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Abstract. Stochastic games are a well established model for multi-agent
sequential decision making under uncertainty. In practical applications,
though, agents often have only partial observability of their environment.
Furthermore, agents increasingly perceive their environment using data-
driven approaches such as neural networks trained on continuous data.
We propose the model of neuro-symbolic partially-observable stochastic
games (NS-POSGs), a variant of continuous-space concurrent stochastic
games that explicitly incorporates neural perception mechanisms. We fo-
cus on a one-sided setting with a partially-informed agent using discrete,
data-driven observations and another, fully-informed agent. We present
a new method, called one-sided NS-HSVI, for approximate solution of
one-sided NS-POSGs, which exploits the piecewise constant structure of
the model. Using neural network pre-image analysis to construct finite
polyhedral representations and particle-based representations for beliefs,
we implement our approach and illustrate its practical applicability to
the analysis of pedestrian-vehicle and pursuit-evasion scenarios.

1 Introduction

Strategic reasoning is essential to ensure stable multi-agent coordination in com-
plex environments, e.g., autonomous driving or multi-robot planning. Partially-
observable stochastic games (POSGs) are a natural model for settings involving
multiple agents, uncertainty and partial information. They allow the synthesis
of optimal (or near-optimal) strategies and equilibria that guarantee expected
outcomes, even in adversarial scenarios. But POSGs also present significant
challenges: key problems are undecidable, already for the single-agent case of
partially observable Markov decision processes (POMDPs) [24], and practical
algorithms for finding optimal values and strategies are lacking.

Computational tractability can be improved using one-sided POSGs, a sub-
class of two-agent, zero-sum POSGs where only one agent has partial information
while the other agent is assumed to have full knowledge of the state [41,42]. This
can be useful when making worst-case assumptions about one agent, such as
in an adversarial setting (e.g., an attacker-defender scenario) or a safety-critical
domain (e.g., a pedestrian in an autonomous driving application).
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From a computational perspective, one-sided POSGs avoid the need for
nested beliefs [40], i.e., reasoning about beliefs not only over states but also
over opponents’ beliefs. This is because the fully-informed agent can reconstruct
beliefs from observation histories. Recent advances [19] have led to the first
practical variant of heuristic search value iteration (HSVI) [33] for computing
approximately optimal values and strategies in (finite) one-sided POSGs.

However, in many realistic autonomous coordination scenarios, agents per-
ceive continuous environments using data-driven observation functions, typically
implemented as neural networks (NNs). Examples include autonomous vehicles
using NNs to perform object recognition or to estimate pedestrian intention, and
NN-enabled vision in an airborne pursuit-evasion scenario.

In this paper, we introduce one-sided neuro-symbolic POSGs (NS-POSGs),
a variant of continuous-space POSGs that explicitly incorporates neural percep-
tion mechanisms. We assume one partially-informed agent with a (finite-valued)
observation function synthesised in a data-driven fashion, and a second agent
with full observation of the (continuous) state. Continuous-space models with
neural perception mechanisms have already been developed, but are limited to
the simpler cases of POMDPs [37] and (fully-observable) stochastic games [35].
Our model provides the ability to reason about an agent with a realistic percep-
tion mechanism and operating in an adversarial or worst-case setting.

Solving continuous-space models, even approximately, is computationally
challenging. One approach is to discretise and then use techniques for finite-
state models (e.g., [19] in our case). But this can yield exponential growth of the
state space, depending on the granularity and time-horizon used. Furthermore,
decision boundaries for data-driven perception are typically irregular and can be
misaligned with gridding schemes for discretisation, limiting precision.

An alternative is to exploit structure in the underlying model and work di-
rectly with the continuous-state model. For example, classic dynamic program-
ming approaches to solving MDPs can be lifted to continuous-state variants [12]:
a piecewise constant representation of the value function is computed, based on
a partition of the state space created dynamically during solution. It is demon-
strated that this approach can outperform discretisation and that it can also be
generalised to solving POMDPs. We can adapt this approach to models with
neural perception mechanisms [37], exploiting the fact that ReLU NN classifiers
induce a finite decomposition of the continuous environment into polyhedra.

Contributions. The contributions of this paper are as follows. We first define
the model of one-sided NS-POSGs and motivate it via an autonomous driving
scenario based on a ReLU NN classifier for pedestrian intention learnt from
public datasets [29]. We then prove that the (discounted reward) value function
for NS-POSGs is continuous and convex, and is a fixed point of a minimax
operator. Based on mild assumptions about the model, we give a piecewise linear
and convex representation of the value function, which admits a finite polyhedral
representation and which is closed with respect to the minimax operator.

In order to provide a feasible approach to approximating values of NS-
POSGs, we present a variant of HSVI, which is a popular anytime algorithm
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for POMDPs that iteratively computes lower and upper bounds on values. We
build on ideas from HSVI for finite one-sided POSGs [19] (but there are multiple
challenges when moving to a continuous state space and NNs) and for POMDPs
with neural perception mechanisms [37] (but, for us, the move to games brings
a number of complications); see Section 6 for a detailed discussion.

We implement our one-sided NS-HSVI algorithm using the popular particle-
based representation for beliefs and employing NN pre-image computation [25] to
construct an initial finite polyhedral representation of perception functions. We
apply this to the pedestrian-vehicle interaction scenario and a pursuit-evasion
game inspired by mobile robotics applications, demonstrating the ability to syn-
thesise agent strategies for models with complex perception functions, and to
explore trade-offs when using perception mechanisms of varying precision.

Related work. Solving POSGs is largely intractable. Methods based on exact
dynamic programming [17] and approximations [23,11] exist but have high com-
putational cost. Further approaches exist for zero-sum POSGs, including conver-
sion to extensive-form games [3], counterfactual regret minimisation [43,21,22]
and methods based on reinforcement learning and search [5,26]. In [9], an HSVI-
like finite-horizon solver that provably converges to an ε-optimal solution is pro-
posed; [34] provides convexity and concavity results but no algorithmic solution.

Methods exist for one-sided POSGs: a space partition approach when actions
are public [41], a point-based approximate algorithm when observations are con-
tinuous [42] and projection to POMDPs based on factored representations [7].
But these are all restricted to finite-state games. Closer to our work, but still for
finite models, is [19], which proposes an HSVI method for POSGs. As discussed
above, our continuous-state model necessitates several new techniques.

For the continuous-state but single-agent (POMDP) setting, point-based
value iteration [28,6,39] and discrete space approximation [4] can be used; the
former also use α-functions to represent value functions but, unlike our ap-
proach, which exploits structure similarly to [12], they work with (approximate)
Gaussian mixtures or beta-densities. As discussed above, in earlier work, we
proposed HSVI for neuro-symbolic POMDPs [37], again exploiting the piece-
wise constant structure of the underlying continuous-state model. Methods for
concurrent stochastic games enriched with neural perception mechanisms are
proposed in [36,35], including a value iteration algorithm in [35], but partial
observability is not considered, which is the main focus of this paper. Recent
work [38] builds on the one-sided NS-POSG model proposed in this paper, but
focuses instead on online methods for strategy synthesis.

2 Background

POSGs. The semantics of our models are continuous-state partially observable
concurrent stochastic games (POSGs) [21,5,18]. Letting P(X) denote the space
of probability measures on a Borel space X, POSGs are defined as follows.

A two-player POSG is a tuple G = (N,S,A, δ,O, Z), where: N = {1, 2} is a
set of two agents; S a Borel measurable set of states; A ≜ A1×A2 a finite set of
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joint actions where Ai are actions of agent i; δ : (S×A) → P(S) a probabilistic
transition function; O ≜ O1×O2 a finite set of joint observations where Oi are
observations of agent i; and Z : (S×A×S) → O an observation function.

In a state s of a POSG G, each agent i selects an action ai from Ai. The prob-
ability to move to a state s′ is δ(s, (a1, a2))(s

′), and the subsequent observation
is Z(s, (a1, a2), s

′) = (o1, o2), where agent i can only observe oi. A history of G
is a sequence of states and joint actions π = (s0, a0, s1, . . . , at−1, st) such that
δ(sk, ak)(sk+1) > 0 for each k. For a history π, we denote by π(k) the (k+1)th
state, and π[k] the (k+1)th action. A (local) action-observation history (AOH) is
the view of a history π from agent i’s perspective: πi = (o0i , a

0
i , o

1
i , . . . , a

t−1
i , oti).

If an agent has full information about the state, then we assume the agent is
also informed of the history of joint actions. Let FPathsG and FPathsG,i denote
the sets of finite histories of G and AOHs of agent i, respectively.

A (behaviour) strategy of agent i is a mapping σi : FPathsG,i → P(Ai). We
denote by Σi the set of strategies of agent i. A profile σ = (σ1, σ2) is a pair of
strategies for each agent and we denote by Σ = Σ1 ×Σ2 the set of profiles.

Objectives. Agents 1 and 2 maximise and minimise, respectively, the expected
value of the discounted reward Y (π) =

∑∞
k=0 β

kr(π(k), π[k]), where π is an
infinite history, r : (S×A) → R a reward structure and β ∈ (0, 1). The expected
value of Y starting from state distribution b under profile σ is denoted Eσ

b [Y ].

Values and minimax strategies. If V ⋆(b) ≜ supσ1∈Σ1
infσ2∈Σ2 E

σ1,σ2

b [Y ] =
infσ2∈Σ2 supσ1∈Σ1

Eσ1,σ2

b [Y ] for all b ∈ P(S), then V ⋆ is called the value of
G. A profile σ⋆ = (σ⋆

1 , σ
⋆
2) is a minimax strategy profile if, for any b ∈ P(S),

Eσ⋆
1 ,σ2

b [Y ] ≥ Eσ⋆
1 ,σ

⋆
2

b [Y ] ≥ Eσ1,σ
⋆
2

b [Y ] for all σ1 ∈ Σ1 and σ2 ∈ Σ2.

3 One-Sided Neuro-Symbolic POSGs

We now introduce our model, aimed at commonly deployed multi-agent scenarios
with data-driven perception, necessitating the use of continuous environments.
We also present a motivating example of a pedestrian-vehicle interaction.

One-sided NS-POSGs. A one-sided neuro-symbolic POSG (NS-POSG) com-
prises a partially informed, neuro-symbolic agent and a fully informed agent in a
continuous-state environment. The first agent has a finite set of local states, and
is endowed with a data-driven perception mechanism, through which (and only
through which) it makes finite-valued observations of the environment’s state,
stored locally as percepts. The second agent can directly observe both the local
state and percept of the first agent, and the state of the environment.

Definition 1 (NS-POSG) A one-sided NS-POSG C comprises agents Ag1 =
(S1, A1, obs1, δ1) and Ag2=(A2), and environment E=(SE , δE), where:

– S1 = Loc1×Per1 is a set of states for Ag1, where Loc1 and Per1 are finite
sets of local states and percepts, respectively;

– SE ⊆ Re is a closed set of continuous environment states;
– Ai is a finite set of actions for Agi and A ≜ A1×A2 is a set of joint actions;
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– obs1 : (Loc1×SE) → Per1 is Ag1’s perception function;
– δ1 : (S1×A) → P(Loc1) is Ag1’s local probabilistic transition function;
– δE : (Loc1×SE×A) → P(SE) is a finitely-branching probabilistic transition

function for the environment.

