi + bi is a weighted sum of xi for a weight matrix Wi and a bias vector
bi. An NN f is continuous for all popular activation functions, e.g., Rectified
Linear Unit (ReLU), Sigmoid and Softmax [41].

An NN f is said to be a classifier for a set of classes C of size c if, for
any input x ∈ Rm, the output f(x) ∈ Rc is a probability vector where the
ith element of f(x) represents the confidence probability of the ith class of
C, i.e., a classifier is a function f : Rm → P(C). Let fmax : Rm → C denote
a function that returns the class with the largest confidence probability in
f(x), and call fmax(x) the class of x. To allow for situations where the
class with the highest probability returned by f is not unique, and hence
fmax(x) would be undefined, we assume the classifier includes a tie-breaking
rule defined by a function κ : 2C → C which, given a set of classes, i.e., those
with the highest probability, returns the selected class.

Given an NN classifier f with the tie-breaking rule κ, the preimage of f
divides Rm into a BFCP Φ of Rm, i.e., for any ϕ ∈ Φ, there exists a class y
such that fmax(x) = y for all x ∈ ϕ. The preimage of an NN classifier with
PWL activation functions can be computed via polyhedral decomposition as
described in [42].

2.4. Concurrent stochastic games

Finally, in this section, we recall the model of two-player concurrent
stochastic games.

Definition 5. A (two-player) concurrent stochastic game (CSG) is a tuple
G = (N,S,A,∆, δ) where:

• N = {1, 2} is a set of two players;

• S is a finite set of states;

• A = (A1∪{⊥})×(A2∪{⊥}) where Ai is a finite set of actions available
to player i ∈ N and ⊥ is an idle action disjoint from the set A1 ∪ A2;

• ∆: S → 2(A1∪A2) is an action available function;

• δ : (S×A)→ P(S) is a probabilistic transition function.
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In a state s of a CSG G, each player i ∈ N selects an action from its available
actions, i.e., from the set ∆(s) ∩ Ai, if this set is non-empty, and selects
the idle action ⊥ otherwise. We denote the action choices for each player
i in state s by Ai(s), i.e., Ai(s) equals ∆(s) ∩ Ai if ∆(s) ∩ Ai ̸= ∅ and
equals {⊥} otherwise, and by A(s) the possible joint actions in a state, i.e.,
A(s) = A1(s)× A2(s). Supposing each player i chooses action ai, then with
probability δ(s, (a1, a2))(s

′) there is a transition to state s′ ∈ S. A path π
of G is a sequence π = s0

α0−→ s1
α1−→ · · · such that sk ∈ S, αk ∈ A(sk) and

δ(sk, αk)(sk+1) > 0 for all k ≥ 0. We let FPathsG and IPathsG denote the
sets of finite and infinite paths of G, respectively. For a path π, we denote
by π(k) the (k + 1)th state, and π[k] the action for the transition from π(k)
to π(k + 1).

A strategy for a player of a CSG G resolves its action choices in each state.
These choices can depend on the history of the CSG’s execution and can be
randomised. Formally, a strategy for player i is a function σi : FPathsG →
P(Ai∪{⊥}) mapping finite paths to distributions over available actions, such
that, if σi(π)(ai)>0, then ai ∈ Ai(last(π)) where last(π) is the final state of
π. A strategy is said to be stationary if it makes the same choices for paths
that end in the same state. Furthermore, a strategy profile of G is a pair
σ = (σ1, σ2) of strategies for each player. Given a strategy profile σ and
state s, letting IPathsσs denote the set of infinite paths from s under the
choices of σ, we can define a probability measure Probσs ∈ P(IPathsσs ) [43].

3. Zero-sum neuro-symbolic concurrent stochastic games

This section introduces our model of neuro-symbolic concurrent stochastic
games (NS-CSGs). We restrict our attention to two-agent (which we also
refer to as two-player) games, as we are concerned with zero-sum games,
in which there are two agents with directly opposing objectives. However,
the approach extends to multi-agent games, by allowing the agents to form
two coalitions with directly opposing objectives. Our results depend on the
uniqueness of value functions, and therefore do not extend to more than two
coalitions.

A (two-agent) NS-CSG comprises two interacting neuro-symbolic agents
acting in a shared, continuous-state environment. Each agent Agi has finitely
many local states and actions; it observes the environment through a (trained)
neural perception mechanism (the perception function obs i), which depends
on the local states of both agents, and relies on symbolic decision-making
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mechanisms (the transition function δi). During execution, the agents alter-
nate between invoking perception and symbolic decisions, where the interface
between them is suitably constrained to enable symbolic reasoning with the
(exactly) learnt concepts (regions of the continuous inputs space), which we
call percepts to distinguish them from local states. When invoking percep-
tion, continuous inputs are converted into symbolic percepts, and the agent’s
transition to the next local state is based on the current local state and
percept, rather than the environment state, and can thus model knowledge
acquisition from the neural perception mechanism.

Definition 6. A (two-agent) neuro-symbolic concurrent stochastic game (NS-
CSG) C comprises agents (Agi)i∈N for N = {1, 2} and environment E where:
Agi = (Si, Ai,∆i, obs i, δi), E = (SE, δE) and we have:

• Si = Loci×Per i is a set of states for Agi, and Loci and Per i are finite
sets of local states and percepts, respectively;

• SE ⊆ Re for e ∈ N is a closed uncountable set of environment states;

• Ai is a nonempty finite set of actions for Agi, and A := (A1 ∪ {⊥})×
(A2∪{⊥}) is the set of joint actions, where ⊥ is an idle action disjoint
from A1 ∪ A2;

• ∆i : Si → 2Ai is an available action function for Agi, defining the
actions the agent can take in each of its states;

• obs i : (Loc1 × Loc2 × SE) → Per i is a perception function for Agi,
mapping the local states of the agents and environment state to a percept
of the agent;

• δi : (Si×A)→ P(Loci) is a probabilistic transition function for Agi de-
termining the distribution over the agent’s local states given its current
state and joint action;

• δE : (SE × A) → SE is a deterministic transition function for the
environment determining its next state given its current state and joint
action.

Remark 1. We restrict the range of observation functions induced by per-
ception mechanisms to finite sets, which admits a wide class of functions,
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including ReLU neural network classifiers. For an example instantiation
of an observation function obs i, for each pair of local states (loc1, loc2) ∈
Loc1 × Loc2 we can associate an NN classifier floc1,loc2 : SE → P(Peri), see
Section 2.3, such that obs i(loc1, loc2, sE) = fmax

loc1,loc2
(sE) for all sE ∈ SE.

These NNs need not be distinct for different pairs of local agent states, but
we have allowed this modelling choice to reflect the design of existing NN-
enabled systems that we target, e.g., in the VCAS collision avoidance system
[44] there are nine NN advisories and which of these advisories is selected
is based on the local state of the system. Assuming the range of the percep-
tion functions is finite, our framework is also capable of modelling perception
mechanisms that input (continuous) numerical sensor information (e.g., via
output discretisation) and other machine learning models (which may require
additional assumptions to ensure finite representability of percepts).

In an NS-CSG C the agents and environment execute concurrently and
agents move between their local states probabilistically. For simplicity, we
consider deterministic environments, but all the results extend directly to
probabilistic environments with finite branching.

A (global) state of an NS-CSG comprises a state si = (loci, per i) for
each agent Agi (a local-state-percept pair) and an environment state sE.
A state s = ((loc1, per 1), (loc2, per 2), sE) is percept compatible if per i =
obs i(loc1, loc2, sE) for 1 ≤ i ≤ 2. Percept compatibility indicates that
each agent always accesses its percept via the perception function, and ob-
serves the environment state only through the perception function. In state
s = (s1, s2, sE), each Agi simultaneously chooses one of the actions available
in its state si (if no action is available, i.e., ∆i(si) = ∅, then Agi chooses
the idle action ⊥), resulting in a joint action α = (a1, a2) ∈ A. Next, each
Agi updates its local state to some loc ′i ∈ Loci, according to the distribu-
tion δi(si, α). At the same time, the environment updates its state to some
s′E ∈ SE according to the transition δE(sE, α). Finally, each Agi, based on
its new local state, observes the new local state of the other agent and the
new environment state to generate a new percept per ′i = obs i(loc

′
1, loc

′
2, s

′
E).

Thus, the game reaches the state s′ = (s′1, s
′
2, s

′
E), where s′i = (loc ′i, per

′
i) for

1 ≤ i ≤ 2.

Example 1. As an illustration, we present an NS-CSG model of a dynamic
vehicle parking problem (a static version is presented in [45]). Fig. 2 (left)
shows two agents, Ag1 (the red vehicle) and Ag2 (the blue vehicle), in a
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Figure 2: Dynamic vehicle parking: continuous environment [0, 4]2 (left); discrete percepts
corresponding the 4×4 abstract grid cells (middle) and probabilistic transitions following
joint action (up, left) (right). Red vehicle’s parking preference is also indicated in red.

(continuous) environmentR = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 4} and two preferred
parking spots ps1, ps2 ∈ R (the green circles), which are known to the agents.
This example employs a classifier fR : R → P(Grid), where Grid = {(i, j) |
i, j ∈ {1, 2, 3, 4}}, which takes the coordinates of a vehicle (or parking spot)
as input and outputs a probability distribution over 16 abstract grid cells,
see Fig. 2 (centre).

The actions of the agents are to move either up, down, left or right, or
park. The vehicles of the agents start from different positions in R and have
the same speed. The red agent initially chooses one parking spot and changes
its parking spot with probability 0.5 when the blue agent is observed to be
closer to its chosen parking spot and both agents move towards this spot,
see Fig. 2 (centre and right). Formally, the agents and the environment are
defined as follows.

• Loc1 = {ps1, ps2} and Loc2 = {⊥}, i.e., the local state of Ag1 is its
current chosen parking spot and the local state of Ag2 is a dummy state.
For 1 ≤ i ≤ 2, the set of percepts of Agi is given by Per i = Grid×Grid ,
representing the abstract grid cells that each agent perceives as the
positions of the two vehicles.
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• SE = R×R, i.e., the environment is in state sE = (w1, w2) if wi is the
continuous coordinate of Agi’s vehicle for 1 ≤ i ≤ 2.

• Ai = {up, down, left , right , park} for 1 ≤ i ≤ 2.

• For 1 ≤ i ≤ 2, local state loci and percept per i = (cell1, cell2), where
the perceived grid cell of agent Agj is cell j, we let ∆i(loci, per i) equal
Ai if cell i ∈ {fmax

R (ps1), f
max
R (ps2)} and equal Ai \ {park} otherwise,

i.e., an agent’s available actions are to move up, down, left and right,
and additionally park when the agent is perceived to have reached a
parking spot.

• For 1 ≤ i ≤ 2, local states loc1 and loc2 and environment state (w1, w2),
we let obs i(loc1, loc2, (w1, w2)) = (fmax

R (w1), f
max
R (w2)), i.e., indepen-

dently of the local states of the agents, the perception function returns
the perceived grid cell of each agent under the classifier fR.

• For any Ag1 state s1 = (loc1, (cell1, cell2)) and joint action α, to define
δ1 we have the following two cases to consider:

– if ∥fmax
R (loc1)− cell1∥2 > ∥fmax

R (loc1)− cell2∥2, where ∥ · ∥2 is the
Euclidean norm, i.e. Ag1 observes Ag2 is closer to its currently
chosen parking spot, and the joint action α indicates both agents
are approaching loc1, then δ1(s1, α)(psj) = 0.5 for 1 ≤ j ≤ 2, i.e.,
Ag1 changes its chosen parking spot with probability 0.5;

– otherwise δ1(s1, α)(loc1) = 1, i.e., Ag1 sticks with its chosen park-
ing spot.

Considering δ2, since Loc2 = {⊥}, we have δ2(s2, α)(⊥) = 1 for any
Ag2 state s2 = (⊥, (cell1, cell2)) ∈ S2 and joint action α.

• For any environment state (w1, w2) and joint action α = (a1, a2), we let
δE((w1, w2), α) = (w′

1, w
′
2) where, for 1 ≤ i ≤ 2, we have w′

i = wi+dai∆t
if (wi + dai∆t) ∈ R and w′

i = wi otherwise, and dai is the direction of
movement of the action ai, e.g., dup = (0, 1), and ∆t = 0.5 is the time
step. ■

3.1. Semantics of an NS-CSG

The semantics of an NS-CSG C is a CSG JCK over the product of the
states of the agents and the environment formally defined as follows.
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Definition 7 (Semantics of an NS-CSG). Given an NS-CSG C consist-
ing of two agents and an environment, its semantics is the CSG JCK =
(N,S,A,∆, δ) where:

• S ⊆ S1 × S2 × SE is the set of percept compatible states;

• A = (A1 ∪ {⊥})× (A2 ∪ {⊥});

• ∆(s1, s2, sE) = ∆1(s1) ∪∆2(s2);

• δ : (S×((A1∪{⊥})×(A2∪{⊥})))→ P(S) is the probabilistic transition
function, where for states s = (s1, s2, sE), s′ = (s′1, s

′
2, s

′
E) ∈ S and joint

action α = (a1, a2) ∈ A, if ai ∈ ∆i(si) when ∆i(si) ̸= ∅ and ai = ⊥
otherwise for 1 ≤ i ≤ 2, then δ(s, α) is defined and, if s′i = (loc ′i, per

′
i),

per ′i = obs i(loc
′
1, loc

′
2, s

′
E) for 1 ≤ i ≤ 2 and s′E = δE(sE, α), then

δ(s, α)(s′) = δ1(s1, α)(loc′1)δ2(s2, α)(loc ′2)

and otherwise δ(s, α)(s′) = 0.