One-sided NS-POSGs are a subclass of two-agent, hybrid-state POSGs with
discrete observations (S1) and actions for Ag1, and continuous observations
(S1×SE) and discrete actions for Ag2. Additionally, Ag1 is informed of its own
actions and Ag2 of joint actions. Thus, Ag1 is partially informed, without access
to environment states and actions of Ag2, and Ag2 is fully informed. Since Ag2
needs no percepts, its local state and transition function are omitted.

The game executes as follows. A global state of C comprises a state s1 =
(loc1, per1) for Ag1 and an environment state sE . In state s = (s1, sE), the
two agents concurrently choose one of their actions, resulting in a joint action
a = (a1, a2) ∈ A. Next, the local state of Ag1 is updated to some loc′1 ∈ Loc1,
according to δ1(s1, a). At the same time, the environment state is updated to
some s′E ∈ SE according to δE(loc1, sE , a). Finally, the first agent Ag1, based
on loc′1, generates a percept per ′1 = obs1(loc

′
1, s

′
E) by observing the environment

state s′E and C reaches the global state s′ = ((loc′1, per
′
1), s

′
E).

We focus on neural perception functions, i.e., for each local state loc1, we
associate an NN classifier floc1

: SE → P(Per1) that returns a distribution over
percepts for each environment state sE ∈ SE . Then obs1(loc1, sE) = fmax

loc1
(sE),

where fmax
loc1

(sE) is the percept with the largest probability in floc1
(sE) (a tie-

breaking rule is applied if multiple percepts have the largest probability).

Motivating example: Pedestrian-vehicle interaction. A key challenge for
autonomous driving in urban environments is predicting pedestrians’ intentions
or actions. One solution is NN classifiers, e.g., trained on video datasets [30,29].
To illustrate our NS-POSG model, we consider decision making for an au-
tonomous vehicle using an NN-based intention estimation model for a pedestrian
at a crossing [29]. We use their simpler “vanilla” model, which takes two succes-
sive (relative) locations of the pedestrian (the top-left coordinates (x1, y1) and
(x2, y2) of two fixed size bounding boxes around the pedestrian) and classifies
its intention as: unlikely, likely or very likely to cross. We train a feed-forward
NN classifier with ReLU activation functions over the PIE dataset [29].

We build this perception mechanism into an NS-POSG model of a vehicle
yielding at a pedestrian crossing, based on [13], illustrated in Fig. 1. A pedestrian
further ahead at the side of the road may decide to cross and the vehicle must
decide how to adapt its speed. The first, partially-informed agent represents
the vehicle. It observes the environment (comprising the successive pedestrian
locations) using the NN-based perception mechanism to predict the pedestrian’s
intention. This is stored as a percept and its speed as its local state. The vehicle
chooses between selected (positive or negative) acceleration actions. The second
agent, the pedestrian, is fully informed, providing a worst-case analysis of the
vehicle decisions, and can decide to cross or return to the roadside. The goal of
the vehicle is to minimise the likelihood of a collision with the pedestrian, which
is achieved by associating a negative reward with this event.
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x1

y1

Fig. 1: Pedestrian-vehicle example. Left: Positions of two agents. Middle: Sample
images from the PIE dataset [29]. Right: Slices of learnt perception function,
where (x1, y1), (x2, y2) are two successive (relative) positions of the pedestrian.

Fig. 1 also shows selected slices of the state space decomposition obtained
by computing the pre-image [25] of the learnt NN classifier, for each of the
three predicted intentions. The decision boundaries are non-trivial, justifying
our goal of performing a formal analysis, but some intuitive characteristics can
be seen. When x2 ≥ x1, meaning that the pedestrian is stationary or moving
towards the roadside, it will generally be classified as unlikely to cross. We also
see the prediction model is cautious when trying to make an estimation if its
first observation is made from greater distance. More details are in Appx. E.

One-sided NS-POSG semantics. A one-sided NS-POSG C induces a POSG
JCK, where we restrict to states that are percept compatible, i.e., where per1 =
obs1(loc1, sE) for s = ((loc1, per1), sE). The semantics of a one-sided NS-POSG
is closed with respect to percept compatible states.

Definition 2 (Semantics) Given a one-sided NS-POSG C, as in Definition 1,
its semantics is the POSG JCK = (N,S,A, δ,O, Z) where:

– N = {1, 2} is a set of two agents and A = A1 ×A2;
– S ⊆ S1 × SE is the set of percept compatible states;
– for s = (s1, sE), s

′ = (s′1, s
′
E) ∈ S and a ∈ A where s1 = (loc1, per1) and

s′1 = (loc′1, per
′
1), we have δ(s, a)(s′) = δ1(s1, a)(loc

′
1)δE(loc1, sE , a)(s

′
E);

– O = O1 ×O2, where O1 = S1 and O2 = S;
– Z(s, a, s′) = (s′1, s

′) for s ∈ S, a ∈ A and s′ = (s′1, s
′
E) ∈ S.

Strategies. As JCK is a POSG, we consider (behaviour) strategies for the two
agents. Since Ag2 is fully informed, it can recover the beliefs of Ag1, thus re-
moving nested beliefs. Hence, the AOHs of Ag2 are equal to the histories of JCK,
i.e., FPathsJCK,2 = FPathsJCK. We also consider the stage strategies at a history
of JCK, which will later be required for solving the induced zero-sum normal-
form games in the minimax operator. For a history π of JCK, a stage strategy
for Ag1 is a distribution u1 ∈ P(A1) and a stage strategy for Ag2 is a function
u2 : S → P(A2), i.e., u2 ∈ P(A2 | S).
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Beliefs. Since Ag1 is partially informed, it may need to infer the current state
from its AOH. For an Ag1 state s1 = (loc1, per1), we let Ss1

E be the set of
environment states compatible with s1, i.e., S

s1
E = {sE ∈ SE | obs1(loc1, sE) =

per1}. Since the states of Ag1 are also the observations of Ag1 and states of JCK
are percept compatible, a belief for Ag1, which can also be reconstructed by
Ag2, can be represented as a pair b = (s1, b1), where s1 ∈ S1, b1 ∈ P(SE) and
b1(sE) = 0 for all sE ∈ SE \ Ss1

E . We denote by SB the set of beliefs of Ag1.
Given a belief (s1, b1), if action a1 is selected by Ag1, Ag2 is assumed to take

stage strategy u2 ∈ P(A2 | S) and s′1 is observed, then the updated belief of Ag1
via Bayesian inference is denoted (s′1, b

s1,a1,u2,s
′
1

1 ); see Appx. A for details.

4 Values of One-Sided NS-POSGs

We establish the value function of a one-sided NS-POSG C with semantics JCK,
which gives the minimax expected reward from an initial belief, and show its
convexity and continuity. Next, to compute it, we introduce minimax and max-
sup operators specialised for one-sided NS-POSGs, and prove their equivalence.
Finally, we provide a fixed-point characterisation of the value function.

Value function. We assume a fixed reward structure r and discount factor β.
The value function of C represents the minimax expected reward in each possible
initial belief of the game, given by V ⋆ : SB → R, where V ⋆(s1, b1) = Eσ⋆

(s1,b1)
[Y ]

for all (s1, b1) ∈ SB and σ⋆ is a minimax strategy profile of JCK.
The value function for zero-sum POSGs may not exist when the state space

is uncountable [14,2,31] as in our case. In this paper, we only consider one-sided
NS-POSGs that are determined, i.e., for which the value function exists.

Convexity and continuity. Since r is bounded, the value function V ⋆ has lower
and upper bounds L = mins∈S,a∈A r(s, a)/(1−β) and U = maxs∈S,a∈A r(s, a)/(1−
β). The proof of the following and all other results can be found in Appx. D.

Theorem 1 (Convexity and continuity). For s1 ∈ S1, V
⋆(s1, ·) : P(SE) →

R is convex and continuous, and for b1, b
′
1 ∈ P(SE) : |V ⋆(s1, b1)− V ⋆(s1, b

′
1)| ≤

K(b1, b
′
1) where K(b1, b

′
1) =

1
2 (U − L)

∫
sE∈S

s1
E

∣∣b1(sE)− b′1(sE)
∣∣dsE.

Minimax and maxsup operators. We give a fixed-point characterisation of
the value function V ⋆, first introducing a minimax operator and then simplifying
to an equivalent maxsup variant. The latter will be used in Section 5 to prove clo-
sure of our representation for value functions and in Section 6 to formulate HSVI.
For f : S → R and belief (s1, b1), let ⟨f, (s1, b1)⟩ =

∫
sE∈SE

f(s1, sE)b1(sE)dsE
and F(SB) denote the space of functions over the beliefs SB .

Definition 3 (Minimax) The minimax operator T : F(SB)→F(SB) is given by:

[TV ](s1, b1) = maxu1∈P(A1) minu2∈P(A2|S) E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

(a1,s′1)∈A1×S1
P (a1, s

′
1 | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s
′
1

1 ) (1)

for V ∈ F(SB) and (s1, b1) ∈ SB, where E(s1,b1),u1,u2
[r(s, a)] =

∫
sE∈SE

b1(sE)∑
(a1,a2)∈A u1(a1)u2(a2 | s1, sE)r((s1, sE), (a1, a2))dsE.
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Motivated by [19], which proposed an equivalent operator for the discrete case,
we instead prove that the minimax operator has an equivalent simplified form
over convex continuous functions of F(SB).

For Γ ⊆ F(S), we let ΓA1×S1 denote the set of vectors of elements of
the convex hull of Γ indexed by A1×S1. Furthermore, for u1 ∈ P(A1), α =
(αa1,s

′
1)(a1,s′1)∈A1×S1

∈ ΓA1×S1 and a2 ∈ A2, we define fu1,α,a2
: S → R to be

the function such that, for s ∈ S, we have the following:

fu1,α,a2
(s) =

∑
a1∈A1

u1(a1)r(s, (a1, a2))+

β
∑

(a1,s′1)∈A1×S1
u1(a1)

∑
s′E∈SE

δ(s, (a1, a2))(s
′
1, s

′
E)α

a1,s
′
1(s′1, s

′
E) , (2)

where the sum over s′E is due to the finite branching of δ(s, (a1, a2)); see Defn. 2.

Definition 4 (Maxsup) If Γ ⊆ F(S) and V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩ for
(s1, b1) ∈ SB, then the maxsup operator TΓ : F(SB) → F(SB) is defined as
[TΓV ](s1, b1) = maxu1∈P(A1)supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩ for (s1, b1) ∈ SB where
fu1,α(s) = mina2∈A2

fu1,α,a2
(s) for s ∈ S.

In the maxsup operator, u1 and α are aligned with Ag1’s goal of maximising the
objective, where u1 is over action distributions and α is over convex combinations
of elements of Γ . The minimisation by Ag2 is simplified to an optimisation over
its finite action set in the function fu1,α. Note that each state may require a
different minimiser a2, as Ag2 knows the current state before taking an action.