Notice that the CSG JCK is over percept compatible states and that, by
definition of obs i for each agent Agi, the underlying transition relation δ is
closed with respect to percept compatible states. Since δE is deterministic
and Loci is a finite set, the set of successors of s under α, denoted Θα

s =
{s′ | δ(s, α)(s′) > 0}, is finite for all s ∈ S and α ∈ A(s). While the
semantics of an NS-CSG is an instance of the general class of uncountable
state space CSGs, its particular structure induced by perception functions
(see Definition 6) will be important in order to establish measurability and
finite representability to allow us to derive our algorithms.

3.2. Zero-sum NS-CSGs

For an NS-CSG C, the objectives we consider are discounted accumulated
rewards, and we assume the first agent tries to maximise the expected value
of this objective and the second tries to minimise it. More precisely, for a
reward structure r = (rA, rS), where rA : (S × A) → R is an action reward
function and rS : S → R is a state reward function, and discount factor
β ∈ (0, 1), the accumulated discounted reward for a path π of JCK over the
infinite-horizon is defined by:

Y (π) =
∑∞

k=0 β
k
(
rA(π(k), π[k]) + rS(π(k))

)
. (1)
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Example 2. Returning to the dynamic vehicle parking model of Example 1,
we suppose the objective for Ag1 is to try and park at its currently preferred
parking spot without crashing into Ag2 and, since we consider zero-sum NS-
CSGs whose objectives must be directly opposing, the objective of Ag2 is to
try to crash into Ag1 and prevent it from parking. We can represent this
scenario using a discounted reward structure, where all action rewards are
zero and for the state rewards we set: there is a negative reward if it is
perceived that Ag1 has yet to reach its current parking spot and the agents
have crashed; a positive reward if it is observed that Ag1 has reached its
parking spot, which is higher if the agents are not perceived to have crashed;
and 0 otherwise.

Formally, for s = (s1, s2, (w1, w2)) where s1 = (loc1, (cell1, cell2))), we
define the state reward function as follows:

rS(s) =


−1000 if cell1 ̸= fmax

R (loc1) and cell1 = cell2
500 if cell1 = fmax

R (loc1) and cell1 = cell2
1000 if cell1 = fmax

R (loc1) and cell1 ̸= cell2
0 otherwise.

For the discount factor, we let β = 0.6. ■

3.3. Strategies of NS-CSGs

Since the state space S is uncountable due to the continuous environment
state space, we follow the approach of [17] and require Borel measurable con-
ditions on the choices that the strategies can make to ensure the measurability
of the induced sets of paths.

The semantics of any NS-CSG will turn out to be an instance of the class
of CSGs from [17], for which stationary strategies achieve optimal values [17,
Theorem 2(ii), Theorem 3], and therefore, to simplify the presentation, we
restrict our attention to stationary strategies and refer to them simply as
strategies. Before we give their formal definition, since we work with real
vector spaces we require the following lemma.

Lemma 1 (Borel spaces). The sets S, Si, SE and Ai for 1 ≤ i ≤ 2 are
Borel spaces.
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Proof. By Theorem 27 [46, Chapter 9.6] and Theorem 12 [46, Chapter 9.4],
S1 and S2 are finite and SE are complete separable metric spaces, and hence
are Borel spaces. Furthermore, we have that S1 × S2 × SE is the Cartesian
product of Borel spaces, and therefore, using Theorem 1.10 [47, Chapter 1],
is also a Borel space. Since we assume obs i is Borel measurable for 1 ≤ i ≤ 2
(see Assumption 1 below), for (loci, per i) ∈ Si and 1 ≤ i ≤ 2, the set:

{((loc1, per 1), (loc2, per 2), sE) ∈ S | obs i(loc1, loc2, sE) = per i for 1 ≤ i ≤ 2}

is a Borel subset of S1×S2×SE. Hence, since S1 and S2 are finite, it follows
that S is a Borel space. Finally, for 1 ≤ i ≤ 2, since Ai is finite it is a Borel
space. □

Definition 8 (Strategy). A (stationary) strategy for Agi of an NS-CSG
C is a stochastic kernel σi : S → P(Ai), i.e., σi ∈ P(Ai | S), such that
σi(Ai(s) | s) = 1 for all s ∈ S. A (strategy) profile σ = (σ1, σ2) is a pair of
strategies for each agent. We denote by Σi the set of all strategies of Agi and
by Σ = Σ1 × Σ2 the set of profiles.

For s ∈ S and 1 ≤ i ≤ 2, we let P(Ai(s)) = {ui ∈ P(Ai) | ui(Ai(s)) = 1}.

3.4. Assumptions on NS-CSGs

Finally, in this section we summarise and motivate the assumptions over
NS-CSGs that are required for the results presented in the remainder of the
paper. First, NS-CSGs are designed to model neuro-symbolic agents, whose
operation depends on particular perception functions, which may result in
imperfect information. However, we assume full observability, i.e., where
agents’ decisions can depend on the full state space. It is straightforward to
extend the semantics above to partially observable CSGs (POSGs) [48, 49]
where, for any state, each agent’s observation function returns the agent’s ob-
servable component of the state, by restricting to observationally-equivalent
strategies, but this comes at a significant increase in complexity. Instead,
we focus on full observability, which can serve as a vehicle to solve the more
complex imperfect information game via an appropriate adaptation of the
belief-space construction.

Regarding the structure of NS-CSGs, we make the following assumptions
to ensure determinacy and that our finite abstract representations of value
functions and strategies are closed under both value and policy iteration.
Recall that the BFCP, bimeasurable function, B-PWC function and BFCP
intertible function are defined in Section 2.
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Assumption 1. For any NS-CSG C and reward structure r = (rA, rS):

(i) δE( · , α) : SE → SE is bimeasurable and BFCP invertible for α ∈ A;

(ii) obs i(loc1, loc2, · ) : SE → Per i is B-PWC for loci ∈ Loci and 1 ≤ i ≤ 2;

(iii) rA( · , α), rS : S → R are B-PWC for α ∈ A.

The above assumptions for NS-CSGs differ from existing stochastic games
with Borel state spaces [17, 24, 25] in that the states have both discrete and
continuous elements, while the perception and reward functions are required
to be B-PWC. The B-PWC requirements in Assumption 1(ii) and (iii) and
BFCP invertibility in Assumption 1(i) are needed to achieve B-PWC closure,
and hence ensure finitely many abstract state regions at each transition (and
are used in Lemmas 2, 3, 4 and Theorem 2 below). The B-PWC closure in
Theorem 2 allows us to derive a VI algorithm in Section 6 that employs B-
PWC functions, whose convergence follows from the classical Banach’s fixed
point theorem. Bimeasurability in Assumption 1(i) enables the application
of the results in [17] and ensures the existence of the value of an NS-CSG
with respect to a reward structure in Section 5 (and is used in Lemma 4).

In the case that, for each pair of local states of the agents, the perception
function obs i of Agi is implemented via an NN classifier f : SE → P(Peri) (see
Remark 1), we have that, since f is continuous, it is also Borel measurable.

Example 3. Returning to Example 1, we now give two possible implemen-
tations for the classifier fR : R → P(Grid) used in the example, where
Grid = {(i, j) | i, j ∈ {1, 2, 3, 4}}. It takes the coordinates of a vehicle (or
parking spot) as input and outputs a probability distribution over 16 abstract
grid cells. This leads to two different implementations for perception func-
tions for the agents, which we recall are defined by obs i(loc1, loc2, (w1, w2)) =
(fmax

R (w1), f
max
R (w2)) for loc1 ∈ Loc1, loc2 ∈ Loc2, (w1, w2) ∈ R × R and

1 ≤ i ≤ 2.
The first implementation of the classifier fR is via the linear regression

model for multi-class classification, i.e., fmax
R (x, y) = (⌈x⌉, ⌈y⌉) for all (x, y) ∈

R, where ⌈·⌉ is the ceiling function, see Fig. 2 (centre).
The second implementation of the classifier fR is a feed-forward NN clas-

sifier, which has one hidden ReLU layer with 10 neurons, and is trained from
labelled data. We break ties using a total order over the abstract grid cells,
which is Borel measurable. ■.
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We remark that, while Assumption 1(ii) allows a wide range of perception
functions, our main focus is on NNs. We discuss the case when perception
functions are instantiated using ReLU neural networks in Section 6.

4. Game structures for NS-CSGs

In this section, we present three finite abstract representations for the
continuous state space of an NS-CSG to enable value and policy iterations.
These take the form of finite decompositions of the environment, represented
as BFCPs, with respect to the perception, reward and transition functions
of the NS-CSG. Recall, from Section 2, that a BFCP of a set is a finite
family of disjoint Borel sets (regions) that cover the set. Using Assump-
tion 1, we construct these BFCPs over the state space such that the states
in each region are equivalent with respect to either the perception, reward
or transition function, e.g., for any region of the perception BFCP all states
in the region yield the same percept. These BFCPs allow us to abstract an
uncountable state space into a finite set of regions when performing our VI
and PI algorithms. In particular, Sections 6 and 7 demonstrate how these
different BFCPs can be used, together with intersection, image and preimage
operations, to iteratively refine the abstract, symbolic representations of the
environment while maintaining the necessary conditions for correctness and
convergence of value functions.

For the remainder of this section we fix an NS-CSG C and reward struc-
ture r.

Lemma 2 (Perception BFCP). There exists a smallest BFCP of S, called
the perception BFCP, denoted ΦP , such that, for any ϕ ∈ ΦP , all states in ϕ
have the same agents’ states, i.e., if (s1, s2, sE), (s′1, s

′
2, s

′
E) ∈ ϕ, then si = s′i

for 1 ≤ i ≤ 2.

Proof. For 1 ≤ i ≤ 2, since obs i is PWC and Si is finite, using Definition 6
we have that, for any si = (loci, per i) ∈ Si, the set Ss1,s2

E = {sE ∈ SE |
obs i(loc1, loc2, sE) = per i ∧ 1 ≤ i ≤ 2} can be expressed as a number of
disjoint regions of SE and we let Φs1,s2

E be such a representation that minimises
the number of the regions. It then follows that ΦP := {{(s1, s2, sE) | sE ∈
ϕE} | ϕE ∈ Φs1,s2

E ∧ s1 ∈ S1 ∧ s2 ∈ S2} is a smallest FCP of S such that all
states in any region have the same agents’ states.

Next we prove that ΦP is a BFCP of S. We consider a region ϕ ∈ ΦP .
Thus all states in ϕ have the same agents’ states, say s1 = (loc1, per 1) and
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s2 = (loc2, per 2). According to Assumption 1, obs i(loc1, loc2, · ) : SE → Per i
for 1 ≤ i ≤ 2 is B-PWC. The preimage of (per1, per2) under obs1 and obs2
over S given s1 = (loc1, per 1) and s2 = (loc2, per 2), denoted obs−1(per1, per2 |
s1, s2), equals:

{(s1, s2, sE) ∈ S | obs1(loc1, loc2, sE) = per 1 ∧ obs2(loc1, loc2, sE) = per 2}

and therefore is a Borel set of S. Since ΦP is the smallest such partition of
S, the regions in ΦP , which lead to the percept (per 1, per 2) given s1 and s2,
have no common boundary. Thus, obs−1(per1, per2 | s1, s2) is a finite union
of disjoint regions in ΦP , which include the agents’ states s1 and s2. Thus,
each such region is a Borel set of S, meaning that ϕ ∈ B(S). Thus, ΦP is a
BFCP of S. □

Lemma 3 (Reward BFCP). For each α ∈ A, there exists a smallest BFCP
of S, called the reward BFCP of S under α and denoted Φα

R, such that for any
ϕ ∈ Φα

R all states in ϕ have the same state reward and action reward when α
is chosen, i.e., if s, s′ ∈ ϕ, then rA(s, α) = rA(s′, α) and rS(s) = rS(s′).

Proof. For any α ∈ A, since rA( · , α) + rS( · ) : S → R is B-PWC by
Assumption 1, we can show that Φα

R is a BFCP of S by a similar argument
to that in the proof of Lemma 2. □

Using Assumption 1, we show that, given any joint action α, the perception
BFCP ΦP can be refined into a new BFCP, such that the states in each region
of this BFCP all reach, under the transition function of JCK, the same regions
of the image of ΦP under the transition function. This result, referred to as
reachability consistency , will be used for the existence of the value of JCK and
in our algorithms.