The maxsup operator avoids the minimisation over Markov kernels with con-
tinuous states in the original minimax operator. Given u1 and α, the minimisa-
tion can induce a pure best-response stage strategy u2 ∈ P(A2 | S) such that,
for any s ∈ S, u2(a

′
2 | s) = 1 for some a′2 ∈ argmina2∈A2 fu1,α,a2(s). Using

Theorem 1, the operator equivalence and fixed-point result are as follows.

Theorem 2 (Operator equivalence and fixed point). If Γ ⊆ F(S) and
V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩ for (s1, b1) ∈ SB, then the minimax operator T
and maxsup operator TΓ are equivalent and their unique fixed point is V ⋆.

5 P-PWLC Value Iteration

We next discuss a representation for value functions using piecewise constant
(PWC) α-functions, called P-PWLC (piecewise linear and convex under PWC ),
originally introduced in [37]. This representation extends the α-functions of
[28,6,39] for continuous-state POMDPs, but a key difference is that we work
with polyhedral representations (induced precisely from NNs) rather than ap-
proximations based on Gaussian mixtures [28] or beta densities [15].

We show that, given PWC representations for an NS-POSG’s perception,
reward and transition functions, and under mild assumptions on model structure,
P-PWLC value functions are closed with respect to the minimax operator. This
yields a (non-scalable) value iteration algorithm and, subsequently, the basis for
a more practical point-based HSVI algorithm in Section 6.

PWC representations. A finite connected partition (FCP) of S, denoted Φ, is
a finite collection of disjoint connected regions (subsets) of S that cover it.
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Definition 5 (PWC function) A function f : S → R is piecewise constant
(PWC) if there exists an FCP Φ of S such that f : ϕ → R is constant for ϕ ∈ Φ.
Let FC(S) be the set of PWC functions in F(S).

Since we focus on NNs for Ag1’s perception function obs1, it is PWC (as for
the one-agent case [37]) and the state space S of a one-sided NS-POSG can be
decomposed into a finite set of regions, each with the same observation. Formally,
there exists a perception FCP ΦP , the smallest FCP of S such that all states
in any ϕ ∈ ΦP are observationally equivalent, i.e., if (s1, sE), (s

′
1, s

′
E) ∈ ϕ, then

s1 = s′1. We can use ΦP to find the set Ss1
E for any agent state s1 ∈ S1. Given

an NN representation of obs1, the corresponding FCP ΦP can be extracted (or
approximated) offline by analysing its pre-image [25].

We also need to make some assumptions about the transitions and rewards
of one-sided NS-POSGs (in a similar style to [37]). Informally, we require that,
for any decomposition Φ′ of the state-space into regions (i.e., an FCP), there is a
second decomposition Φ, the pre-image FCP, such that states in regions of Φ have
the same rewards and transition probabilities into regions of Φ′. The transitions
of the (continuous) environment must also be decomposable into regions.

Assumption 1 (Transitions and rewards) Given any FCP Φ′ of S, there
exists an FCP Φ of S, called the pre-image FCP of Φ′, where for ϕ ∈ Φ, a ∈ A
and ϕ′ ∈ Φ′ there exists δΦ : (Φ×A) → P(Φ′) and rΦ : (Φ×A) → R such
that δ(s, a)(s′) = δΦ(ϕ, a)(ϕ

′) and r(s, a) = rΦ(ϕ, a) for s ∈ ϕ and s′ ∈ ϕ′. In
addition, δE can be expressed in the form

∑n
i=1 µiδ

i
E, where n ∈ N, µi ∈ [0, 1],∑n

i=1 µi = 1 and δiE : (Loc1×SE×A) → SE are piecewise continuous functions.

The need for this assumption also becomes clear in our later algorithms, which
compute a representation for an NS-POSG’s value function over a (polyhedral)
partition of the state space. This partition is created dynamically over the iter-
ations of the solution, using a pre-image based splitting operation.

We now show, using results for continuous-state POMDPs [37,28], that V ⋆ is
the limit of a sequence of α-functions, called piecewise linear and convex under
PWC α-functions, first introduced in [37] for NS-POMDPs.

Definition 6 (P-PWLC function) A function V : SB → R is piecewise lin-
ear and convex under PWC α-functions (P-PWLC) if there exists a finite set
Γ ⊆ FC(S) such that V (s1, b1) = maxα∈Γ ⟨α, (s1, b1)⟩ for (s1, b1) ∈ SB, where
the functions in Γ are called PWC α-functions.

If V ∈ F(SB) is P-PWLC, then it can be represented by a set of PWC func-
tions over S, i.e., as a finite set of FCP regions and a value vector. Recall that
⟨α, (s1, b1)⟩ =

∫
sE∈SE

α(s1, sE)b1(sE)dsE , so computing the value for a belief
involves integration. For one-sided NS-POSGs, we demonstrate, under Assump-
tion 1, closure of the P-PWLC representation for value functions under the
minimax operator and the convergence of value iteration.

LP, closure property and convergence. By showing that fu1,α,a2
in (2) is

PWC in S (Lemma 5 in Appx. D), we first use Theorem 2 to demonstrate that,
if V is P-PWLC, the minimax operation can be computed by solving an LP.
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Lemma 1 (LP for minimax and P-PWLC) If V ∈ F(SB) is P-PWLC, then
[TV ](s1, b1) is given by an LP for (s1, b1) ∈ SB.

Using Lemma 1, we show that the P-PWLC representation is closed under the
minimax operator. This closure property enables iterative computation of a se-
quence of such functions to approximate V ⋆ to within a convergence guarantee.

Theorem 3 (P-PWLC closure and convergence). If V ∈ F(SB) is P-
PWLC, then so is [TV ]. If V 0 ∈ F(SB) is P-PWLC, then the sequence (V t)∞t=0,
such that V t+1 = [TV t], is P-PWLC and converges to V ⋆.

An implementation of value iteration for one-sided NS-POSGs is therefore fea-
sible, since each α-function involved is PWC and thus allows for a finite rep-
resentation. However, as the number of α-functions grows exponentially in the
number of iterations, it is not scalable in practice.

6 Heuristic Search Value Iteration for NS-POSGs

To provide a more practical approach to solving one-sided NS-POSGs, we now
present a variant of HSVI (heuristic search value iteration) [33], an anytime
algorithm that approximates the value function V ⋆ via lower and upper bound
functions, updated through heuristically generated beliefs.

Our approach broadly follows the structure of HSVI for finite POSGs [19],
but every step presents challenges when extending to continuous states and NN-
based observations. In particular, we must work with integrals over beliefs and
deal with uncountability. Rather than using PWLC functions for lower bounds as
in [19], we switch to P-PWLC functions, resulting in different key ingredients to
prove convergence. Value computations are also much more complex because the
NN-based perception function induces a connected partition of regions (called
FCPs), which are used to compute images, pre-images and intersections.

We also build on ideas from HVSI for (single-agent) neuro-symbolic POMDPs
in [37]. The presence of two opposing agents brings three main challenges. First,
value backups at belief points require solving normal-form games instead of max-
imising over one agent’s actions. Second, since the first agent is not informed of
the joint action, in the value backups and belief updates of the maxsup operator
uncountably many stage strategies of the second agent have to be considered,
whereas, in the single-agent variant, the agent can decide the transition proba-
bilistically on its own. Third, the forward exploration heuristic is more complex
as it depends on the stage strategies of the agents in two-stage games.

6.1 Lower and Upper Bound Representations

We first discuss representing and updating the lower and upper bound functions.

Lower bound function. Selecting an appropriate representation for α-functions
requires closure properties with respect to the maxsup operator. Motivated
by [37], we represent the lower bound V Γ

lb ∈ F(SB) as the P-PWLC function
for a finite set Γ ⊆ FC(S) of PWC α-functions (see Definition 6), for which the
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closure is guaranteed by Theorem 3. The lower bound V Γ
lb has a finite represen-

tation as each α-function is PWC, and is initialised as in [19].

Upper bound function. The upper bound V Υ
ub ∈ F(SB) is represented by a

finite set of belief-value points Υ = {((si1, bi1), yi) ∈ SB × R | i ∈ I}, where yi is
an upper bound of V ⋆(si1, b

i
1). Similarly to [37], for any (s1, b1) ∈ SB , the upper

bound V Υ
ub(s1, b1) is the lower envelope of the lower convex hull of the points in

Υ satisfying the following LP problem: minimise∑
i∈Is1

λiyi +Kub(b1,
∑

i∈Is1

λib
i
1) subject to λi ≥ 0 and

∑
i∈Is1

λi = 1 (3)

for i ∈ Is1
where Is1 = {i ∈ I | si1 = s1} and Kub : P(SE) × P(SE) → R

measures the difference between two beliefs such that, if K is the function from
Theorem 1, then for any b1, b

′
1, b

′′
1 ∈ P(SE): Kub(b1, b1) = 0,

Kub(b1, b
′
1) ≥ K(b1, b

′
1) and |Kub(b1, b

′
1)−Kub(b1, b

′′
1)| ≤ Kub(b

′
1, b

′′
1) . (4)

Note that (3) is close to the upper bound in regular HSVI for finite-state spaces,
except for the functionKub that measures the difference between two beliefs (two
continuous-state functions). With respect to the upper bound for NS-POMDPs
[37], Kub here needs to satisfy an additional triangle property in (4) to ensure
the continuity of V Υ

ub , for the convergence of the point-based algorithm below.
The properties of Kub imply that (3) is an upper bound after a value backup,
as stated in Lemma 3 below. The upper bound V Υ

ub is initialised as in [19].

Lower bound updates. For the lower bound V Γ
lb , in each iteration we add a

new PWC α-function α⋆ to Γ at a belief (s1, b1) ∈ SB such that:

⟨α⋆, (s1, b1)⟩ = [TV Γ
lb ](s1, b1) = ⟨fp⋆

1 ,α
⋆ , (s1, b1)⟩ (5)

where the second equality follows from Lemma 1 and (p⋆1, α
⋆) is computed via

the optimal solution to the LP in Lemma 1 at (s1, b1).
Using p⋆1, α

⋆ and the perception FCP ΦP , Algorithm 1 computes a new α-
function α⋆ at belief (s1, b1). To guarantee (5) and improve efficiency, we only
compute the backup values for regions ϕ ∈ ΦP over which (s1, b1) has positive

probabilities, i.e., sϕ1 = s1 (where sϕ1 is the unique agent state appearing in ϕ)
and

∫
(s1,sE)∈ϕ

b1(sE)dsE > 0, and assign the trivial lower bound L otherwise.

For each region ϕ either α⋆(ŝ1, ŝE) = fp⋆
1 ,α

⋆(ŝ1, ŝE) or α⋆(ŝ1, ŝE) = L for
all (ŝ1, ŝE) ∈ ϕ. Computing the backup values in line 4 of Algorithm 1 state by
state is computationally intractable, as ϕ contains an infinite number of states.
However, the following lemma shows that α⋆ is PWC, allowing a tractable region-
by-region backup, called Image-Split-Preimage-Product (ISPP) backup, which
is adapted from the single-agent variant in [37]. The details of the ISPP backup
for one-sided NS-POSGs are in Appx. B. The lemma also shows that the lower
bound function increases and is valid after each update.

Lemma 2 (Lower bound) The function α⋆ generated by Algorithm 1 is a
PWC α-function satisfying (5), and if Γ ′ = Γ ∪ {α⋆}, then V Γ

lb ≤ V Γ ′

lb ≤ V ⋆.
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Algorithm 1 Point-based Update(s1, b1) of (V
Γ
lb , V

Υ
ub)

1: (p⋆1, α
⋆)← [TV Γ

lb ](s1, b1) via an LP in Lemma 1
2: for ϕ ∈ ΦP do
3: if sϕ1 = s1 and

∫
(s1,sE)∈ϕ

b1(sE)dsE > 0 then

4: α⋆(ŝ1, ŝE)← fp⋆1 ,α⋆(ŝ1, ŝE) for (ŝ1, ŝE) ∈ ϕ ▷ ISPP backup
5: else α⋆(ŝ1, ŝE)← L for (ŝ1, ŝE) ∈ ϕ

6: Γ ← Γ ∪ {α⋆}
7: y⋆ ← [TV Υ

ub ](s1, b1) via (1) and (3)
8: Υ ← Υ ∪ {((s1, b1), y⋆)}

Upper bound updates. For the upper bound V Υ
ub , due to representation (3),

at a belief (s1, b1) ∈ SB in each iteration, we add a new belief-value point
((s1, b1), y

⋆) to Υ such that y⋆ = [TV Υ
ub ](s1, b1). Computing [TV Υ

ub ](s1, b1) via
(1) and (3) requires the concrete formula for Kub and the belief representations.
Thus, we will show how to compute [TV Υ

ub ](s1, b1) when introducing belief rep-
resentations below. The following lemma shows that y⋆ ≥ V ⋆(s1, b1) required by
(3), and the upper bound function is decreasing and is valid after each update.

Lemma 3 (Upper bound) Given a belief (s1, b1) ∈ SB, if y
⋆ = [TV Υ

ub ](s1, b1),
then y⋆ is an upper bound of V ⋆ at (s1, b1), i.e., y

⋆ ≥ V ⋆(s1, b1), and if Υ ′ =
Υ ∪ {((s1, b1), y⋆)}, then V Υ

ub ≥ V Υ ′

ub ≥ V ⋆.

6.2 One-Sided NS-HSVI

Algorithm 2 presents our NS-HSVI algorithm for one-sided NS-POSGs.

Forward exploration heuristic. The algorithm uses a heuristic approach to
select which belief will be considered next. Similarly to finite-state one-sided
POSGs [19], we focus on a belief that has the highest weighted excess gap. The
excess gap at a belief (s1, b1) with depth t from the initial belief is defined by
excesst(s1, b1) = V Υ

ub(s1, b1) − V Γ
lb (s1, b1) − ρ(t), where ρ(0) = ε and ρ(t + 1) =

(ρ(t) − 2(U − L)ε̄)/β, and ε̄ ∈ (0, (1 − β)ε/(2U − 2L)). Using this excess gap,
the next action-observation pair (â1, ŝ1) for exploration is selected from:

argmax(a1,s′1)∈A1×S1
P (a1, s

′
1 | (s1, b1), uub

1 , ulb
2 )excesst+1(s

′
1, b

s1,a1,u
lb
2 ,s′1

1 ) . (6)

To compute the next belief via lines 8 and 9 of Algorithm 2, the minimax strat-
egy profiles in stage games [TV Γ

lb ](s1, b1) and [TV Υ
ub ](s1, b1), i.e., (u

ub
1 , ulb

2 ), are
required. Since V Γ

lb is P-PWLC, using Lemma 1, the strategy ulb
2 is obtained

by solving an LP. However, the computation of the strategy uub
1 depends on

the representation of (s1, b1) and the measure function Kub , and thus will be
discussed later. One-sided NS-HSVI has the following convergence guarantees.

Theorem 4 (One-sided NS-HSVI). For any (sinit1 , binit1 ) ∈ SB and ε > 0, Al-
gorithm 2 will terminate and upon termination: V Υ

ub(s
init
1 , binit1 )−V Γ

lb (s
init
1 , binit1 ) ≤

ε and V Γ
lb (s

init
1 , binit1 ) ≤ V ⋆(sinit1 , binit1 ) ≤ V Υ

ub(s
init
1 , binit1 ).
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Algorithm 2 One-sided NS-HSVI for one-sided NS-POSGs

1: while V Υ
ub(s

init
1 , binit1 )− V Γ

lb (s
init
1 , binit1 ) > ε do Explore((sinit1 , binit1 ), 0)

2: return V Γ
lb and V Υ

ub via sets Γ and Υ
3: function Explore((s1, b1), t)
4: (ulb

1 , u
lb
2 )← minimax strategy profile in [TV Γ

lb ](s1, b1)
5: (uub

1 , uub
2 )← minimax strategy profile in [TV Υ

ub ](s1, b1)
6: Update(s1, b1) ▷ Algorithm 1
7: (â1, ŝ1)← select according to forward exploration heuristic

8: if P (â1, ŝ1 | (s1, b1), uub
1 , ulb

2 )excesst+1(ŝ1, b
s1,â1,u

lb
2 ,ŝ1

1 ) > 0 then

9: Explore((ŝ1, b
s1,â1,u

lb
2 ,ŝ1

1 ), t+ 1)
10: Update(s1, b1) ▷ Algorithm 1

6.3 Belief Representation and Computations

Implementing one-sided NS-HSVI depends on belief representations, as closed
forms are needed. We use the popular particle-based representation [28,10], which
can approximate arbitrary beliefs and handle non-Gaussian systems. However,
compared to region-based representations [37], it is more vulnerable to distur-
bances and can require many particles for good approximation.

Particle-based beliefs. A particle-based belief (s1, b1) ∈ SB is represented by a
weighted particle set {(siE , κi)}Nb

i=1 with a normalised weight κi for each particle
siE ∈ SE , where b1(sE) =

∑Nb

i=1κiD(sE − siE) for sE ∈ SE and D(sE − siE) is a
Dirac delta function centred at 0.

To implement one-sided NS-HSVI using particle-based beliefs, we prove that
V Γ
lb and V Υ

ub are eligible representations, as the belief update b
s1,a1,u2,s

′
1

1 , ex-
pected values ⟨α, (s1, b1)⟩, ⟨r, (s1, b1)⟩ and probability P (a1, s

′
1 | (s1, b1), u1, u2)

are computed as simple summations for a particle-based belief (s1, b1) (Appx. A).

Lower bound. Since V Γ
lb is P-PWLC with PWC α-functions Γ , for a particle-

based belief (s1, b1) represented by {(siE , κi)}Nb
i=1, using Definition 6, V Γ

lb (s1, b1) =

maxα∈Γ

∑Nb

i=1 κiα(s1, s
i
E). The stage game [TV Γ

lb ](s1, b1) and minimax strategy
profile (ulb

1 , u
lb
2 ) follow from solving the LP in Lemma 1.

Upper bound. To compute V Υ
ub in (3), we need a function Kub to measure be-

lief differences that satisfies (4). We take Kub = K, which does so by definition.
Given Υ = {((si1, bi1), yi) | i ∈ I}, the upper bound and stage game can be com-
puted by solving an LP, respectively, as demonstrated by the following theorem,
and then the minimax strategy profile (uub

1 , uub
2 ) is synthesised (see Appx. C).

Theorem 5 (LPs for upper bound). For a particle-based belief (s1, b1) ∈ SB,
V Υ
ub(s1, b1) and [TV Υ

ub ](s1, b1) are the optimal value of an LP, respectively.

7 Experimental Evaluation

We have built a prototype implementation in Python, using Gurobi [16] to solve
the LPs needed for computing lower and upper bound values, and the minimax
values and strategies of one-shot games. We use the Parma Polyhedra Library [1]
to operate over polyhedral pre-images of NNs, α-functions and reward structures.
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Step 0 Step 1 Step 2 Step 3

(a)

(b)

Fig. 2: Simulations of strategies for the pursuer, showing actual location (red),
perceived location (blue), belief of evader location (green) and strategy (pink)
for two different NN perception functions: (a) more precise; (b) coarser.

Our evaluation uses two one-sided NS-POSG examples: a pursuit-evasion
game and the pedestrian-vehicle scenario from Section 3. Below, we discuss the
applicability and usefulness of our techniques on these examples. Due to limited
space, we refer to Appx. E for more details of the models, including the training
of the ReLU NN classifiers, and emprirical results on performance.

Pursuit-evasion. A pursuit-evasion game models a pursuer trying to catch
an evader aiming to avoid capture. We build a continuous-space variant of the
model from [19] inspired by mobile robotics applications [8,20]. The environment
includes the exact position of both agents. The (partially informed) pursuer uses
an NN classifier to perceive its own location, which maps to one of 3×3 grid cells.
To showcase the ability of our methodology to assess the performance of realistic
NN perception functions, we train two NNs, the second with a coarser accuracy.

Fig. 2 shows simulations of strategies synthesised for the pursuer, using the
two different NNs. Its actual location is a red dot, and the pink arrows denote the
strategy. Blue squares show the cell that is output by the pursuer’s perception
function, and black lines mark the underlying polyhedral decomposition. The
pursuer’s belief over the evader’s location is shown by the green shading and
annotated probabilities; it initially (correctly) believes that the evader is in cell
C and the belief evolves based on the optimal counter-strategy of the evader.

The plots illustrate that our approach can be used to synthesise and explore
non-trivial strategies for agents using NN-based perception in a partially ob-
servable setting. We can further study the impact of a poorly trained perception
function. Fig. 2(b), for the coarser NN, shows that the pursuer repeatedly mis-
detects its location because the shapes of grid cells are poorly approximated, and
subsequently takes incorrect actions. This is exploited by the evader, leading to
considerably worse performance for the pursuer.
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(a) (b) (c)

Fig. 3: Simulations of strategies for the vehicle, plotted as the pedestrian’s cur-
rent position (x2, y2) relative to it. Also shown: perceived pedestrian intention
(green/yellow/red = unlikely/likely/very likely to cross), current speed (orange),
acceleration (black) and crash region (shaded purple region).

Pedestrian-vehicle interaction. Fig. 3 shows several simulations from strate-
gies synthesised for the pedestrian-vehicle example described in Section 3 (Fig. 1),
plotting the position (x2, y2) of the pedestrian, relative to the vehicle. We fix
the pedestrian’s strategy, to simulate a crossing scenario: it moves from right
to left, i.e., decreasing x2. The (partially informed) vehicle’s perception function
predicts the intention of the pedestrian (green/yellow/red = unlikely/likely/very
likely to cross), shown as coloured dots. Above and below each circle, we indicate
the acceleration actions taken (black) and current speeds (orange), respectively,
which determine the distance y2 to the pedestrian crossing.

Again, we use our approach to investigate the feasibility of generating strate-
gies for agents deploying realistic NN-based perception functions. In this case,
the goal is to avoid a crash scenario, denoted by the shaded region at the bottom
left of the plots. We find that, in many cases, safe strategies can be synthesised.
Fig. 3(a) shows an example; notice that the pedestrian intention is detected early.
This is not true in (b) and (c), which show two simulations from a strategy and
starting point where the perception function results in a much later detection;
(c) shows we were then unable to synthesise strategy that is always safe.