Lemma 4 (Preimage BFCP). For each α ∈ A, there exists a refinement
BFCP of ΦP , denoted Φα

P , such that, for each ϕ ∈ Φα
P and ϕ′ ∈ ΦP , if δ(s, α)

is defined for s ∈ ϕ, then there exists pα(ϕ, ϕ′) ∈ [0, 1] such that:

1. either δ(s, α)(s′) = pα(ϕ, ϕ′) = 0 for all s ∈ ϕ and s′ ∈ ϕ′;

2. or (i) if s, s̃ ∈ ϕ, then there exist unique states s′, s̃′ ∈ S such that
{s′} = Θα

s ∩ϕ′, {s̃′} = Θα
s̃ ∩ϕ′ and δ(s, α)(s′) = δ(s̃, α)(s̃′) = pα(ϕ, ϕ′) >

0, and (ii) there exists a bimeasurable, BFCP invertible function qα :
ϕ → ϕ′ such that {qα(s)} = Θα

s ∩ ϕ′ and δ(s, α)(qα(s)) = pα(ϕ, ϕ′) for
all s ∈ ϕ.
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Proof. We compute the refinement Φα
P of ΦP by dividing each ϕ of ΦP such

that the required (reachability consistency) property holds. Now, for any
α ∈ A and ϕ ∈ ΦP , by Lemma 2, all states in ϕ have the same agents’ states,
say s1 and s2. To aid the proof, for each ϕ′ ∈ ΦP , we will construct a BFCP
of ϕ based on ϕ′, denoted Φ′(ϕ, ϕ′), such that the reachability consistency to
the region ϕ′ holds in each region of Φ′(ϕ, ϕ′). If δ(s, α) is not defined for
s ∈ ϕ, we do not divide ϕ and let Φ′(ϕ, ϕ′) = {ϕ} for all ϕ′ ∈ ΦP and the
reachability consistency to ϕ′ is preserved.

It remains to consider the case when δ(s, α) is defined. Considering any
ϕ′ ∈ ΦP , by Lemma 2 there exists agent states s′1 = (loc ′1, per

′
1) and s′2 =

(loc′2, per
′
2) such that if (s′′1, s

′′
2, s

′′
E) ∈ ϕ′ then s′′1 = s′1 and s′′2 = s′2. We have

the following two cases.

• If {(s′1, s′2, δE(sE, α)) ∈ S | (s1, s2, sE) ∈ ϕ}∩ϕ′ = ∅, δ1(s1, α)(loc′1) = 0
or δ2(s2, α)(loc ′2) = 0, then we do not divide ϕ and let Φ′(ϕ, ϕ′) = {ϕ}
and we have δ(s, α)(s′) = pα(ϕ, ϕ′) = 0 for all s ∈ ϕ and s′ ∈ ϕ′.

• If (∪s∈ϕΘα
s )∩ ϕ′ is non-empty, then since δE( · , α) : SE → SE is BFCP

invertible using Assumption 1 and ϕ′ is a Borel measurable region, there
exists a BFCP Φ′(ϕ, ϕ′) of ϕ such that for each ϕ1 ∈ Φ′(ϕ, ϕ′):

– either δ(s, α)(s′) = pα(ϕ1, ϕ
′) = 0 for all s ∈ ϕ1 and s′ ∈ ϕ′;

– or for s, s̃ ∈ ϕ1 there exist unique states s′, s̃′ ∈ S such that s′ =
Θα

s ∩ϕ′, s̃′ = Θα
s̃ ∩ϕ′ and δ(s, α)(s′) = δ(s̃, α)(s̃′) = pα(ϕ1, ϕ

′) > 0.

It remains to show that the bimeasurable, BFCP invertible function qα
of 2.(ii) exists, which follows from the the fact that δE( · , α) : SE → SE

is bimeasurable and BFCP invertible.

Finally, we divide ϕ into a BFCP
∑

ϕ′∈ΦP
Φ′(ϕ, ϕ′), and therefore each region

of this BFCP has the required reachability consistency. □

Example 4. Returning to Example 1, we now give the perception BFCPs
for the two implementations of the classifier fR proposed in Example 3. In
each case the perception BFCP is of the form ΦP = Loc1×Loc2×ΦE, where
ΦE is a BFCP for the environment state space and the perception BFCP is
also the reward BCFP Φα

R for α ∈ A. In this example, all pairs of local states
correspond to the same classifier for both agents.
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Figure 3: Perception BFCP of the environment states ΦE . Left: linear regression model.
Right: feed-forward NN model, where each subfigure, computed as an exact preimage of
the feed-forward NN classifier in Example 3 using [42], depicts the boundaries of the 16
abstract grid cells learnt by the classifier. Each abstract grid cell in the right figure is a
union of polytopes and is indicated by a different colour.

For the first implementation of fR, which employs a linear regression
model, the BFCP ΦE for the environment state space is given by:{

{(x, y) ∈ R | (i < x ≤ i + 1) ∧ (j < y ≤ j + 1)} | i, j ∈ {0, 1, 2, 3}
}2

as shown in Fig. 3 (left). For the second implementation, the BFCP ΦE

can be found by computing the (exact) preimage of the feed-forward NN
classifier of Example 3 using [42], and is shown in Fig. 3 (right). Since an
environment state represents the position of each agent, in each case the
perception BFCP is two copies, one for each agent, of how the corresponding
NN classifier divides the bounded area into 16 abstract grid cells. Each
abstract grid cell in Fig. 3 (right) is a union of polytopes and is indicated by
a different colour. ■

5. Values of zero-sum NS-CSGs

We now proceed by establishing the value of an NS-CSG C with respect to
a discounted accummulated reward objective Y , i.e., for a reward structure
r and discount factor β. We prove the existence of this value, which is a
fixed point of a minimax operator. Using Banach’s fixed-point theorem, a
sequence of bounded, Borel measurable functions converging to this value is
constructed.

Given a state s and (strategy) profile σ = (σ1, σ2) of JCK, we denote by
Eσ
s [Y ] the expected value of the objective Y when starting from state s, given

by (1). The functions V , V : S → R, where s ∈ S:

V (s) := supσ1∈Σ1
infσ2∈Σ2 Eσ1,σ2

s [Y ]

25



V (s) := infσ2∈Σ2 supσ1∈Σ1
Eσ1,σ2
s [Y ]

are called the lower value and upper value of Y , respectively.

Definition 9 (Value function). If V (s) = V (s) for all s ∈ S, then JCK is
determined with respect to the objective Y and the common function is called
the value of JCK, denoted by V ⋆, with respect to Y .

We next introduce the spaces of feasible state-action pairs and state-action-
distribution tuples, and present properties of these spaces. More precisely,
for 1 ≤ i ≤ 2, we let:

Ξi := {(s, ai) ∈ S×Ai | ai ∈ Ai(s)}
Λi := {(s, ui) ∈ S×P(Ai) | ui ∈ P(Ai(s))}

Ξ12 := {(s, (a1, a2)) ∈ S×(A1×A2) | a1 ∈ A1(s) ∧ a2 ∈ A2(s)}
Λ12 := {(s, (u1, u2)) ∈ S×(P(A1)×P(A2)) | u1 ∈ P(A1(s)) ∧ u2 ∈ P(A2(s))} .

Lemma 5 (Borel sets). For 1 ≤ i ≤ 2, the sets Ξi and Λi are Borel sets
of S×Ai and S×P(Ai), respectively. Furthermore, the sets Ξ12 and Λ12 are
Borel sets of S × (A1 × A2) and S × (P(A1)× P(A2)), respectively.

Proof. We first consider Ξi and Λi for i = 1 (the case for i = 2 follows
similarly). Since A1 is finite, the sets Ξ1 and Λ1 can be rearranged as:

Ξ1 =
⋃

Â1⊆A1

(
{s1 | ∆1(s1) = Â1} × S2 × SE × Â1

)
∩ (S × A1)

Λ1 =
⋃

Â1⊆A1

(
{s1 | ∆1(s1) = Â1} × S2 × SE × P(Â1)

)
∩ (S × P(A1)) .

Since Â1 is a subset of the finite set A1, the sets Â1 and P(Â1) are Borel
sets of A1 and P(A1), respectively. Since S1 is a finite set, for any Â1 ⊆ A1,
the set {s1 | ∆1(s1) = Â1} is a Borel set of S1. Since S2 and SE are both
Borel sets by Lemma 1, the result follows by Theorem 1.10 [47, Chapter 1].
Using similar reasoning, it follows that Ξ12 and Λ12 are also Borel sets of the
respective spaces. □

Proposition 1 (Stochastic kernel transition function). The probabilis-
tic transition function δ of JCK is a stochastic kernel.
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Proof. From Definition 7, it follows that, for any (s, α) ∈ Ξ12, we have
δ(s, α)( · ) ∈ P(S). We show that, if B ∈ B(S), then δ( · , · )(B) : (S×A)→ R
is Borel measurable on Ξ12. More precisely, we prove that, for any c ∈ R, the
preimage of the Borel set [c,∞) of R under δ( · , · )(B) which is given by:

δ−1([c,∞))(B) = {(s, α) ∈ Ξ12 | δ(s, α)(B) ≥ c}

is an element of B(Ξ12). If c > 1, then δ−1([c,∞))(B) = ∅ ∈ B(Ξ12), and if
c ≤ 0, then δ−1([c,∞))(B) = Ξ12 ∈ B(Ξ12).

Therefore, it remains to consider the case when 0 < c ≤ 1. Consider any
α ∈ A and let Φα

P be the refinement of ΦP of Lemma 4. For each ϕ ∈ Φα
P

and ϕ′ ∈ ΦP such that pα(ϕ, ϕ′) > 0, let qα : ϕ → ϕ′ be the associated
bimeasurable, BFCP invertible function from Lemma 4. The image of ϕ
under qα into ϕ′ is given by:

q̂α(ϕ, ϕ′) = {s′ ∈ ϕ′ | s′ = qα(s) ∧ s ∈ ϕ} .

By Lemmas 2 and 4, both ϕ and ϕ′ are Borel sets and qα is bimeasurable,
and therefore q̂α(ϕ, ϕ′) is a Borel set. Next, since qα is Borel measurable, the
preimage of the Borel set q̂α(ϕ, ϕ′) ∩ B under qα over the region ϕ, which is
given by:

q̂−1
α (ϕ, q̂α(ϕ, ϕ′) ∩B) = {s ∈ ϕ | qα(s) ∈ q̂α(ϕ, ϕ′) ∩B}

is a Borel set. By combining this result with Lemma 4, each state in
q̂−1
α (ϕ, q̂α(ϕ, ϕ′)∩B) under α transitions to B with probability pα(ϕ, ϕ′). We

denote the set of all transition probabilities from ϕ under α by Pα(ϕ) =
{pα(ϕ, ϕ′) > 0 | ϕ′ ∈ ΦP}. Then, the collection of the subsets of Pα(ϕ) for
which the sum of their elements is greater or equal to c is given by:

P≥c
α (ϕ) :=

{
P ′ ⊆ Pα(ϕ) |

∑
p′∈P ′p

′ ≥ c
}

and is finite. Now for each set P ′ ∈ P≥c
α (ϕ), the states in the set:

Oα(ϕ, P ′) =
⋂

pα(ϕ,ϕ′)∈P ′ q̂
−1
α (ϕ, q̂α(ϕ, ϕ′) ∩B)

transition to B under α with probability greater or equal to c and Oα(ϕ, P ′)
is a Borel set as P ′ is a finite set. Thus, the states in ϕ reaching B under α
with probability greater or equal to c are given by:

Oα(ϕ) =
⋃

P ′∈P≥c
α (ϕ)

Oα(ϕ, P ′)
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which is a Borel set since P≥c
α (ϕ) is a finite set. Finally, we have:

δ−1([c,∞))(B) =
⋃

α∈A
⋃

ϕ∈Φα
P
{(s, α) ∈ Ξ12 | s ∈ Oα(ϕ)}

and therefore, combining Lemmas 4 and 5, it follows that δ−1([c,∞))(B) ∈
B(Ξ12) as required. □

Before presenting properties of the value function, we introduce the following
operator based on the classical Bellman equation. Recall that rA and rS are
the action and state reward functions defined in Section 3.2, respectively, and
δ is the transition function of the NS-CSG (Definition 7). Further, we require
that the set of successors of s under α, denoted Θα

s = {s′ | δ(s, α)(s′) > 0},
is finite for all s ∈ S and α ∈ A(s) (see Section 3.1).

Definition 10 (Minimax operator). Given a bounded, Borel measurable
real-valued function V ∈ F(S), the minimax operator T : F(S) → F(S) is
defined, for any s ∈ S, by:

[TV ](s) := max
u1∈P(A1(s))

min
u2∈P(A2(s))

∑
a1∈A1(s)

∑
a2∈A2(s)

Q(s, (a1, a2), V )u1(a1)u2(a2)

where for any α ∈ A(s):

Q(s, α, V ) := rA(s, α) + rS(s) + β
∑

s′∈Θα
s
δ(s, α)(s′)V (s′) .

We use the standard notation [TV ] for T (V ) in the remainder of the paper
to simplify the presentation.

Theorem 1 (Value function). If C is an NS-CSG and Y is a discounted
zero-sum objective, then

(i) JCK is determined with respected to Y , i.e., V ⋆ exists;

(ii) V ⋆ is the unique fixed point of the operator T ;

(iii) V ⋆ is a bounded, Borel measurable function.

Proof. The proof follows through showing that JCK is an instance of a zero-
sum stochastic game that satisfies the conditions of the Borel model presented
in [17].