8 Conclusions

We proposed one-sided neuro-symbolic POSGs, designed to reason formally
about partially observable agents equipped with neural perception mechanisms.
We characterised the value function for discounted infinite-horizon rewards, and
designed, implemented and evaluated a HSVI algorithm for approximate solu-
tion. Computational complexity is high due to expensive polyhedra operations.
Nevertheless, our method provide an important baseline that can reason about
true decision boundaries for game models with NN-based perception, against
which efficiency improvements can later be benchmarked. We plan to study re-
stricted two-sided NS-POSGs, e.g., with public observations [18].

Acknowledgements. This project was funded by the ERC under the European
Union’s Horizon 2020 research and innovation programme (FUN2MODEL, grant
agreement No.834115).
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A Probability Measure Computations

The main paper omits details of how to compute several required quantities in
terms of probability measures via closed forms. We provide these details below.

Belief updates. Section 3 (p. 6) discusses belief updates for agent Ag1 of a
one-sided NS-POSG. Given a belief (s1, b1), if action a1 is selected by Ag1, Ag2
is assumed to take the stage strategy u2 ∈ P(A2 | S) and s′1 is observed, then

the updated belief of Ag1 via Bayesian inference is (s′1, b
s1,a1,u2,s

′
1

1 ) where for
s′E ∈ SE :

b
s1,a1,u2,s

′
1

1 (s′E) =
P ((s′1, s

′
E) | (s1, b1), a1, u2)

P (s′1 | (s1, b1), a1, u2)
if s′E ∈ S

s′1
E and 0 otherwise. (7)

On the other hand, if it is assumed that a joint action a is taken, then the

updated belief of Ag1 is (s′1, b
s1,a,s

′
1

1 ), where for s′E ∈ SE :

b
s1,a,s

′
1

1 (s′E) =
P ((s′1, s

′
E) | (s1, b1), a)

P (s′1 | (s1, b1), a)
if s′E ∈ S

s′1
E and 0 otherwise. (8)

We now show how to compute the probability values given in the belief up-
dates (7) and (8). Recalling that s1 = (loc1, per1), for (7), using the syntax in
Definition 1, P (s′1 | (s1, b1), a1, u2) equals∫

sE∈SE
b1(sE)

∑
a2∈A2

u2(a2 | s1, sE)
∫
s′E∈SE

δ((s1, sE), (a1, a2))(s
′
1, s

′
E)dsE (9)

and if s′E ∈ S
s′1
E , then P ((s′1, s

′
E) | (s1, b1), a1, u2) equals∫

sE∈SE
b1(sE)

∑
a2∈A2

u2(a2 | s1, sE)δ((s1, sE), (a1, a2))(s′1, s′E)dsE .

For (8), we have that P (s′1 | (s1, b1), a) equals∫
sE∈SE

b1(sE)
∫
s′E∈SE

δ((s1, sE), a)(s
′
1, s

′
E)dsE

and if s′E ∈ S
s′1
E , then P ((s′1, s

′
E) | (s1, b1), a) equals∫

sE∈SE
b1(sE)δ((s1, sE), a)(s

′
1, s

′
E)dsE .

Particle-based beliefs. Section 6.3 discusses computation of particle-based be-
liefs. For a particle-based belief (s1, b1) with weighted particle set {(siE , κi)}Nb

i=1,

it follows from (7) that for belief b
s1,a1,u2,s

′
1

1 we have, for any s′E ∈ SE , that

b
s1,a1,u2,s

′
1

1 (s′E) equals∑Nb

i=1 κi

(∑
a2∈A2

u2(a2 | s1, siE)δ((s1, siE), (a1, a2))(s′1, s′E)
)

∑Nb

i=1 κi

(∑
a2∈A2

u2(a2 | s1, siE)
(∑

s′′E∈SE
δ((s1, siE), (a1, a2))(s

′
1, s

′′
E)

)) (10)

if s′E ∈ S
s′1
E and equals 0 otherwise. Similarly, we can compute ⟨α, (s1, b1)⟩,

⟨r, (s1, b1)⟩ and P (a1, s
′
1 | (s1, b1), u1, u2) as simple summations.
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Algorithm 3 Image-Split-Preimage-Product (ISPP) backup over a region

Input: region ϕ, action p⋆1, PWC functions α⋆

1: Ā1 ← {a1 ∈ A1 | p⋆1(a1) > 0}
2: Loc′a ← {loc′1 ∈ Loc1 | δ1(sϕ1 , a)(loc′1) > 0} for a ∈ Ā1 ×A2, Φproduct ← ϕ
3: for a = (a1, a2) ∈ Ā1 ×A2, loc

′
1 ∈ Loc′a, i = 1, . . . , Ne do

4: ϕ′
E ← {δiE(sE , a) | (sϕ1 , sE) ∈ ϕ} ▷ Image

5: Φimage ← divide ϕ′
E into regions over S by obs1(loc

′
1, ·)

6: Φsplit ← ∅ ▷ Split
7: for ϕimage ∈ Φimage do

8: Φα ← a constant-FCP of S for the PWC function α⋆a1,s
ϕimage

1

9: Φsplit ← Φsplit ∪ {ϕimage ∩ ϕ′ | ϕ′ ∈ Φα}
10: Φpre ← ∅ ▷ Preimage
11: for ϕimage ∈ Φsplit do
12: Φpre ← Φpre ∪ {(sϕ1 , sE) ∈ ϕ | δiE(sE , a) ∈ ϕimage}
13: Φproduct ← {ϕ1 ∩ ϕ2 | ϕ1 ∈ Φpre ∧ ϕ2 ∈ Φproduct} ▷ Product

14: Φproduct ← {ϕ1 ∩ ϕ2 | ϕ1 ∈ Φproduct ∧ ϕ2 ∈
∑

a∈Ā1×A2
Φa

R}
15: for ϕproduct ∈ Φproduct do ▷ Value backup
16: Take one state (ŝ1, ŝE) ∈ ϕproduct

17: α⋆(ϕproduct)← fp⋆1 ,α⋆(ŝ1, ŝE)

18: return: (Φproduct, α
⋆)

B Image-Split-Preimage-Product (ISPP) Backup

We provide here the Image-Split-Preimage-Product (ISPP) backup for one-sided
NS-POSGs, adapted from the single-agent variant in [37], as used for a region-
by-region backup in line 4 of Algorithm 1 (Section 6.1).

For FCPs Φ1 and Φ2 of S, we denote by Φ1 + Φ2 the smallest FCP of S
such that Φ1 + Φ2 is a refinement of both Φ1 and Φ2, which can be obtained by
taking all the intersections between regions of Φ1 and Φ2. We call the FCP Φ in
Definition 5 the constant-FCP of S for a PWC function f ∈ FC(S). Recall from

Assumption 1 that δE can be represented as
∑Ne

i=1 µiδ
i
E .

Algorithm 3 shows the ISPP backup method. This method, inspired by
Lemma 2, is to divide a region ϕ into subregions where for each subregion α⋆ is
constant. Given any reachable local state loc′1 under a and continuous transition
function δiE , the image of ϕ under a and δiE to loc′1 is divided into image regions
Φimage such that the states in each region have a unique agent state. Each image
region ϕimage is then split into subregions by a constant-FCP of the PWC func-

tion αa1,s
ϕimage

1 by pairwise intersections where a = (a1, a2), and thus Φimage is
split into a set of refined image regions Φsplit. An FCP over ϕ, denoted by Φpre,
is constructed by computing the pre-image of each ϕimage ∈ Φsplit to ϕ. Finally,
the product of these FCPs Φpre for all reachable local states and environment
functions and reward FCPs {Φa

R | a ∈ Ā1 ×A2}, denoted Φproduct, is computed.
The following lemma demonstrates that α⋆ is constant in each region of Φproduct,
and therefore that line 4 of Algorithm 1 can be computed by finite backups.
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Lemma 4 (ISPP backup) The FCP Φproduct returned by Algorithm 3 is a
constant-FCP of ϕ for α⋆ and the region-by-region backup for α∗ satisfies the
line 4 of Algorithm 1.

Proof. For the PWC α-functions in the input of Algorithm 3, if Φa1,s′1
is an

FCP of S for αa1,s
′
1 , then let Φ =

∑
a1∈Ā1,s′1∈S1

Φa1,s′1
, i.e., Φ is the smallest

refinement of these FCPs.
According to Assumption 1, there exists a preimage-FCP of Φ for each joint

action a. Through the image, split, pre-image and product operations of Algo-
rithm 3, all the states in any region ϕ′ ∈ Φproduct reach the same regions of Φ.

Since each α-function αa1,s
′
1 is constant over each region in Φ, all states in ϕ′

have the same backup value from αa1,s
′
1 for a1 ∈ Ā1 and s′1 ∈ S1. This implies

that Φproduct is the product of the preimage-FCPs of Φ for all a ∈ Ā1×A2. Since
the value backup in line 4 of Algorithm 1 is used for each region in Φproduct and
the image is from the region ϕ, then Φproduct is a constant-FCP of ϕ for α⋆, and
thus the value backup in line 4 of Algorithm 1 for α⋆ is achieved by considering
the regions of Φproduct. ⊓⊔

C Linear Programs

We provide some linear programs (LPs) and their dual versions, omitted for space
reasons in the main paper, in particular for the stage games [TV Γ

lb ](s1, b1) and

[TV Υ
ub ](s1, b1). Consider a particle-based belief (s1, b1) represented by {(siE , κi)}Nb

i=1.

Stage game over the lower bound. Using Lemma 1 and its extended version
Lemma 6, the LP (33) for the stage game [TV Γ

lb ](s1, b1) is simplified to the LP
over the variables:

– (vsiE )
Nb
i=1;

– (λ
a1,s

′
1

α )(a1,s′1)∈A1×S1,α∈Γ ;
– (pa1)a1∈A1 ;

and is given by maximise
∑Nb

i=1 κivsiE subject to:

vsiE ≤
∑

a1∈A1
pa1r((s1, s

i
E), (a1, a2)) + β

∑
(a1,s′1)∈A1×S1,s′E∈SE

δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

∑
α∈Γ λ

a1,s
′
1

α α(s′1, s
′
E)

λ
a1,s

′
1

α ≥ 0

pa1 =
∑

α∈Γλ
a1,s

′
1

α∑
a1∈A1

pa1 = 1 (11)

for all 1 ≤ i ≤ Nb, a2 ∈ A2, (a1, s
′
1) ∈ A1 × S1 and α ∈ Γ .

The dual of LP problem (11) is over the variables:

– v;
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– (va1,s′1
)(a1,s′1)∈A1×S1

;

– (p
s1,s

i
E

a2 )a2∈A2,1≤i≤Nb
;

and is given by minimise v subject to:

v ≥
∑Nb

i=1

∑
a2∈A2

p
s1,s

i
E

a2 r((s1, s
i
E), (a1, a2)) + β

∑
s′1∈S1

va1,s′1

va1,s′1
≥

∑Nb

i=1

∑
a2∈A2

p
s1,s

i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)α(s

′
1, s

′
E)∑

a2∈A2
p
s1,s

i
E

a2 = κi (12)

for all a1 ∈ A1, (a1, s
′
1) ∈ A1 × S1, α ∈ Γ and 1 ≤ i ≤ Nb.