From Lemma 1, we have that A1, A2 and S are complete and separable
metric spaces. By Lemma 5, the spaces Ξi and Λi are Borel sets of S×Ai and
S×P(Ai) for 1 ≤ i ≤ 2, respectively. By Proposition 1, δ is a Borel stochastic
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kernel. Furthermore, from Assumption 1 we have that rA + rS : (S×A)→ R
is bounded, and therefore it follows that JCK with respect to the zero-sum
objective Y is an instance of a zero-sum stochastic game with Borel model and
discounted payoffs introduced in [17]. Hence, (i) follows from [17, Theorems
2 and 3], and (ii) from the discounted case of [17, Theorem 1]. Finally, for
(iii), since β ∈ (0, 1), we have that V ⋆ is bounded, and therefore V ⋆ is Borel
measurable using [17, Lemma 3]. □

The following guarantees that value iteration (VI) converges to the value
function.

Proposition 2 (Convergence). For any V 0 ∈ F(S), the sequence (V t)t∈N,
where V t+1 = [TV t], converges to V ⋆. Moreover, each V t is bounded, Borel
measurable.

Proof. Since rA + rS : (S×A)→ R is bounded, using [17, Lemma 2] we have
that, if V t is bounded, Borel measurable, then [TV t] is also bounded. The
result then follows from the fact that V ⋆(s) = limt→∞ V t(s) for all s ∈ S if
V t+1 = [TV t] for all t ∈ N [17]. □

6. Value iteration

Despite the convergence result of Proposition 2, in practice there may not
exist finite representations of general bounded Borel measurable functions
(V t)t∈N due to the uncountable state space. We now show how VI can be
used to approximate the values of JCK, based on a sequence of Borel piecewise
constant (B-PWC) functions (Section 2).

6.1. B-PWC closure and convergence

For NS-CSGs, we demonstrate that, under Assumption 1, a B-PWC rep-
resentation of value functions is closed under the minimax operator and en-
sures convergence of value iteration.

Theorem 2 (B-PWC closure and convergence). If V ∈ F(S) and B-
PWC, then so is Q( · , α, V ) and [TV ] for α ∈ A. If V 0 ∈ F(S) and B-PWC,
the sequence (V t)t∈N such that V t+1 = [TV t] converges to V ⋆, and each V t

is B-PWC.

29



Proof. Considering any B-PWC function V ∈ F(S) and joint action α ∈ A,
since rA( · , α)+rS( · ) is B-PWC by Assumption 1, the fact that Q( · , α, V ) is
B-PWC follows if, by Definition 10, we can show that the function Q( · , α, V )
where:

Q( · , α, V ) :=
∑

s′∈Θα
·
δ( · , α)(s′)V (s′)

is B-PWC. Boundedness follows because V is bounded. The indicator func-
tion of a subset S ′ ⊆ S is the function χS′ : S → R such that χS′(s) = 1 if
s ∈ S ′ and 0 otherwise. Now χS′ is Borel measurable if and only if S ′ is a
Borel set of S [46]. For clarity, we use qα(s;ϕ, ϕ′) to refer to qα from Lemma 4
for α ∈ A, s ∈ ϕ, ϕ ∈ Φα

P and ϕ′ ∈ ΦP (where again Φα
P is from Lemma 4).

For any s ∈ S such that δ(s, α) is defined, we have:

Q(s, α, V ) =
∑

ϕ∈Φα
P
χϕ(s)

∑
s′∈Θα

s
δ(s, α)(s′)V (s′)

=
∑

ϕ∈Φα
P
χϕ(s)

∑
ϕ′∈ΦP

pα(ϕ, ϕ′)V (qα(s;ϕ, ϕ′)) by Lemma 4

=
∑

ϕ∈Φα
P

∑
ϕ′∈ΦP

pα(ϕ, ϕ′)χϕ(s)V (qα(s;ϕ, ϕ′)) rearranging.

Since ϕ is a Borel set of S, we have that χϕ is Borel measurable. Next, we
show that V (qα( · ;ϕ, ϕ′)) is Borel measurable on ϕ. Let ΦV be a constant-
BFCP of S for V . Given c ∈ R, we denote by Φ≥c

V the set of regions in ΦV

on which V ≥ c holds. The preimage of [c,∞) under V (qα( · ;ϕ, ϕ′)) defined
on ϕ is given by:

V −1(qα([c,∞);ϕ, ϕ′)) = {s ∈ ϕ | V (qα(s;ϕ, ϕ′)) ≥ c}
=

⋃
ϕV ∈Φ≥c

V
{s ∈ ϕ | qα(s;ϕ, ϕ′) ∈ ϕV } .

Since qα(s;ϕ, ϕ′) is Borel measurable in s ∈ ϕ (see Lemma 4) and ϕV is a
Borel set of S, then {s ∈ ϕ | qα(s;ϕ, ϕ′) ∈ ϕV } is a Borel set of ϕ. Since
V −1(qα([c,∞);ϕ, ϕ′)) is also a Borel set of ϕ by noting that Φ≥c

V is finite, it
follows that V (qα( · ;ϕ, ϕ′)) is Borel measurable on ϕ. Therefore Q( · , α, V )
is Borel measurable.

Next, since qα( · ;ϕ, ϕ′) is BFCP invertible on ϕ by Lemma 4, there exists
a BFCP Φq of ϕ such that all states in each region of Φq are mapped into
the same region of ΦV under qα( · ;ϕ, ϕ′). Following this, V (qα( · ;ϕ, ϕ′)) is
constant on each region of Φq. Therefore, using the fact that χϕ is PWC, it
follows that Q( · , α, V ) is PWC, which completes the proof that Q( · , α, V )
is B-PWC.

From Proposition 2 we have that [TV ] is bounded, Borel measurable.
Since Q( · , α, V ) is PWC for any joint action α ∈ A, A(s) is PWC and

30



Algorithm 1 B-PWC VI
1: Input: NS-CSG C, perception FCP ΦP , reward FCPs (Φα

R)α∈A, error ε
2: Output: Approximate value function V
3: Initialize (ΦV 0 , V 0)
4: ε̄← 2ε, t← 0
5: while ε̄ > ε do
6: ΦV t+1 ← Preimage BFCP(ΦV t ,ΦP , (Φ

α
R)α∈A) (Algorithm 2)

7: for ϕ ∈ ΦV t+1 do
8: Take one state s ∈ ϕ, V t+1

ϕ ← [TV t](s)

9: ε̄← Dist(V t+1, V t)
10: t← t + 1

11: return V ← V t

A is finite, it follows that [TV ] is PWC using the fact that the value of a
zero-sum normal-formal game induced at every s ∈ S is unique. Thus, [TV ]
is B-PWC. The remainder of the proof follows directly from Banach’s fixed
point theorem and the fact we have proved that, if V ∈ F(S) and B-PWC,
so is [TV ]. □

6.2. B-PWC VI algorithm

We use the closure property of B-PWC value functions under the minimax
operator from Theorem 2 to iteratively construct a sequence (V t)t∈N of such
functions to approximate V ⋆ to within a convergence guarantee. Algorithm 1
presents our B-PWC VI scheme, where the BFCP of the B-PWC value func-
tion at each iteration is refined (line 6) and subsequently the B-PWC value
function is updated via minimax computations (line 8) for a state sampled
from each of its regions.

Initialization. The function V 0 is initialised as a 0-valued B-PWC function
defined over the BFCP ΦV 0 = ΦP +

∑
α∈A Φα

R of S, i.e., V 0
ϕ = 0 for ϕ ∈ ΦV 0 .

The algorithm. The steps of our B-PWC VI algorithm are illustrated in
Fig. 4. These steps use Preimage BFCP(ΦV t ,ΦP , (Φ

α
R)α∈A), see Algorithm 2,

to compute a refinement of ΦP +
∑

α∈A Φα
R that is a preimage BFCP of ΦV t

for δ. Then, in order to compute the value V t+1
ϕ over each region ϕ ∈ Φ,

we take one state s ∈ ϕ and then find the value of a zero-sum normal form
game [50] at s induced by Definition 10.

As a convergence criterion for B-PWC VI in Algorithm 1, we detect when
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Algorithm 2 BFCP iteration for B-PWC VI
1: procedure Preimage BFCP(Φ, ΦP , (Φα

R)α∈A)
2: Φpre ← ∅
3: for ϕ ∈ ΦP +

∑
α∈A Φα

R do
4: Φϕ

pre ← ∅
5: for α ∈ A, ϕ′ ∈ {ϕ′ ∈ Φ | (∪s∈ϕΘα

s ) ∩ ϕ′ ̸= ∅} do
6: Φϕ

pre ← Φϕ
pre ∪

{
{s ∈ ϕ | Θα

s ∩ ϕ′ ̸= ∅}
}

7: Φpre ← Φpre ∪ {ϕ1 ∈ Intersect(ϕ,Φϕ
pre)}

8: return Φpre

(ΦV t , V t) ΦV t+1 (ΦV t+1 , V t+1)

(a) (b)

Figure 4: B-PWC VI in Algorithm 1. (a) Find new BFCP ΦV t+1 : refine ΦP +
∑

α∈A Φα
R

to be a pre-image BFCP of ΦV t for δ; (b) compute a value for each ϕ ∈ ΦV t+1 : take one
state s ∈ ϕ and compute V t+1 by assigning to each region ϕ the value [TV t](s).

the difference between successive value approximations falls below a threshold
ε (as usual for VI, this does not guarantee an ε-optimal solution). The
function Dist(V t+1, V t) computes the difference between V t+1 and V t, which
may have different regions due to the possible inconsistency between ΦV t+1

and ΦV t . An intuitive method is to evaluate V t+1 and V t at a finite set of
points, and then compute the maximum difference. In the usual manner for
VI, an approximately optimal strategy can be extracted from the final step
of the computation.

Algorithm 2 requires region-wise computations involving the image and
preimage of a region, region intersection and the sum of BFCPs. In par-
ticular, Intersect(ϕ,Φϕ

pre) is the refinement of ϕ obtained by computing all
pairwise intersections of ϕ with regions in Φϕ

pre and, by construction, is a
preimage BFCP of Φ for δ over ϕ. The following corollary then follows from
Lemma 4 and Theorem 2.

Corollary 1 (BFCP iteration for B-PWC VI). In Algorithm 2, Φpre is
a refinement of ΦP +

∑
α∈A Φα

R and is a preimage BFCP of Φ for δ.
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Figure 5: Illustration of the region refinement process.

Example 5. Returning to Example 1, in Fig. 5 we illustrate the refinement
process for a region in the perception BFCP when performing Algorithm 2.
We focus on the perception function that is implemented via the linear re-
gression model given in Example 3. The preimage BFCP is constructed as
described in Lemma 4 and Corollary 1 for the case Φ = ΦP . For simplicity,
here we only consider actions and coordinates of Ag1.

Fig. 5 demonstrates how the grey region in the initial BFCP in the top
left grid is subdivided when considering each action of Ag1. In general, when
subdividing a region, we also have to take into account the reward BFCP as
indicated in Algorithms 1 and 2. The shaded squares (diagonal lines) in the
top centre and top right grids are the images of the initial grey region under
the actions up and down, respectively. Based on their intersections and the
corresponding preimages, the grey region in the top left grid is subdivided
into green and purple subregions in the bottom left grid such that all points
in each subregion lead to the same new percepts under both actions, up and
down. The bottom right grid then shows the subdivision of the grey region
in the top left grid after considering all actions.

Polytope regions. Our B-PWC VI algorithm assumes that each region in
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a BFCP is finitely representable. We now briefly discuss the use of BFCPs
defined by polytopes, which suffice for a symbolic representation of percep-
tion BCFPs of ReLU NNs (discussed below). The focus is the region-based
computations required by Algorithm 2. A polytope ϕ ⊆ Rm is an intersection
of ℓ halfspaces {x ∈ Rm | gk(x) ≥ 0 for 1 ≤ k ≤ ℓ}, where gk(x) = W⊤

k x + bk
is a linear function, i.e., Wk ∈ Rm and bk ∈ R, for 1 ≤ k ≤ ℓ. If ϕ1 and ϕ2 are
polytopes, represented by {(Wk, bk)}ℓ′k=1 and {(Wk, bk)}ℓk=ℓ′+1, respectively,
then the intersection ϕ1 ∩ ϕ2, is the intersection of ℓ halfspaces and can be
represented as {(Wk, bk)}ℓk=1. Therefore, the sum Φ1 + Φ2 of two BFCPs Φ1

and Φ2 can be computed by considering the intersection ϕ1∩ϕ2 of all pairwise
combinations of regions ϕ1 ∈ Φ1 and ϕ2 ∈ Φ2.

The image of a polytope ϕ = {x ∈ Rm | gk(x) ≥ 0 for 1 ≤ k ≤ ℓ} under a
linear function f : Rm → Rm, where f(x) = Dx+b, D ∈ Rm×m is non-singular
and b ∈ Rm, is the polytope f(ϕ) = {x ∈ Rm | W⊤

k D−1x + bk −W⊤
k D−1b ≥

0 for 1 ≤ k ≤ ℓ} with the representation {(D−⊤Wk, bk−W⊤
k D−1b)}ℓk=1. The

preimage of ϕ under f is the polytope f−1(ϕ) = {x ∈ Rm | W⊤
k Dx + bk +

W⊤
k b ≥ 0 for 1 ≤ k ≤ ℓ} with the representation {(D⊤Wk, bk + W⊤

k b)}ℓk=1.
Checking the feasibility of a set constrained by a set of linear inequalities can
be solved by a linear program solver [51].

ReLU networks. If each perception function obsi is implemented via a
ReLU NN classifier, where the activation function is B-PWL, then the preim-
ages of the ReLU NN for each percept [42] have linear boundaries, and there-
fore all regions in the corresponding perception BFCP ΦP can be (symbol-
ically) represented by polytopes (see Example 4). If there exist polytope
constant-BFCPs for B-PWC rA( · , α) and rS for all α ∈ A, then all regions
in Φα

R for α ∈ A are polytopes. If δE( · , α) is piecewise linear and invertible
and ϕ′ is a polytope (line 5 in Algorithm 2), then {s ∈ ϕ | Θα

s ∩ ϕ′ ̸= ∅}
is a polytope. Therefore, each region in Φpre is a polytope after every iter-
ation and the operations over polytopes, including intersections, image and
preimage computations, directly follow from the computation above.

Example 6. We now return to the NS-CSG model, presented in Example 1,
of a dynamic vehicle parking problem with the perception functions imple-
mented via the linear regression model given in Example 3. To demonstrate
the practicality of our approach we synthesise strategies using a prototype
Python implementation of the B-PWC VI algorithm.

The implementation uses a polyhedral representation of regions and the
values of the zero-sum normal-form games involved in the minimax operator
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Figure 6: Strategy synthesis for Example 6. Value function (left) and optimal strategy
(right) over different coordinates of Ag1 for a fixed local state of Ag1 (red square) and a
fixed coordinate of Ag2 (purple triangle).

at step 8 of Algorithm 1 are found by solving the corresponding linear pro-
gram [50] using the SciPy library [51]. We have partitioned the state space
of the game into two sets corresponding to the two possible local states of
Ag1. The B-PWC VI algorithm converges after 46 iterations when ε = 10−6

and takes 3, 825s to complete. For each set in the partition of the state
space, the BFCP of this set converges to the product of two 8 × 8 grids.
For the currently preferred parking spot of Ag1 (red square) and coordinate
of Ag2 (purple triangle), the value function with respect to the coordinate
of Ag1 is presented in Fig. 6 (left) and shows that, the closer Ag1 is to its
preferred parking spot, the higher the (approximate) optimal value. The
lightest-colour class is caused by an immediate crash, and its position follows
from the observation function.

An (approximately) optimal strategy for Ag1 is presented in Fig. 6 (right),
where the colour intensity of an arrow is proportional to the probability of
moving in that direction and the rotating arrow represents the parking action.
We see that there are several choices that may not at first appear intuitive.
As an example, Ag1 moves left when in cell [1.0, 1.5] × [3.5, 4.0] (top left),
which is away from its current chosen parking spot. However, since Ag2 is
closer to its current parking spot, keeping away from this parking spot will
avoid a crash with Ag2. In addition, under Ag1’s transition function, the
chosen parking spot will change with probability 0.5 at each step, so with
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high probability Ag1 will be able to park before Ag2 can reach it and a crash
can occur. ■

7. Policy iteration

It is known that, for MDPs, PI algorithms generally converge faster than
VI algorithms, since policy improvement can jump over policies directly [52].
Motived by this fact, in this section we show how PI can be used to approx-
imate the values and optimal strategies of an NS-CSG C with respect to a
discounted accumulated reward objective Y . Our algorithm takes ideas from
recent work [18], which proposed a new PI method to solve zero-sum stochas-
tic games with finite state spaces, and is the first PI algorithm for CSGs with
Borel state spaces and with a convergence guarantee. Our PI algorithm en-
sures that the strategies and value functions generated during each iteration
never leave a finitely representable class of functions. In addition, when com-
puting values of CSGs, efficiencies are gained over alternative algorithms as
there is no need to solve normal-form games, which is required by our B-
PWC VI and Pollatschek-Avi-Itzhak’s PI algorithm [27], nor to solve MDPs,
which adds complexity to Hoffman-Karp’s PI algorithm [26]. This results in
cheaper computations and faster convergence over these alternatives, as for
PI over VI for MDPs.

7.1. Operators, functions and solutions

Before presenting the algorithm, the following operators, functions and
solutions are proposed. Let γ ∈ R be a constant such that γ > 1 and
γβ < 1, which will be used to distribute the discount factor β between policy
evaluation and policy improvement of the two agents.

Operators for Max-Min and Min-Max. Before introducing operators for
Max-Min and Min-Max, we require the notion of a stationary Stackelberg
(follower) strategy for Ag2, which is a stochastic kernel σ2 : Λ1 → P(A2),
i.e., σ2 ∈ P(A2 | Λ1) such that σ2(A2(s) | (s, u1)) = 1 for (s, u1) ∈ Λ1.
This strategy is introduced only for the PI algorithm and implies that Ag2
makes decisions conditioned on the current state s and the current choice
of Ag1, i.e. action distribution u1, and thus allows us to split the maximum
and minimum operations of the two agents. We denote by Σ2 the set of all
stationary Stackelberg strategies for Ag2.
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Definition 11 (Operator for the Max-Min value). For strategy σ1 ∈
Σ1 of Ag1 and function V2 ∈ F(Λ1), we define the operator H1

σ1,V2
: F(Λ1)→

F(S) such that for J2 ∈ F(Λ1) and s ∈ S:

[H1
σ1,V2

J2](s) = γ−1 min{J2(s, σ1(s)), V2(s, σ1(s))}
= γ−1 min{J2(s, u1), V2(s, u1)}

where σ1(s) = u1 ∈ P(A1(s)).

Definition 12 (Operator for the Min-Max value). For Stackelberg (fol-
lower) strategy σ2 ∈ Σ2 of Ag2 and function V1 ∈ F(S), we define the operator
H2

σ2,V1
: F(S)→ F(Λ1) such that for J1 ∈ F(S) and (s, u1) ∈ Λ1:

[H2
σ2,V1

J1](s, u1) =
∑

(a1,a2)∈A(s)Q(s, (a1, a2), γ max[J1, V1])u1(a1)σ2(a2|(s, u1))

=
∑

(a1,a2)∈A(s)Q(s, (a1, a2), γ max[J1, V1])u1(a1)u2(a2)

where σ2( · | (s, u1)) = u2 ∈ P(A2(s)).

Unlike the classical PI algorithms by Hoffman and Karp [26] and Pollatschek
and Avi-Itzhak [27], following [18], our PI algorithm separates the policy
evaluation and policy improvement of the maximiser (Ag1) and the minimiser
(Ag2) through the use of the operators of Definition 11 and Definition 12,
respectively. To track the value functions after performing policy evaluation
of Ag1 and Ag2, our PI algorithm introduces value functions J1 and J2. In
addition, the value functions V1 and V2 are introduced to avoid the oscillatory
behavior of the Pollatschek and Avi-Itzhak PI algorithm [27], thus ensuring
convergence, and are updated only during policy improvement. The role of γ
is to split the discount factor β such that all the operators corresponding to
policy evaluation and policy improvement of the two agents are contraction
mappings, which then ensures convergence.

Two function representations. We next define two classes of functions,
which play a key role in characterizing the functions and strategies generated
during each iteration of our PI algorithm.

Definition 13 (CON-PWL Borel measurable function). A function f ∈
F(Λ1) is a constant-piecewise-linear (CON-PWL) Borel measurable function
if there exists a BFCP Φ of S such that, for each ϕ ∈ Φ, A1(s) = A1(s

′) for
s, s′ ∈ ϕ, and Φ generates Θ = {θ(ϕ) | ϕ ∈ Φ} where θ(ϕ) = {(s, u1) ∈ Λ1 |
s ∈ ϕ}, a BFCP of Λ1, such that for θ(ϕ) ∈ Θ:
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u1

s

f1(s, u1)

u1

s

f2(s, u1)

Figure 7: Two functions over one region of a BFCP of Λ1. Constant-piecewise-linear
(CON-PWL) Borel measurable function (left): given u1, f1(s, u1) is constant in s, and
given s, f1(s, u1) is B-PWL in u1. Constant-piecewise-constant (CON-PWC) stochastic
kernel (right): given u1, f2(s, u1) is constant in s, and given s, f2(s, u1) is B-PWC in u1.

(i) f( · , u1) : ϕ→ R is constant for u1 ∈ P(A1(s)) where s ∈ ϕ;

(ii) f(s, · ) : P(A1(s))→ R is B-PWL for s ∈ ϕ.

Definition 14 (CON-PWC stochastic kernel). A function f ∈ Σ2 is a
constant-piecewise-constant (CON-PWC) stochastic kernel if there exists a
BFCP Φ of S such that, for each ϕ ∈ Φ, A(s) = A(s′) for s, s′ ∈ ϕ, and Φ
generates Θ = {θ(ϕ) | ϕ ∈ Φ} where θ(ϕ) = {(s, u1) ∈ Λ1 | s ∈ ϕ}, a BFCP
of Λ1, such that for θ(ϕ) ∈ Θ:

(i) f( · , u1) : ϕ→ P(A2(s)) is constant for u1 ∈ P(A1(s)) where s ∈ ϕ;

(ii) f(s, · ) : P(A1(s))→ P(A2(s)) is B-PWC for s ∈ ϕ.

Fig. 7 presents an example of a CON-PWL Borel measurable function and
CON-PWC stochastic kernel over a region. We now show that these two func-
tions can be represented by finite sets of vectors. Each CON-PWL Borel mea-
surable function f can be represented by a finite set of vectors {(Dϕ,ϕ′ , bϕ,ϕ′) ∈
R|A1| × R | ϕ ∈ Φ ∧ ϕ′ ∈ Φ′(ϕ)} such that f(s, u1) = D⊤

ϕ,ϕ′u1 + bϕ,ϕ′ for s ∈ ϕ
and u1 ∈ ϕ′, where Φ is a BFCP of S for f using Definition 13 and Φ′(ϕ) is
a BFCP of {u1 ∈ P(A1) | (s, u1) ∈ θ(ϕ)}, and θ(ϕ) ∈ Θ again using Defini-
tion 13 is such that, over each region ϕ′ ∈ Φ′(ϕ), f(s, u1) is linear in u1 given
s ∈ ϕ. Similarly using Definition 14, each CON-PWC stochastic kernel f can
be represented by a finite set of vectors {Dϕ,ϕ′ ∈ P(A2) | ϕ ∈ Φ∧ϕ′ ∈ Φ′(ϕ)}
such that f(s, u1) = Dϕ,ϕ′ for s ∈ ϕ and u1 ∈ ϕ′, where Φ is a BFCP of S
for f using Definition 14, Φ′(ϕ) is a BFCP of {u1 ∈ P(A1) | (s, u1) ∈ θ(ϕ)},
θ(ϕ) ∈ Θ using Definition 14 is such that, over each region ϕ′ ∈ Φ′(ϕ), f(s, u1)
is constant in u1 given s ∈ ϕ.
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Maximum or minimum solutions. We introduce a criterion for selecting
the maximum or minimum solution over a region, by which the strategies
from policy improvement are finitely representable.

Definition 15 (CON-1 solution). Let f ∈ F(Λ1) be a CON-PWL Borel
measurable function. Using Definition 13 there exists a BFCP Φ of S for f .
Now, for each ϕ ∈ Φ, if there exists uϕ

1 ∈ P(A1(s)) such that:

f(s, uϕ
1) = maxu1∈P(A1(s)) f(s, u1)

for s ∈ ϕ, and σ1 is a strategy of Ag1 such that σ1(s) = uϕ
1 for s ∈ ϕ, then

σ1 is a constant-1 (CON-1) solution of f over ϕ.

Definition 16 (CON-2 solution). Let f ∈ F(Λ12) be a Borel measurable
function. If there exists a BFCP Θ of Λ1 where, for each θ ∈ Θ, A2(s) is
constant for (s, u1) ∈ θ and there exists uθ

2 ∈ P(A2(s)) such that:

f(s, u1, u
θ
2) = minu2∈P(A2(s)) f(s, u1, u2)

for (s, u1) ∈ θ, and σ2 is a Stackelberg strategy for Ag2 such that σ2(s, u1) =
uθ
2 for (s, u1) ∈ θ, then σ2 is a constant-2 (CON-2) solution of f over θ.