By solving (11) and (12), we obtain the minimax strategy profile in the stage

game [TV Γ
lb ](s1, b1): u

lb
1 (a1) = p⋆a1 for a1 ∈ A1 and ulb

2 (a2 | s1, siE) = p
⋆s1,s

i
E

a2 /κi

for 1 ≤ i ≤ Nb and a2 ∈ A2.

Stage game over the upper bound. The LP for the stage game [TV Υ
ub ](s1, b1)

is over the variables:

– v;

– (c
a1,s

′
1

s′
E

)
(a1,s′1)∈A1×S1∧s′

E
∈S

a1,s′1
E

;

– (λ
a1,s

′
1

k )(a1,s′1)∈A1×S1,k∈Is′
1

;

– (p
s1,s

i
E

a2 )1≤i≤Nb,a2∈A2

and is given by minimise v subject to:

v ≥
∑Nb

i=1

∑
a2∈A2

κip
s1,s

i
E

a2 r((s1, s
i
E), (a1, a2))

+ β
∑

s′1∈S1

∑
k∈Is′

1

λ
a1,s

′
1

k yk + 1
2β(U − L)

∑
s′1∈S1

∑
s′E∈S

a1,s′1
E

c
a1,s

′
1

s′
E

c
a1,s

′
1

s′
E

≥
∣∣∣∑Nb

i=1

∑
a2∈A2

κip
s1,s

i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

−
∑

k∈Is′
1

λ
a1,s

′
1

k P (s′E ; b
k
1)
∣∣∣∑

k∈Is′
1

λ
a1,s

′
1

k =
∑Nb

i=1

∑
a2∈A2,s′E∈SE

κip
s1,s

i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

λ
a1,s

′
1

k ≥ 0

p
s1,s

i
E

a2 ≥ 0∑
a2∈A2

p
s1,s

i
E

a2 = 1 (13)

for all a1 ∈ A1, (a1, s
′
1) ∈ A1 ×S1 and s′E ∈ S

a1,s
′
1

E , k ∈ Is′
1
, a2 ∈ A2 and 1 ≤ i ≤

Nb where S
a1,s

′
1

E = {s′E ∈ SE |
∑

a2∈A2
b
s1,a1,a2,s

′
1

1 (s′E) +
∑

k∈Is′
1

bk1(s
′
E) > 0}.

The dual of LP problem (13) is the following LP problem over the variables:
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– (vsiE )1≤i≤Nb
;

– (va1,s′1
)(a1,s′1)∈A1×S1

;
– (pa1)a1∈A1 ;
– (da1,s′1,s

′
E
)
(a1,s′1)∈A1×S1∧s′E∈S

a1,s′1
E

;

– (ea1,s′1,s
′
E
)
(a1,s′1)∈A1×S1∧s′E∈S

a1,s′1
E

;

and is given by maximise
∑Nb

i=1 κivsiE subject to:

vsiE ≤
∑

a1∈A1
pa1r((s1, s

i
E), (a1, a2)) + β

∑
a1∈A1,s′1∈S1,s′E∈S

a1,s′1
E

δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)(va1,s′1

+ da1,s′1,s
′
E
− ea1,s′1,s

′
E
)

va1,s′1
≤ ykp

a1 −
∑

s′E∈S
a1,s′1
E

(da1,s′1,s
′
E
− ea1,s′1,s

′
E
)P (s′E ; b

k
1)

da1,s′1,s
′
E
− ea1,s′1,s

′
E

≤ 1
2 (U − L)

da1,s′1,s
′
E

≥ 0

ea1,s′1,s
′
E

≥ 0

pa1 ≥ 0∑
a1∈A1

pa1 = 1 (14)

for all a2 ∈ A2 and 1 ≤ i ≤ Nb, (a1, s
′
1) ∈ A1×S1, k ∈ Is′

1
and s′E ∈ S

a1,s
′
1

E where

S
a1,s

′
1

E = {s′E ∈ SE | ∃1 ≤ i ≤ Nb.∃a2 ∈ A2. δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E) > 0}.

By solving (13) and (14), we obtain the minimax strategy profile in stage game

[TV Υ
ub ](s1, b1): u

ub
1 (a1) = p⋆a1 for a1 ∈ A1 and uub

2 (a2 | s1, siE) = p
⋆s1,s

i
E

a2 for
1 ≤ i ≤ Nb and a2 ∈ A2.

D Proofs of Main Results

We provide here the proofs of the results from the main paper.

Proof (Proof of Theorem 1). Given s1 ∈ S1, we first prove that V ⋆(s1, ·)
is convex and continuous. For any b1 ∈ P(SE), since V ⋆(s1, b1) is the lower
value of Y , then V ⋆(s1, b1) = supσ1∈Σ1

infσ2∈Σ2
Eσ1,σ2

(s1,b1)
[Y ]. We define a payoff

function Vσ1
: P(SE) → R to be the objective of the sup optimisation in the

lower value such that for b1 ∈ P(SE) we have Vσ1
(s1, b1) = infσ2∈Σ2

Eσ1,σ2

(s1,b1)
[Y ].

Note that the value Vσ1
(s1, b1) is the expected reward of σ1 against the best-

response strategy σ2, from the initial belief (s1, b1). Since Ag2 can observe the
true initial state (s1, sE) where sE is sampled from b1, and thus can play a
state-wise best-response to each initial state (s1, sE), the value Vσ1

(s1, b1) can
be rewritten as:

Vσ1(s1, b1) =
∫
sE∈SE

b1(sE)
(
infσ2∈Σ2 E

σ1,σ2

(s1,sE)[Y ]
)
dsE . (15)
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Thus, Vσ1
(s1, ·) is a linear function in the belief b1 ∈ P(SE). Since V ⋆(s1, b1) =

supσ1∈Σ1
Vσ1

(s1, b1) and any point-wise supremum of linear functions is convex
and continuous (it follows from the convexity and continuity in the discrete
case, see [19, Proposition 5.9]), we can conclude that V ⋆(s1, ·) is convex and
continuous.

Regarding the inequality in Theorem 1, for any b1, b
′
1 ∈ P(SE), we have:∫

sE∈S
s1
E
b1(sE)dsE =

∫
sE∈S

s1
E
b′1(sE)dsE = 1 . (16)

Now, letting S>
E = {sE ∈ Ss1

E | b1(sE) − b′1(sE) > 0} and S≤
E = {sE ∈ Ss1

E |
b1(sE) − b′1(sE) ≤ 0}, rearranging (16) and using the fact that S>

E ∪ S≤
E = Ss1

E

it follows that:∫
sE∈S

≤
E
(b1(sE)− b′1(sE))dsE = −

∫
sE∈S>

E
(b1(sE)− b′1(sE))dsE

from which we have:∫
sE∈S

s1
E
|b1(sE)− b′1(sE)|dsE =

∫
sE∈S>

E∪S
≤
E
|b1(sE)− b′1(sE)|dsE

=
∫
sE∈S>

E
(b1(sE)− b′1(sE))dsE −

∫
sE∈S

≤
E
(b1(sE)− b′1(sE))dsE

= 2
∫
sE∈S>

E
(b1(sE)− b′1(sE))dsE (17)

and thus, using (17) and [37, Theorem 2], the inequality in Theorem 1 holds. ⊓⊔

Theorem 6 (Operator equivalence and fixed point, extended version
of Theorem 2). If Γ ⊆ F(S) and V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩ for (s1, b1) ∈
SB, then the minimax operator T and maxsup operator TΓ are equivalent, i.e.,
for (s1, b1) ∈ SB we have:

[TV ](s1, b1) = maxu1∈P(A1)minu2∈P(A2|S)E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

a1∈A1

∑
s′1∈S1

P ((a1, s
′
1) | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s
′
1

1 ) (18)

= minu2∈P(A2|S)maxu1∈P(A1)E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

a1∈A1

∑
s′1∈S1

P ((a1, s
′
1) | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s
′
1

1 ) (19)

= maxu1∈P(A1)supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩ (20)

= [TΓV ](s1, b1) .

Moreover, the unique fixed point of T and TΓ is V ⋆.

Proof. Considering any V ∈ F(SB) and Γ ⊆ F(S) such that:

V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩ for all (s1, b1) ∈ SB . (21)

Operator equivalence. We first show that the operators T and TΓ are equiv-
alent. We first define a payoff function J : P(A1) × P(A2 | S) → R to be the
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objective of the maximin and minimax optimisation in (18) and (19) such that
for u1 ∈ P(A1) and u2 ∈ P(A2 | S):

J(u1, u2) = E(s1,b1),u1,u2
[r(s, a)]+

β
∑

a1∈A1

∑
s′1∈S1

P (a1, s
′
1 | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s
′
1

1 ) . (22)

Now for any belief (s1, b1) ∈ SB such that s1 = (loc1, per1), action a1 ∈ A1,
agent state s′1 ∈ S1 and stage strategy u2 ∈ P(A2 | S), letting P1 ≜ P (s′1 |
(s1, b1), a1, u2) by (21) we have:

V (s′1, b
s1,a1,u2,s

′
1

1 ) = supα∈Γ ⟨α, (s′1, b
s1,a1,u2,s

′
1

1 )⟩

= supα∈Γ

∫
s′E∈SE

α(s′1, s
′
E)b

s1,a1,u2,s
′
1

1 (s′E)ds
′
E rearranging

= supα∈Γ

∫
s′E∈SE

α(s′1, s
′
E)

P ((s′1, s
′
E) | (s1, b1), a1, u2)

P (s′1 | (s1, b1), a1, u2)
ds′E by (7)

=
1

P1
supα∈Γ

∫
s′E∈SE

α(s′1, s
′
E)P ((s′1, s

′
E) | (s1, b1), a1, u2)ds

′
E rearranging

=
1

P1
supα∈Γ

(∫
s′E∈SE

α(s′1, s
′
E)

∫
s′E∈S

s′1
E ∧sE∈SE

b1(sE)
∑

a2∈A2
u2(a2 | s1, sE)

· δ((s1, sE), (a1, a2))(s′1, s′E)dsE
)
ds′E by (9)

=
1

P1
supα∈Γ

(∫
sE∈SE

(∫
s′E∈S

s′1
E

α(s′1, s
′
E)

∑
a2∈A2

u2(a2 | s1, sE)

· δ((s1, sE), (a1, a2))(s′1, s′E)ds′E
)
b1(sE)dsE rearranging. (23)

Next, for any α ∈ F(S), s′1 ∈ S1, a1 ∈ A1 and u2 ∈ P(A2 | S) we let αa1,u2,s
′
1 :

S → R be the function where for any s = ((loc1, per1), sE) ∈ S:

αa1,u2,s
′
1(s) =

∫
s′E∈S

s′1
E

α(s′1, s
′
E)

∑
a2
u2(a2 | s)δ(s, (a1, a2))(s′1, s′E)ds′E

=
∑

a2
u2(a2 | s)

∑
s′E∈SE

δ(s, (a1, a2))(s
′
1, s

′
E)α(s

′
1, s

′
E) (24)

and the summation in s′E is due to the finite branching of δ. Combining (23)
and (24) we have:

V (s′1, b
s1,a1,u2,s

′
1

1 ) =
1

P1
supα∈Γ

∫
sE∈SE

αa1,u2,s
′
1(s1, sE)b1(sE)dsE

=
1

P (s′1 | (s1, b1), a1, u2)
supα∈Γ ⟨αa1,u2,s

′
1 , (s1, b1)⟩ (25)

by definition of P1. Substituting (25) into (22), the payoff function J(u1, u2)
equals:

E(s1,b1),u1,u2
[r(s, a)] + β

∑
a1,s′1

u1(a1)P (s′1 | (s1, b1), a1, u2)V (s′1, b
s1,a1,u2,s

′
1

1 )

= E(s1,b1),u1,u2
[r(s, a)] + β

∑
a1,s′1

u1(a1)supα∈Γ ⟨αa1,u2,s
′
1 , (s1, b1)⟩ . (26)
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We next show that the von Neumann’s Minimax Theorem [27] applies to the
game JCK with the payoff function J and strategy spaces P(A1) and P(A2 | S).
This theorem requires that P(A1) and P(A2 | S) are compact convex sets (which
is straightforward to show) and that J is a continuous function that is concave-
convex, i.e.,

– J(·, u2) is concave for fixed u2 ∈ P(A2 | S);
– J(u1, ·) is convex for fixed u1 ∈ P(A1).