7.2. Minimax-action-free PI

We now use the operators for the Max-Min and Min-Max values (Def-
initions 11 and 12) to derive a PI algorithm called Minimax-action-free PI
(Algorithm 3) for strategy synthesis for NS-CSGs with Borel state spaces.
Our algorithm closely follows the PI method of [18] for finite state spaces, but
has to resolve a number of issues due to the uncountability of the underlying
state space and the need to ensure Borel measurability at each iteration. To
overcome these issues we (i) introduce CON-PWL Borel measurable functions
(Definition 13) and CON-PWC Borel measurable strategies (Definition 14)
to ensure measurability and finite representability; (ii) work with CON-1 and
CON-2 solutions (Definition 15 and (Definition 16) for policy improvement
to ensure that the strategies generated are finitely representable and con-
sistent; and (iii) propose a BFCP iteration algorithm (Algorithm 4) and a
BFCP-based computation algorithm (Algorithm 5) to compute a new BFCP
of the state space and the values or strategies over this BFCP. We also pro-
vide a simpler proof than that presented in [18], which does not require the
introduction of any new concepts except those used in the algorithm.
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Algorithm 3 Iteration t of Minimax-action-free PI
1: Input: NS-CSG C, PWC σt

1 ∈ Σ1, CON-PWC σt
2 ∈ Σ2, PWC J t

1, V
t
1 ∈

F(S), CON-PWL J t
2, V

t
2 ∈ F(Λ1)

2: Perform one of the following four iterations.
3: Policy evaluation of Ag1:
4: J t+1

1 ← [H1
σt
1,V

t
2
J t
2] via PE1 , σt+1

1 ← σt
1,

5: V t+1
1 ← V t

1 , σt+1
2 ← σt

2, J
t+1
2 ← J t

2, V
t+1
2 ← V t

2

6: Policy improvement of Ag1 by CON-1 solution:
7: σt+1

1 (s) ∈ argmaxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s),

8: V t+1
1 ← [H1

σt+1
1 ,V t

2

J t
2] via PI1 ,

9: J t+1
1 ← J t

1, σ
t+1
2 ← σt

2, J
t+1
2 ← J t

2, V
t+1
2 ← V t

2

10: Policy evaluation of Ag2:
11: J t+1

2 ← [H2
σt
2,V

t
1
J t
1] via PE2 , σt+1

1 ← σt
1,

12: J t+1
1 ← J t

1, V
t+1
1 ← V t

1 , σt+1
2 ← σt

2, V
t+1
2 ← V t

2

13: Policy improvement of Ag2 by CON-2 solution:
14: σt+1

2 (s, u1) ∈ argminu2∈P(A2(s))[H
2
u2,V t

1
J t
1](s, u1),

15: V t+1
2 ← [H2

σt+1
2 ,V t

1

J t
1] via PI2 ,

16: σt+1
1 ← σt

1, J
t+1
1 ← J t

1, V
t+1
1 ← V t

1 , J t+1
2 ← J t

2

17: t← t + 1

Initialization. The Minimax-action-free PI algorithm is initialized with
strategies σ0

1 and σ0
2 for each player, which are uniform distributions over

available actions/state-action pairs, i.e., σ0
1(s) = 1

|A1(s)| for all s ∈ S and

σ0
2(s, u1) = 1

|A2(s)| for all (s, u1) ∈ Λ1, and four 0-valued functions, J0
1 , V 0

1 ,

J0
2 V 0

2 , i.e., J0
1 (s) = V 0

1 (s) = 0 for all s ∈ S and J0
2 (s, u1) = V 0

2 (s, u1) = 0
for all (s, u1) ∈ Λ1, and Algorithm 4 gives one BFCP for each strategy and
function,

The algorithm. An iteration of the Minimax-action-free PI is given in Al-
gorithm 3. As shown later, the order and frequency by which the possible
four iterations of Algorithm 3 are run do not affect the convergence, as long
as each is performed infinitely often. This permits an asynchronous imple-
mentation of the Minimax-action-free PI algorithm, as discussed in [18] and
for its single-agent counterparts in [53].

For each of the four iterations, Algorithm 4 provides a way to compute
new BFCPs and the results below demonstrate that, over each region of
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Algorithm 4 BFCP iteration t for Minimax-action-free PI
1: Input: Perception FCP ΦP , reward FCPs (Φα

R)α∈A
2: Output: BFCPs ⟨ΦJt

1
,ΦV t

1
,Φσt

1
,ΘJt

2
,ΘV t

2
,Θσt

2
⟩t∈N

for ⟨J t
1, V

t
1 , σ

t
1, J

t
2, V

t
2 , σ

t
2⟩t∈N

3: ΦJ0
1
,ΦV 0

1
,Φσ0

1
← {S}, ΘJ0

2
,ΘV 0

2
,Θσ0

2
← {Λ1}

4: while Algorithm 3 performs iteration t do
5: if policy evaluation of Ag1 is chosen then
6: Preprocess maximiser(),
7: ΦJt+1

1
← Φσt

1
+ ΦJt

2
+ ΦV t

2
, ΦV t+1

1
← ΦV t

1
, Φσt+1

1
← Φσt

1

8: if policy improvement of Ag1 is chosen then
9: Preprocess maximiser(),

10: Φσt+1
1
← ΦJt

2
+ ΦV t

2
, ΦV t+1

1
← Φσt+1

1
, ΦJt+1

1
← ΦJt

1

11: if policy evaluation of Ag2 is chosen then
12: Preprocess minimiser(),
13: Φσt

2
←

{
{s | (s, u1) ∈ θ} | θ ∈ Θσt

2

}
,

14: ΘJt+1
2
←

{
{(s, u1) ∈ Λ1 | s ∈ ϕ} | ϕ ∈ ΦQ̂t+1 + Φσt

2

}
,

15: ΘV t+1
2
← ΘV t

2
, Θσt+1

2
← Θσt

2

16: if policy improvement of Ag2 is chosen then
17: Preprocess minimiser(),
18: Θσt+1

2
←

{
{(s, u1) ∈ Λ1 | s ∈ ϕ} | ϕ ∈ ΦQ̂t+1

}
,

19: ΘV t+1
2
← Θσt+1

2
, ΘJt+1

2
← ΘJt

2

20: return ⟨ΦJt
1
,ΦV t

1
,Φσt

1
,ΘJt

2
,ΘV t

2
,Θσt

2
⟩t∈N

21:

22: procedure Preprocess maximiser()
23: ΘJt+1

2
← ΘJt

2
, ΘV t+1

2
← ΘV t

2
, ΦJt

2
←

{
{s | (s, u1) ∈ θ} | θ ∈ ΘJt

2

}
,

24: ΦV t
2
←

{
{s | (s, u1) ∈ θ} | θ ∈ ΘV t

2

}
, Θσt+1

2
← Θσt

2

25: procedure Preprocess minimiser()
26: ΦJt+1

1
← ΦJt

1
, ΦV t+1

1
← ΦV t

1
, Φσt+1

1
← Φσt

1
,

27: ΦQ̂t+1 ← Preimage BFCP(ΦJt
1

+ ΦV t
1
,ΦP , (Φ

α
R)α∈A)
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Algorithm 5 BFCP based computation for Minimax-action-free PI

1: Input: J t
1, V

t
1 , σ

t
1, J

t
2, V

t
2 , σ

t
2,ΦJt+1

1
,Φσt+1

1
,ΘJt+1

2
,Θσt+1

2

2: procedure PE1
3: for ϕ ∈ ΦJt+1

1
do

4: Take one state s ∈ ϕ, and then J t+1
1,ϕ ← [H1

σt
1,V

t
2
J t
2](s)

5: return J t+1
1 ← (J t+1

1,ϕ )ϕ∈ΦJt+1
1

6: procedure PI1
7: for ϕ ∈ Φσt+1

1
do

8: Take s ∈ ϕ, and then u1 ∈ argmaxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s)

9: σt+1
1,ϕ ← u1, V t+1

1,ϕ ← maxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s)

10: return σt+1
1 ← (σt+1

1,ϕ )ϕ∈Φσt+1
1

, V t+1
1 ← (V t+1

1,ϕ )ϕ∈Φσt+1
1

11: procedure PE2
12: for θ ∈ ΘJt+1

2
do

13: ϕ← {s | (s, u1) ∈ θ}
14: Take s ∈ ϕ, and then compute a BFCP Φu of P(A1(s)) such that

over ϕu ∈ Φu, [H2
σt
2,V

t
1
J t
1](s, u1) is linear in u1

15: J t+1
2,θ ← [H2

σt
2,V

t
1
J t
1](s, u1) is linear in u1

16: return J t+1
2 ← (J t+1

2,θ )θ∈ΘJt+1
2

17: procedure PI2
18: for θ ∈ Θσt+1

2
do

19: ϕ← {s | (s, u1) ∈ θ}
20: Take s′ ∈ ϕ, and then compute a BFCP Φu of P(A1(s

′)) such that
over ϕu ∈ Φu, min

u2∈P(A2(s′))
[H2

u2,V t
1
J t
1](s

′, u1) is constant for u1 ∈ ϕu

21: Take u′
1 ∈ ϕu and u′

2 ∈ argmin
u2∈P(A2(s′))

[H2
u2,V t

1
J t
1](s

′, u′
1) for ϕu ∈ Φu

22: σt+1
2,θ ← u′

2, V t+1
2,θ ← [H2

u′
2,V

t
1
J t
1](s

′, u1) is linear in u1

23: return σt+1
2 ← (σt+1

2,θ )θ∈Θσt+1
2

, V t+1
2 ← (V t+1

2,θ )θ∈Θσt+1
2
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these BFCPs, the corresponding computed strategies and value functions are
either constant, PWC or PWL. Therefore, we can follow similar steps to our
VI algorithm (see Algorithm 1) to compute the value functions of these new
strategies and value functions (see Algorithm 5). The idea is to first compute
the BFCPs ΦJt+1

1
, ΦV t+1

1
, Φσt+1

1
, ΘJt+1

2
, ΘV t+1

2
and Θσt+1

2
via Algorithm 4 and

then use them to compute strategies and value functions using Algorithm 5.
For instance, if policy improvement of Ag2 is chosen at iteration t ∈ N then
we proceed as follows. First, new BFCPs are computed via Algorithm 4.
Second, procedure PI2 of Algorithm 5 is performed. In this step we take each
region θ ∈ Θσt+1

2
, let ϕ = {s | (s, u1) ∈ θ}, then take one state s′ ∈ ϕ, and

compute a BFCP Φu of P(A1(s
′)) such that minu2∈P(A2(s′))[H

2
u2,V t

1
J t
1](s

′, u1) is

constant over ϕu ∈ Φu and for u1 ∈ ϕu. Third, take one u′
1 ∈ ϕu and find

u′
2 ∈ P(A2(s

′)) that minimises [H2
u2,V t

1
J t
1](s

′, u′
1). Fourth, we let σt+1

2 (s, u1) =

u′
2 for s ∈ ϕ and u1 ∈ ϕu, which is a CON-2 solution of [H2

u2,V t
1
J t
1](s, u1) over

{(s, u1) | s ∈ ϕ ∧ u1 ∈ ϕu} by Lemma 9 and V t+1
2 (s, u1) is CON-linear in

s ∈ ϕ and u1 ∈ ϕu. Finally, we copy the other strategies and value functions
for the next iteration.

Representation closures. The following lemmas show the strategies and
value functions generated during each iteration of the Minimax-action-free PI
algorithm are closed under B-PWC, CON-PWL and CON-PWC functions,
and are thus finitely representable.

Lemma 6 (Evaluation closure for Ag1). If σt
1 ∈ Σ1 is a PWC stochastic

kernel, J t
2, V

t
2 ∈ F(Λ1) are CON-PWL Borel measurable and policy evaluation

of Ag1 is performed (procedure PE1), then J t+1
1 = [H1

σt
1,V

t
2
J t
2] is B-PWC.

Proof. Suppose σt
1 ∈ Σ1 is a PWC stochastic kernel and J t

2, V
t
2 ∈ F(Λ1) are

CON-PWL Borel measurable. Since σt
1 is a PWC stochastic kernel, there

exists a constant-BFCP Φσt
1

of S for σt
1. Since J t

2 is a CON-PWL Borel
measurable function, there exists a BFCP ΦJt

2
of S satisfying the properties

of Definition 13 for J t
2. Therefore J t

2(s, σ
t
1(s)) is constant on each region of

the BFCP Φσt
1

+ ΦJt
2
. We can similarly show that V t

2 (s, σt
1(s)) is constant

on each region of the BFCP Φσt
1

+ ΦV t
2
, where ΦV t

2
is a BFCP of S from

Definition 13 for V t
2 . Consider the policy evaluation of Ag1 (procedure PE1 ).

Using Definition 11 we have that J t+1
1 = [H1

σt
1,V

t
2
J t
2] is constant on each region

of the BFCP Φσt
1
+ΦJt

2
+ΦV t

2
, which also implies that J t+1

1 is Borel measurable.

Since J t
2 and V t

2 are bounded, then J t+1
1 is also bounded as required. □

43



Lemma 7 (Improvement closure for Ag1). If J t
2, V

t
2 ∈ F(Λ1) are CON-

PWL Borel measurable and policy improvement of Ag1 is performed (proce-
dure PI1 ), then σt+1

1 (s) ∈ argmaxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s) is a PWC stochastic

kernel, and V t+1
1 = [H1

σt+1
1 ,V t

2

J t
2] is B-PWC.

Proof. Suppose J t
2, V

t
2 ∈ F(Λ1) are CON-PWL Borel measurable functions.

Using [46, Chapter 18.1] and Definition 13 it follows that the function Kt :=
min[J t

2, V
t
2 ] is Borel measurable. Note that, over each region of ΦJt

2
+ ΦV t

2
,

Kt(s, u1) is constant in s given u1, and PWL in u1 given s (where ΦJt
2

and
ΦV t

2
are from Lemma 6), and therefore Kt is CON-PWL.

Let ΦKt = ΦJt
2

+ ΦV t
2

and ΘKt be a BFCP of Λ1 satisfying the properties
of Definition 13 for Kt. Every state in each region of the BFCP ΦKt has
the same set of available actions for Ag1 and same strategy u1 that max-
imises Kt(s, u1) on a region of ΘKt . Therefore, using the CON-1 solution in
Definition 15, the strategy of Ag1:

σt+1
1 (s) ∈ argmaxu1∈P(A1(s))[H

1
u1,V t

2
J t
2](s)

is constant on each region of ΦKt , which also implies that σt+1
1 is Borel

measurable. Since σt+1
1 is a PWC stochastic kernel, then Lemma 6 implies

that V t+1
1 is B-PWC as required. □

Lemma 8 (Evaluation closure for Ag2). If J t
1, V

t
1 ∈ F(S) are B-PWC

and σt
2 ∈ Σ2 is a CON-PWC stochastic kernel and policy evaluation of Ag2

is performed (procedure PE2), then J t+1
2 = [H2

σt
2,V

t
1
J t
1] is CON-PWL Borel

measurable.

Proof. Suppose J t
1 and V t

1 are B-PWC and σt
2 ∈ Σ2 is a CON-PWC stochastic

kernel. Using [46, Chapter 18.1] it follows that γ max[J t
1, V

t
1 ] is B-PWC. In

view of the B-PWC function Q( · , α, V ) in Theorem 2, for each α ∈ A the
function:

Q̂t
α(s) := Q(s, α, γ max[J t

1, V
t
1 ])

is B-PWC. Let ΦQ̂t be a BFCP of S such that Q̂t
α is constant on each region

of ΦQ̂t for α ∈ A. It follows that A(s) is constant on each region of ΦQ̂t .
Next, let Φσt

2
be a BFCP of S satisfying the properties of Definition 14

for the CON-PWC stochastic kernel σt
2. For the BFCP ΦQ̂t + Φσt

2
of S,

we generate a BFCP Θt
1 of Λ1 such that each region θt1(ϕ) ∈ Θt

1, induced
by a region ϕ ∈ ΦQ̂t + Φσt

2
, is given by θt1(ϕ) = {(s, u1) ∈ Λ1 | s ∈ ϕ}.
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Finally, consider the policy evaluation of Ag2. According to Definition 12,
for (s, u1) ∈ θt1(ϕ), J t+1

2 (s, u1) = [H2
σt
2,V

t
1
J t
1](s, u1) is constant in s for a fixed

u1, and PWL in u1 for a fixed s ∈ S. Thus, J t+1
2 is CON-PWL. Since Q̂t

α

and σt
2 are bounded, Borel measurable, then so is J t+1

2 by Definition 12 as
required. □

Lemma 9 (Improvement closure for Ag2). If J t
1, V

t
1 ∈ F(S) are B-PWC

and policy improvement of Ag2 is performed (procedure PI2 ), then σt+1
2 (s, u1) ∈

argminu2∈P(A2(s))[H
2
u2,V t

1
J t
1](s, u1) is a CON-PWC stochastic kernel, and V t+1

2 =

[H2
σt+1
2 ,V t

1

J t
1] is CON-PWL Borel measurable.

Proof. Suppose J t
1, V

t
1 ∈ F(S) are B-PWC. For the BFCP ΦQ̂t of S, we

generate a BFCP Θt
2 of Λ1 such that each region θt2(ϕ) in Θt

2 induced by
a region ϕ ∈ ΦQ̂t is given by θt2(ϕ) = {(s, u1) ∈ Λ1 | s ∈ ϕ}, where ΦQ̂t

is from the proof of Lemma 8. Consider the policy improvement of Ag2
(procedure PI2 ). According to Definition 12, by using the CON-2 solution
in Definition 16, for (s, u1) ∈ θt2(ϕ), the Stackelberg strategy of Ag2:

σt+1
2 (s, u1) ∈ argminu2∈P(A2(s))[H

2
u2,V t

1
J t
1](s, u1)

is constant in s for a fixed u1, and PWC in u1 for a fixed s. Thus, σt+1
2

is CON-PWC. Since σt+1
2 is a CON-PWC stochastic kernel, then Lemma 8

implies that V t+1
2 is CON-PWL Borel measurable as required. □

By fusing Lemmas 6, 7, 8 and 9 we can prove that the strategies and value
functions generated during each iteration of Algorithm 3 never leave a finitely
representable class of functions, and Algorithm 4 constructs new BFCPs such
that the strategies and value functions after one iteration of the Minimax-
action-free PI algorithm remain constant, PWC, or PWL on each region of
the constructed BFCPs.

Theorem 3 (Representation closure). In any iteration of the Minimax-
action-free PI algorithm (see Algorithm 3), if

(i) J t
1, V

t
1 ∈ F(S) are B-PWC and σt

1 ∈ Σ1 is a PWC stochastic kernel;

(ii) J t
2, V

t
2 ∈ F(Λ1) are CON-PWL Borel measurable and σt

2 ∈ Σ2 is a
CON-PWC stochastic kernel;

then so are J t+1
1 , V t+1

1 , σt+1
1 , J t+1

2 , V t+1
2 and σt+1

2 , respectively, regardless of
which one of the four iterations is performed.
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Proof. The conclusion follows from one of Lemmas 6, 7, 8 and 9, depending
on which one of the four iterations is executed. □

Corollary 2 (BFCP iteration for Minimax-action-free PI). After per-
forming Algorithm 4:

(i) ΦJt+1
1

, ΦV t+1
1

and Φσt+1
1

are constant-BFCPs of S for J t+1
1 = [H1

σt
1,V

t
2
J t
2],

V t+1
1 = [H1

σt+1
1 ,V t

2

J t
2] and σt+1

1 (s) ∈ argmaxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s);

(ii) ΘJt+1
2

and ΘV t+1
2

are BFCPs of Λ1 for J t+1
2 = [H2

σt
2,V

t
1
J t
1] and V t+1

2 =

[H2
σt+1
2 ,V t

1

J t
1] meeting the conditions of Definition 13, and Θσt+1

2
is a

BFCP of Λ1 for σt+1
2 (s, u1) ∈ argminu2∈P(A2(s))[H

2
u2,V t

1
J t
1](s, u1) meeting

the conditions of Definition 14.

7.3. Convergence analysis and strategy computation

We next prove the convergence of the Minimax-action-free PI algorithm
by showing that there exists an operator from the product space of the func-
tion spaces over which J1, V1, J2 and V2 are defined to itself, which is a
contraction mapping with a unique fixed point, one of whose components is
the value function multiplied by a known constant. The proof closely follows
the steps for finite state spaces given in [18], but is more complex due to the
underlying uncountable state space and the need to deal with the require-
ment of Borel measurability and finite representation of strategies and value
functions.

Convergence analysis. Given PWC σ1 ∈ Σ1 and CON-PWC σ2 ∈ Σ2, we
define the operator Gσ1,σ2

: (F(S)×F(S)×F(Λ1)×F(Λ1))→ (F(S)×F(S)×
F(Λ1)× F(Λ1)) such that:

Gσ1,σ2(J1, V1, J2, V2) := (M1
σ1

(J2, V2), K
1(J2, V2),M

2
σ2

(J1, V1), K
2(J1, V1)) (2)

where we assume J1, V1 ∈ F(S) are B-PWC, J2, V2 ∈ F(Λ1) are CON-PWL,
and the four operators M1

σ1
, K1, M2

σ2
and K2 represent the four iterations of

the Minimax-action-free PI algorithm from lines 3 to 16, and are defined as
follows.

• M1
σ1

: F(Λ1) × F(Λ1) → F(S) corresponds to the policy evaluation of
Ag1 (procedure PE1 ) where for any s ∈ S:

M1
σ1

(J2, V2)(s) := [H1
σ1,V2

J2](s) (3)

and is B-PWC using Lemma 6.
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• K1 : F(Λ1)× F(Λ1)→ F(S) corresponds to the policy improvement of
Ag1 (procedure PI1 ) where for any s ∈ S:

K1(J2, V2)(s) := maxu1∈P(A1(s))[H
1
u1,V2

J2](s) (4)

and is B-PWC using Lemma 7.

• M2
σ2

: F(S)×F(S)→ F(Λ1) corresponds to the policy evaluation of Ag2
(procedure PE2 ) where for any (s, u1) ∈ Λ1:

M2
σ2

(J1, V1)(s, u1) := [H2
σ2,V1

J1](s, u1) (5)

and is CON-PWL Borel measurable using Lemma 8.

• K2 : F(S) × F(S) → F(Λ1) corresponds to the policy improvement of
Ag2 (procedure PI2 ) where any (s, u1) ∈ Λ1:

K2(J1, V1)(s, u1) := minu2∈P(A2(s))[H
2
u2,V1

J1](s, u1) (6)

and is CON-PWL Borel measurable using Lemma 9.

For the spaces F(S)×F(S) and F(Λ1)×F(Λ1), we consider the norm ∥(J, V )∥ =
max{∥J∥, ∥V ∥}, and for the space F(S) × F(S) × F(Λ1) × F(Λ1) the norm
∥(J1, V1, J2, V2)∥ = max{∥J1∥, ∥V1∥, ∥J2∥, ∥V2∥}. We next require the follow-
ing properties of these norms, which follow from [18].

Lemma 10. For any J1, V1, J
′
1, V

′
1 ∈ F(S) and J2, V2, J

′
2, V

′
2 ∈ F(Λ1):

∥max[J1, V1]−max[J ′
1, V

′
1 ]∥ ≤ max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥}

∥min[J2, V2]−min[J ′
2, V

′
2 ]∥ ≤ max{∥J2 − J ′

2∥, ∥V2 − V ′
2∥} .

Proof. Consider any J1, V1, J
′
1, V

′
1 ∈ F(S). The norm for the space F(S)

implies that for any s ∈ S:

J1(s) ≤ J ′
1(s) + max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥} (7)

V1(s) ≤ V ′
1(s) + max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥} (8)

from which we have:

max{J1(s), V1(s)} ≤ max{J ′
1(s), V

′
1(s)}+ max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥} . (9)
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Exchanging (J1, V1) with (J ′
1, V

′
1) in (7) and (8) derives an inequality similar

to (9), and combining it with (9) leads to the inequality:

|max{J1(s), V1(s)}−max{J ′
1(s), V

′
1(s)}| ≤ max{∥J1−J ′

1∥, ∥V1−V ′
1∥} (10)

for any s ∈ S. Since J1, V1, J
′
1 and V ′

1 are bounded, Borel measurable,
so is max[J1, V1] − max[J ′

1, V
′
1 ] by [46, Chapter 18.1], i.e., max[J1, V1] −

max[J ′
1, V

′
1 ] ∈ F(S). Thus, since (10) holds for any s ∈ S:

∥max[J1, V1]−max[J ′
1, V

′
1 ]∥ ≤ max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥} .

The second inequality of the lemma can be proved following the same steps
for J2, V2, J

′
2, V

′
2 ∈ F(Λ1). □

Using the above operators and results, we are now in a position to prove the
convergence of the Minimax-action-free PI algorithm.

Theorem 4 (Convergence guarantee). If each of the four iterations of
the Minimax-action-free PI algorithm (Algorithm 3) from lines 3 to 16 is
performed infinitely often, then the sequence (γV t

1 )t∈N generated by the algo-
rithm converges to V ⋆.

Proof. We prove each component Gσ1,σ2 satisfies a contraction property. Sup-
pose that J1, V1, J

′
1, V

′
1 ∈ F(S) are B-PWC and J2, V2, J

′
2, V

′
2 ∈ F(Λ1) are

CON-PWL Borel measurable.

• For M1
σ1

, since M1
σ1

(J2, V2)−M1
σ1

(J ′
2, V

′
2) ∈ F(S) by [46, Chapter 18.1].

By Definition 11, the sup-norm for F(S) and rearranging we have:

∥M1
σ1

(J2, V2)−M1
σ1

(J ′
2, V

′
2)∥

= γ−1 sups∈S |min{J2(s, σ1(s)), V2(s, σ1(s))}
−min{J ′

2(s, σ1(s)), V
′
2(s, σ1(s))}|

≤ γ−1 sup(s,u1)∈Λ1

∣∣min{J2(s, u1), V2(s, u1)} −min{J ′
2(s, u1), V

′
2(s, u1)}

∣∣
since {(s, σ1(s)) | s ∈ S} ⊆ Λ1

= γ−1
∥∥min[J2, V2]−min[J ′

2, V
′
2 ]
∥∥

since min[J2, V2]−min[J ′
2, V

′
2 ] ∈ F(Λ1) using [46, Chapter 18.1]

≤ γ−1 max{∥J2 − J ′
2∥, ∥V2 − V ′

2∥} by Lemma 10

≤ γ−1 max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥} . (11)
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• For K1, since K1(J2, V2)−K1(J ′
2, V

′
2) ∈ F(S) by Definition 11 and the

sup-norm for F(S):

∥K1(J2, V2)−K1(J ′
2, V

′
2)∥

= sups∈S
∣∣maxu1∈P(A1(s)) γ

−1 min{J2(s, u1), V2(s, u1)}
−maxu1∈P(A1(s)) γ

−1 min{J ′
2(s, u1), V

′
2(s, u1)}

∣∣
≤ γ−1 sup(s,u1)∈Λ1

∣∣min{J2(s, u1), V2(s, u1)} −min{J ′
2(s, u1), V

′
2(s, u1)}

∣∣
rearranging and since {(s, u1) | u1 ∈ P(A1(s))} ⊆ Λ1

≤ γ−1 max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥} (12)

where the final inequality follows from similar arguments used in (11).