By Definition 3 the expectation E(s1,b1),u1,u2
[r(s, a)] can be rewritten as:∑

a1
u1(a1)

∫
sE∈SE

b1(sE)
∑

a2
u2(a2 | s1, sE)r((s1, sE), (a1, a2))dsE

and thus, E(s1,b1),u1,u2
[r(s, a)] is bilinear in u1 and u2, and thus concave in P(A1)

and convex in P(A2 | S).
We next show that u1(a1) supα∈Γ ⟨αa1,u2,s

′
1 , (s1, b1)⟩ is continuous and con-

cave in u1 ∈ P(A1) and convex in u2 ∈ P(A2 | S). The continuity and concavity
in u1 ∈ P(A1) follows directly as it is linear in u1 ∈ P(A1). For u2 ∈ P(A2 | S),
we consider the function f(u2) = ⟨αa1,u2,s

′
1 , (s1, b1)⟩. By (24) we have that f(u2)

equals:∫
sE∈SE

∑
a2
u2(a2 | s1, sE)

∑
s′E∈SE

δ((s1, sE), (a1, a2))(s
′
1, s

′
E)α(s

′
1, s

′
E)b1(sE)dsE

and therefore f(u2) is linear in u2. Since the point-wise maximum over linear
functions is continuous and convex, it follows that supα∈Γ f(u2) is continuous

and convex in u2 ∈ P(A2 | S), and hence u1(a1) supα∈Γ ⟨αa1,u2,s
′
1 , (s1, b1)⟩ is

continuous and convex in u2 ∈ P(A2 | S). According to von Neumann’s Minimax
theorem:

maxu1∈P(A1) minu2∈P(A2|S) J(u1, u2) = minu2∈P(A2|S) maxu1∈P(A1) J(u1, u2)

and hence the equality between (18) and (19) holds.
Next we prove the equality of (18) and (20). Letting Conv(Γ ) be the convex

hull of Γ , recall that ΓA1×S1 is the set of vectors of functions in Conv(Γ ) indexed
by the elements of A1 × S1. The function J(u1, u2) in (26) can be rewritten as
follows:

supα∈ΓA1×S1

(
E(s1,b1),u1,u2

[r(s, a)]

+ β
∑

a1∈A1,s′1∈S1
u1(a1)⟨αa1,u2,s

′
1 , (s1, b1)⟩

)
(27)

where ᾱ = (αa1,s
′
1)a1∈A1,s′1∈S1

, and given u1 and u2, the supremum over Γ only
depends on a1 and s′1 and using the same arguments as [19, Proposition 4.11]
we have:

supα∈Γ ⟨α, (s1, b1)⟩ = supα∈Conv(Γ )⟨α, (s1, b1)⟩

for (s1, b1) ∈ SB . We next define the game with strategy spaces ΓA1×S1 and
P(A2 | S) and payoff function Ju1

: ΓA1×S1 × P(A2 | S) → R where for α ∈
ΓA1×S1 and u2 ∈ P(A2 | S):

Ju1
(α, u2) = E(s1,b1),u1,u2

[r(s, a)] + β
∑

a1∈A1,s′1∈S1
u1(a1)⟨αa1,u2,s

′
1 , (s1, b1)⟩
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= E(s1,b1),u1,u2
[r(s, a)] + β

∑
a1∈A1,s′1∈S1

u1(a1)
∫
sE∈SE

(∑
a2∈A2

u2(a2 | s1, sE)

·
∑

s′E∈SE
δ((s1, sE), (a1, a2))(s

′
1, s

′
E)α

a1,s
′
1(s′1, s

′
E)

)
b1(sE)dsE by (24). (28)

Substituting (27) and (28) into (18) we have:

maxu1∈P(A1)minu2∈P(A2|S)J(u1, u2)

= maxu1∈P(A1)minu2∈P(A2|S)supα∈ΓA1×S1Ju1
(α, u2) . (29)

We next show that Sion’s Minimax Theorem [32] applies to the game with strat-
egy spaces ΓA1×S1 and P(A2 | S) and payoff function Ju1

. Sion’s Minimax
Theorem requires that:

– ΓA1×S1 is convex;
– P(A2 | S) is compact and convex;
– for any u2 ∈ P(A2 | S) the function Ju1(·, u2) : ΓA1×S1 → R is upper

semicontinuous and quasi-concave;
– for any α ∈ ΓA1×S1 the function Ju1

(α, ·) : P(A2 | S) → R is lower semicon-
tinuous and quasi-convex.

The first properties clearly hold and the second to follow from (28) which demon-
strate that both Ju1

(·, u2) and Ju1
(α, ·) are linear.

Therefore using Sion’s Minimax Theorem, we have:

minu2∈P(A2|S) supα∈ΓA1×S1 Ju1(α, u2) = supα∈ΓA1×S1 minu2∈P(A2|S) Ju1(α, u2)

and combining with (29) it follows that maxu1∈P(A1) minu2∈P(A2|S) J(u1, u2) equals:

maxu1∈P(A1) supα∈ΓA1×S1 minu2∈P(A2|S) Ju1
(α, u2)

= maxu1∈P(A1) supα∈ΓA1×S1 minu2∈P(A2|S)

∫
sE∈SE

∑
a2
u2(a2 | s1, sE)

∑
a1
u1(a1)

·r((s1, sE), (a1, a2))b1(sE)dsE + β
∫
sE∈SE

(∑
a2
u2(a2 | s1, sE)

∑
a1,s′1

u1(a1)

·
∑

s′E∈SE
δ((s1, sE), (a1, a2))(s

′
1, s

′
E)α(s

′
1, s

′
E)

)
b1(sE)dsE by (28)

= maxu1∈P(A1) supα∈ΓA1×S1

∫
sE∈SE

minu2∈P(A2|S)

∑
a2
u2(a2 | s1, sE)(∑

a1
u1(a1)r((s1, sE), (a1, a2)) + β

∑
a1,s′1

u1(a1)∑
s′E∈SE

δ((s1, sE), (a1, a2))(s
′
1, s

′
E)α(s

′
1, s

′
E)

)
b1(sE)dsE rearranging

= maxu1∈P(A1) supα∈ΓA1×S1

∫
sE∈SE

mina2∈A2

(∑
a1
u1(a1)r((s1, sE), (a1, a2))

+β
∑

a1,s′1
u1(a1)

∑
s′E∈SE

δ((s1, sE), (a1, a2))(s
′
1, s

′
E)α(s

′
1, s

′
E)

)
b1(sE)dsE

since Ag2 is fully informed

= maxu1∈P(A1) supα∈ΓA1×S1

∫
sE∈SE

(
mina2∈A2 fu1,α,a2(s1, sE)

)
b1(sE)dsE

by (2)

= maxu1∈P(A1) supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩ by Definition 4
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which demonstrates that (18) and (20) are equal, i.e., T and TΓ are equivalent.

Fixed point. To show the unique fixed point of T and TΓ is V ⋆. We first prove
that V ⋆ is a fixed point of the operator T , i.e., V ⋆ = [TV ⋆]. According to the
proof of Theorem 1, for (s1, b1) ∈ SB the value function V ⋆ can be represented
by:

V ⋆(s1, b1) = supσ1∈Σ1
Vσ1(s1, b1)

= supσ1∈Σ1

∫
sE∈SE

b1(sE)
(
infσ2∈Σ2 E

σ1,σ2

(s1,sE)[Y ]
)
dsE by (15)

= supσ1∈Σ1
⟨infσ2∈Σ2 E

σ1,σ2

(s1,sE)[Y ], (s1, b1)⟩

= supα∈Γ ⟨α, (s1, b1)⟩

where Γ ≜ {infσ2∈Σ2
Eσ1,σ2

(s1,sE)[Y ] | σ1 ∈ Σ1}. According to the operator equiva-

lence above, we have:

[TV ⋆](s1, b1) = maxu1∈P(A1)supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩ (30)

for all (s1, b1) ∈ SB , where ΓA1×S1 ≜ {{αa1,s
′
1}a1∈A1,s′1∈S1

| αa1,s
′
1 ∈ Conv(Γ )}

and Γ is given above. Now, by following the same argument as in the proof of [19,
Lemma 6.7], we can show that V ⋆(s1, b1) = [TV ⋆](s1, b1) for all (s1, b1) ∈ SB ,
i.e., V ⋆ = [TV ⋆].