• For M2
σ2

, since M2
σ2

(J1, V1)−M2
σ2

(J ′
1, V

′
1) ∈ F(Λ1) by Definition 12 and

the sup-norm for F(Λ1) we have:

∥M2
σ2

(J1, V1)−M2
σ2

(J ′
1, V

′
1)∥

= sup
(s,u1)∈Λ1

∣∣∣∣∣ ∑
(a1,a2)∈A(s)

(
Q(s, (a1, a2), γ max[J1, V1])

−Q(s, (a1, a2), γ max[J ′
1, V

′
1 ])

)
u1(a1)σ2(a2 | (s, u1))

∣∣∣∣∣
= sup

(s,u1)∈Λ1

∣∣∣∣∣ ∑
(a1,a2)∈A(s)

γβ
∑

s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)

(
max{J1(s′), V1(s

′)} −max{J ′
1(s

′), V ′
1(s′)})u1(a1)σ2(a2 | (s, u1)

) ∣∣∣∣∣
rearranging, by Definition 10 and the sup-norm for F(Λ1)

≤ γβ sup
(s,u1)∈Λ1

∑
(a1,a2)∈A(s)

∑
s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)∣∣max{J1(s′), V1(s

′)} −max{J ′
1(s

′), V ′
1(s′)}

∣∣u1(a1)σ2(a2 | (s, u1))

rearranging and since δ, u1 and σ2 are non-negative

≤ γβ sup
(s,u1)∈Λ1

∑
(a1,a2)∈A(s)

∑
s′∈Θ(s,(a1,a2)

δ(s, (a1, a2))(s
′)

sup
s′′∈S

∣∣max{J1(s′′), V1(s
′′)} −max{J ′

1(s
′′), V ′

1(s′′)}
∣∣u1(a1)σ2(a2 | (s, u1))

since f(s′) ≤ sups′′∈S f(s′′) for any f ∈ F(S)
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= γβ sup
s′′∈S

∣∣max{J1(s′′), V1(s
′′)} −max{J ′

1(s
′′), V ′

1(s′′)}
∣∣

sup
(s,u1)∈Λ1

∑
(a1,a2)∈A(s)

∑
s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)u1(a1)σ2(a2 | (s, u1))

rearranging

= γβ sup
s′′∈S

∣∣max{J1(s′′), V1(s
′′)} −max{J ′

1(s
′′), V ′

1(s′′)}
∣∣

since δ ∈ P(S × A), u1 ∈ P(A1) and σ̄2 ∈ P(A2 | Λ1)

= γβ
∥∥max[J1, V1]−max[J ′

1, V
′
1 ]
∥∥

since max[J1, V1]−max[J ′
1, V

′
1 ] ∈ F(S)

≤ γβ max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥} by Lemma 10

≤ γβ max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥}. (13)

• For K2, since K2(J1, V1) − K2(J ′
1, V

′
1) ∈ F(Λ1), by the sup-norm for

F(Λ1):

∥K2(J1, V1)−K2(J ′
1, V

′
1)∥

= sup
(s,u1)∈Λ1

∣∣∣∣∣ min
u2∈P(A2(s))

∑
(a1,a2)∈A(s)

γβ
∑

s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)

(
max{J1(s′), V1(s

′)} −max{J ′
1(s

′), V ′
1(s′)}

)
u1(a1)u2(a2)

∣∣∣∣∣
≤ γβ sup

(s,u1)∈Λ1

min
u2∈P(A2(s))

∑
(a1,a2)∈A(s)

∑
s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)∣∣max{J1(s′), V1(s

′)} −max{J ′
1(s

′), V ′
1(s′)}

∣∣u1(a1)u2(a2) rearranging

≤ γβ max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥} (14)

where the final inequality follows from similar arguments used in (13).

Next we prove that Gσ1,σ2 is a contraction mapping using the above inequal-
ities. More precisely, by definition, see (2), we have:

∥Gσ1,σ2(J1, V1, J2, V2)−Gσ1,σ2(J
′
1, V

′
1 , J

′
2, V

′
2)∥

= ∥(M1
σ1

(J2, V2)−M1
σ1

(J ′
2, V

′
2), K1(J2, V2)−K1(J ′

2, V
′
2),

M2
σ2

(J1, V1)−M2
σ2

(J ′
1, V

′
1), K2(J1, V1)−K2(J ′

1, V
′
1))∥

= max{∥M1
σ1

(J2, V2)−M1
σ1

(J ′
2, V

′
2)∥, ∥K1(J2, V2)−K1(J ′

2, V
′
2)∥,
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∥M2
σ2

(J1, V1)−M2
σ2

(J ′
1, V

′
1)∥, ∥K2(J1, V1)−K2(J ′

1, V
′
1)∥} rearranging

≤ max{γ−1, γβ}max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥}

where the final inequality follows from (11), (13), (12) and (14).
Therefore, since max{γ−1, γβ} < 1 and assuming σ1 is PWC and σ2

is CON-PWC, we have that Gσ1,σ2 is a contraction mapping for (σ1, σ2) ∈
Σ1×Σ2. Now since F(S)× F(S)× F(Λ1)× F(Λ1) is a complete metric space
with respect to the sup norm, we conclude that Gσ1,σ2 has a unique fixed
point (J⋆

1 , V
⋆
1 , J

⋆
2 , V

⋆
2 ). In view of (3)–(6), this fixed point satisfies for each

(s, u1) ∈ Λ1:

J⋆
1 (s) = γ−1 min{J⋆

2 (s, σ1(s)), V
⋆
2 (s, σ1(s))} (15)

V ⋆
1 (s) = γ−1 maxu1∈P(A1(s)) min{J⋆

2 (s, u1), V
⋆
2 (s, u1)} (16)

J⋆
2 (s, u1) =

∑
(a1,a2)∈A(s)

Q(s, (a1, a2)γ max[J⋆
1 , V

⋆
1 ])u1(a1)σ2(a2 | (s, u1)) (17)

V ⋆
2 (s, u1) = min

u2∈P(A2(s))

∑
(a1,a2)∈A(s)

Q(s, (a1, a2), γ max[J⋆
1 , V

⋆
1 ])u1(a1)u2(a2) . (18)

By combining (15)–(18), we have for each (s, u1) ∈ Λ1:

J⋆
1 (s) ≤ V ⋆

1 (s) and J⋆
2 (s, u1) ≥ V ⋆

2 (s, u1)

from which (16) and (18) can be simplified to:

V ⋆
1 (s) = maxu1∈P(A1(s)) γ

−1V ⋆
2 (s, u1)

V ⋆
2 (s, u1) = minu2∈P(A2(s))

∑
(a1,a2)∈A(s)Q(s, (a1, a2), γV

⋆
1 )u1(a1)u2(a2)

implying that γV ⋆
1 (s) equals:

max
u1∈P(A1(s))

min
u2∈P(A2(s))

∑
(a1,a2)∈A(s)Q(s, (a1, a2), γV

⋆
1 )u1(a1)u2(a2) = [T (γV ⋆

1 )] .

Thus, we have γV ⋆
1 = V ⋆, which completes the proof. □

Strategy computation. Next, introducing a criterion for selecting the
minimax solution over a region, we compute the strategies for the agents
based on the function returned by the Minimax-action-free PI algorithm.

Definition 17 (CON-3 solution). Let f ∈ F(Λ12). If there exists a BFCP
Φ of S where, for each ϕ ∈ Φ: A(s) = A(s′) for s, s′ ∈ ϕ there exists a pair
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of probability measures uϕ
1 ∈ P(A1(s)) and uϕ

2 ∈ P(A2(s)) for s ∈ ϕ such that
f(s, uϕ

1 , u
ϕ
2) = maxu1∈P(A1(s)) minu2∈P(A2(s)) f(s, u1, u2) for s ∈ ϕ, and σ1 ∈ Σ1,

σ2 ∈ Σ2 are such that σ1(s) = uϕ
1 and σ2(s) = uϕ

2 for s ∈ ϕ, then (σ1, σ2) is
a constant-3 (CON-3) solution of f over ϕ.

Lemma 11 (PWC strategies). If V = γV t
1 , where V t

1 is from iteration
t ∈ N of the Minimax-action-free PI algorithm, and (σ1, σ2) ∈ Σ achieves
the maximum and the minimum in Definition 10 for V and all s ∈ S via a
CON-3 solution, then σ1 and σ2 are PWC stochastic kernels.

Proof. By Theorems 3 and 4, V is B-PWC. For any α ∈ A, the function
Q( · , α, V ) : S → R is B-PWC by Theorem 2. Let ΦQ be a BFCP of S
such that Q( · , α, V ) is constant on each region of ΦQ for α ∈ A, and ΦA

be a BFCP of S such that A(s) is constant on each region of ΦA. Then, for
u1 ∈ P(A1(s)) and u2 ∈ P(A2(s)), the function Q′( · , u1, u2) : S → R, where:

Q′(s, u1, u2) =
∑

(a1,a2)∈A(s)Q(s, (a1, a2), V )u1(a1)u2(a2)

for s ∈ S, is constant in each region of ΦQ + ΦA. Therefore, there exists a
CON-3 solution (σ1, σ2) of Q′(s, u1, u2) and, since ΦQ + ΦA is a BFCP, the
result follows. □

8. Conclusions

We have proposed a novel modelling formalism called neuro-symbolic
concurrent stochastic games (NS-CSGs) for representing probabilistic finite-
state agents with neural perception mechanisms interacting in a shared,
continuous-state environment. NS-CSGs have the advantage of allowing for
the perception of a complex environment to be synthesised from data and
implemented via NNs, while the safety-critical decision-making module is
symbolic, explainable and knowledge-based. We constrain the interface of
the neural perception so that agents can reason symbolically using percepts,
representing (exactly) learnt subregions of the continuous environment.

For zero-sum discounted cumulative reward problems, we proved the ex-
istence and measurability of the value function of NS-CSGs under Borel
measurability and piecewise constant restrictions. We then presented the
first computationally practical B-PWC VI and Minimax-action-free PI al-
gorithms with finite representations for computing the values and optimal
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strategies of NS-CSGs, assuming a fully observable setting, by proposing
B-PWC, CON-PWL and CON-PWC functions.

The B-PWC VI algorithm is, at the region level, the same as VI for finite
state spaces, but involves, at each iteration, a division of the uncountable
state space into a possibly refined finite set of regions (i.e., a BFCP). This is
because taking the same action in two distinct states of some region in the
current BFCP can yield states that need not be observationally equivalent.
The Minimax-action-free PI algorithm requires multiple divisions of the un-
countable state space into BFCPs at each iteration. We resolve a number of
technical issues to apply [18], which ensures convergence, and, by not requir-
ing the solution of normal-form games or MDPs at each iteration, reduces
computational complexity. However, implementation of the Minimax-action-
free PI algorithm is more challenging, requiring a distributed, asynchronous
framework. We illustrated our approach by modelling a dynamic vehicle
parking problem as an NS-CSG and synthesising approximately optimal val-
ues and strategies using B-PWC VI.

Future work will involve improving efficiency of the algorithms, general-
ising to more complex classes of neural perception mechanisms by exploiting
preimage approximations [54], and moving to equilibria-based (nonzero-sum)
properties, where initial progress has been made in a simpler setting of finite
unfolding of our NS-CSG model [40]. We are also planning to extend the
approach to two-sided partially observable neuro-symbolic POSGs, based on
a recently proposed one-sided variant, which exploits a finite representation
that generalises α-vectors to approximate value computation [19], and for
which online strategy synthesis methods have been developed [55].
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J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. Quintero, C. Harris, A. Archibald, A. Ribeiro, F. Pedregosa, P. van
Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python, Nature Methods 17 (2020) 261–272.

[52] D. Bertsekas, Abstract dynamic programming, Athena Scientific, 2022.

[53] D. Bertsekas, H. Yu, Q-learning and enhanced policy iteration in dis-
counted dynamic programming, Math. Oper. Res. 37 (1) (2012) 66–94.

[54] X. Zhang, B. Wang, M. Kwiatkowska, Provable preimage under-
approximation for neural networks, in: Proc. 30th Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’24),
Vol. 14572 of LNCS, Springer, 2024, pp. 3–23.

[55] R. Yan, G. Santos, G. Norman, D. Parker, M. Kwiatkowska, HSVI-based
online minimax strategies for partially observable stochastic games with
neural perception mechanisms, in: Proc. 6th Learning for Dynamics
& Control Conference L4DC’24, Vol. 424 of Proceedings of Machine
Learning Research, PMLR, 2024, pp. 80–91.

58


	Introduction
	Executive summary
	Related work

	Background
	Borel measurable spaces and functions
	Probability measures
	Neural networks
	Concurrent stochastic games

	Zero-sum neuro-symbolic concurrent stochastic games
	Semantics of an NS-CSG
	Zero-sum NS-CSGs
	Strategies of NS-CSGs
	Assumptions on NS-CSGs

	Game structures for NS-CSGs
	Values of zero-sum NS-CSGs
	Value iteration
	B-PWC closure and convergence
	B-PWC VI algorithm

	Policy iteration
	Operators, functions and solutions
	Minimax-action-free PI
	Convergence analysis and strategy computation

	Conclusions