Next we demonstrate that the operator T is a contraction mapping on the
space F(SB) with respect to the supremum norm ∥J∥ = sup(s1,b1)∈SB

|J(s1, b1)|.
Therefore consider any J1, J2 ∈ F(SB) and for any belief (s1, b1) ∈ SB , let
(u1⋆

1 , u1⋆
2 ) and (u2⋆

1 , u2⋆
2 ) be the minimax strategy profiles in the stage games

[TJ1](s1, b1) and [TJ2](s1, b1), respectively. Also, let J̄1(u1, u2) and J̄2(u1, u2) be
the values of state (s1, b1) of the stage game under the strategy pair (u1, u2) ∈
P(A1) × P(A2 | S) when computing the backup values in (22) for J1 and J2,
respectively. Without loss of generality, we assume [TJ1](s1, b1) ≤ [TJ2](s1, b1),
and thus since (u1⋆

1 , u1⋆
2 ) is minimax strategy profile for [TJ1](s1, b1):

J̄1(u
2⋆
1 , u1⋆

2 ) ≤ J̄1(u
1⋆
1 , u1⋆

2 )

= [TJ1](s1, b1) by definition of J̄1

≤ [TJ2](s1, b1) without loss of generality

= J̄2(u
2⋆
1 , u2⋆

2 ) by definition of J̄2

≤ J̄2(u
2⋆
1 , u1⋆

2 ) since (u2⋆
1 , u2⋆

2 ) is minimax strategy. (31)

Now using (31) for any (s1, b1) ∈ SB we have

|[TJ2](s1, b1)− [TJ1](s1, b1)| ≤ J̄2(u
2⋆
1 , u1⋆

2 )− J̄1(u
2⋆
1 , u1⋆

2 )

= β
∑

a1,s′1
P (a1, s

′
1 | (s1, b1), u2⋆

1 , u1⋆
2 )

(
J2(s

′
1, b

s1,a1,u
1⋆
2 ,s′1

1 )− J1(s
′
1, b

s1,a1,u
1⋆
2 ,s′1

1 )
)

by (22)

≤ β
∑

a1,s′1
P (a1, s

′
1 | (s1, b1), u2⋆

1 , u1⋆
2 )∥J2 − J1∥ by definition of ∥ · ∥
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= β∥J2 − J1∥ since P (· | (s1, b1), u2⋆
1 , u1⋆

2 ) is a distribution. (32)

Now by definition of the supremum norm:

∥[TJ2]− [TJ1]∥ = sup(s1,b1)∈SB
|[TJ2](s1, b1)− [TJ1](s1, b1)|

≤ sup(s1,b1)∈SB
β∥J2 − J1∥ by (32)

= β∥J2 − J1∥ rearranging

and hence, since β ∈ (0, 1), we have that T is a contraction mapping. Thus,
the fact that the value function V ⋆ is the unique fixed point of T now follows
directly from Banach’s fixed point theorem. ⊓⊔

Lemma 5 (PWC function) For any a ∈ A, s′1 ∈ S1 and α ∈ FC(S), if α
a,s′1 :

S → R is the function where for any s ∈ S:

αa,s′1(s) =
∑

(s′1,s
′
E)∈Θa

s
δ(s, a)(s′1, s

′
E)α(s

′
1, s

′
E)

then αa,s′1 is PWC.

Proof. Let a = (a1, a2). Since α is PWC, there exists an FCP Φ of S such that
α is constant in each region of Φ. According to Assumption 1, there exists a
pre-image FCP Φ′ of Φ+ΦP for joint action a, where ΦP is the perception FCP
for Ag1. Consider any region ϕ′ ∈ Φ′ and let ϕ be any region of Φ+ΦP such that
Θa

s ∩ ϕ ̸= ∅ for all s ∈ ϕ′. Since ΦP is the perception FCP for Ag1, there exists
s′1 ∈ S1 such that if s′ ∈ ϕ, then s′ = (s′1, s

′
E) for some s′E ∈ SE and let ϕE =

{sE ∈ SE | (s′1, sE) ∈ ϕ}. If s, s̃ ∈ ϕ′ such that s = (s1, sE) and s̃ = (s̃1, s̃E),
then using Assumption 1 we have

∑
s′∈Θa

s∩ϕ δ(s, a)(s
′) =

∑
s̃′∈Θa

s̃∩ϕ δ(s̃, a)(s̃
′)

and s1 = s̃1. Now combining this fact with Definition 2, it follows that:∑
(s′1,s

′
E)∈Θa

s∧s′E∈ϕE
δ(s, a)(s′1, s

′
E) =

∑
(s′1,s̃

′
E)∈Θa

s̃∧s̃′E∈ϕE
δ(s̃, a)(s′1, s̃

′
E) .

Since αa1,s
′
1(s′1, s

′
E) = αa1,s

′
1(s′1, s̃

′
E) for any (s′1, s

′
E), (s

′
1, s̃

′
E) ∈ ϕ and S

s′1
E =

{s′E ∈ SE | obs1(loc′1, s′E) = per ′1} is equal to {ϕE | ϕ ∈ Φs′1} for some finite set

of regions Φs′1 ⊆ Φ+ ΦP , it follows that∑
(s′1,s

′
E)∈Θa

s∧s′E∈S
s′1
E

δ(s, a)(s′1, s
′
E)α

a1,s
′
1(s′1, s

′
E)

=
∑

(s′1,s̃
′
E)∈Θa

s̃∧s̃′E∈S
s′1
E

δ(s̃, a)(s′1, s̃
′
E)α

a1,s
′
1(s′1, s̃

′
E)

and therefore αa,s′1(s) = αa,s′1(s̃), implying that αa,s′1 is constant in each region
of Φ′. ⊓⊔

Lemma 6 (LP for minimax and P-PWLC, extended Lemma 1) If V ∈
F(SB) is P-PWLC with PWC α-functions Γ , for any (s1, b1) ∈ SB, [TV ](s1, b1)

is given by the LP over the real-valued variables (vϕ)ϕ∈ΦΓ
, (λ

a1,s
′
1

α )(a1,s′1)∈A1×S1,α∈Γ

and (pa1)a1∈A1
:

maximise
∑

ϕ∈ΦΓ
vϕ

∫
(s1,sE)∈ϕ

b1(sE)dsE subject to
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vϕ ≤
∑

a1∈A1
pa1r((s1, sE), (a1, a2)) + β

∑
a1,s′1,s

′
E
δ((s1, sE), (a1, a2))(s

′
1, s

′
E)

·
∑

α∈Γ λ
a1,s

′
1

α α(s′1, s
′
E)

λ
a1,s

′
1

α ≥ 0,

pa1=
∑

α∈Γλ
a1,s

′
1

α∑
a1∈A1

pa1=1 (33)

for all ϕ ∈ ΦΓ , a2 ∈ A2, (a1, s
′
1) ∈ A1 × S1 and α ∈ Γ where sE ∈ ϕ. Moreover,

if (v⋆, λ
⋆

1, p
⋆
1) is the optimal solution to the LP (33), then the maximiser of the

maxsup operator in Definition 4 is (p⋆1, α
⋆), where α⋆ ∈ ΓA1×S1 is such that for

(a1, s
′
1) ∈ A1×S1, if a1 ∈ A1 and p⋆a1 > 0, then α⋆a1,s

′
1 =

∑
α∈Γ (λ

⋆a1,s
′
1

α /p⋆a1)α

and α⋆a1,s
′
1(s) = L for all s ∈ S otherwise.

Proof. Since V is P-PWLC, then according to Definitions 4 and 6 and Theo-
rem 2:

[TV ](s1, b1) = maxu1∈P(A1)supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩
= maxu1∈P(A1)supα∈ΓA1×S1

∫
sE∈SE

(
mina2

fu1,α,a2
(s1, sE)

)
b1(sE)dsE (34)

which can be formulated as the following optimization problem:

[TV ](s1, b1) =maxu1∈P(A1),α∈ΓA1×S1 ,v

∑
ϕ∈ΦΓ

vϕ
∫
(s1,sE)∈ϕ

b1(sE)dsE

subject to vϕ ≤ fu1,α,a2(s1, sE) for all ϕ ∈ ΦΓ and a2 ∈ A2

where v = (vϕ)ϕ∈ΦΓ
, fu1,α,a2 is constant over ϕ and (s1, sE) ∈ ϕ. Using (2), the

constraint vϕ ≤ fu1,α,a2(s1, sE) can be written as:

vϕ ≤
∑

a1∈A1
u1(a1)r((s1, sE), (a1, a2))

+ β
∑

(a1,s′1)∈A1×S1,s′E∈SE
u1(a1)δ((s1, sE), (a1, a2))(s

′
1, s

′
E)α

a1,s
′
1(s′1, s

′
E).

Since αa1,s
′
1 ∈ Conv(Γ ), we have αa1,s

′
1 =

∑
α∈Γ λ

a1,s
′
1

α α for some vector of

real-values (λ
a1,s

′
1

α )(a1,s1)∈A1×S1
such that

∑
α∈Γ λ

a1,s
′
1

α = 1, and therefore:

vϕ ≤
∑

a1∈A1
u1(a1)r((s1, sE), (a1, a2)) + β

∑
(a1,s′1)∈A1×S1,s′E∈SE

u1(a1)δ((s1, sE), (a1, a2))(s
′
1, s

′
E)

∑
α∈Γ λ

a1,s
′
1

α α(s′1, s
′
E)

=
∑

a1∈A1
pa1r((s1, sE), (a1, a2))+

+ β
∑

(a1,s′1)∈A1×S1,s′E∈SE
δ((s1, sE), (a1, a2))(s

′
1, s

′
E)

∑
α∈Γ λ

a1,s
′
1

α α(s′1, s
′
E)

where pa1 = u1(a1) for all a1 ∈ A1 and in the equality we scale λ
a1,s

′
1

α = pa1λ
a1,s

′
1

α

for all a1 ∈ A1, s
′
1 ∈ S1 and α ∈ Γ , which gives the constraints:

λ
a1,s

′
1

α ≥ 0
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pa1 =
∑

α∈Γλ
a1,s

′
1

α∑
a1∈A1

pa1 = 1

and hence the fact we can solve the LP problem (33) to compute [TV ](s1, b1)
follows directly. ⊓⊔

Proof (Proof of Theorem 3). P-PWLC closure. Consider the LP in Lemma 1,
i.e., (33) in the extended Lemma 6, which computes the minimax or maxsup
backup [TV ](s1, b1) when V is P-PWLC. The polytope of feasible solutions of
the LP defined by the constraints is independent of the environment belief b1,
because b1 only appears in the objective. Therefore, the set Qs1 of vertices of
this polytope is also independent of b1. For each b1 ∈ P(SE), the optimal value
of an LP representing [TV ](s1, b1) can be found with the vertices Qs1 , as the
objective is linear in V̂ for any given b1. There is a finite number of vertices
q ∈ Qs1 , and each vertex q ∈ Qs1 corresponds to some assignment of variables
uq
1 and αq (uq

1 and αq are computed by (33)). Since Qs1 is finite, then letting
Q = {q ∈ Qs1 | s1 ∈ S1}, which is finite, we have:

[TV ](s1, b1) = maxq∈Q⟨fuq
1,α

q , (s1, b1)⟩ .

Moreover, since fu1,α,a2
is PWC for any u1 ∈ P(A1), α ∈ ΓA1×S1 and a2 ∈ A2,

then it follows from Definition 4, the function fup
1 ,α

p is PWC. This implies that
[TV ] ∈ F(SB) and P-PWLC.

Convergence. Using the fixed point in Theorem 2, the conclusion directly fol-
lows from Banach’s fixed point theorem and the fact we have proved in Theo-
rem 3 that if V ∈ F(SB) and P-PWLC, so is [TV ]. ⊓⊔

Proof (Proof of Lemma 2). By following the proof of Theorem 3 and how p⋆1
and α⋆ are constructed, we can easily verify that in Algorithm 1 α⋆ is a PWC
α-function satisfying (5).

For V1, V2 ∈ F(SB), we use the notation V1 ≤ V2 if V1(ŝ1, b̂1) ≤ V2(ŝ1, b̂1) for

all (ŝ1, b̂1) ∈ SB . Since Γ ′ = Γ ∪ {α⋆}, then it follows from Definition 6 that
V Γ
lb ≤ V Γ ′

lb .
In Algorithm 1, if the backup at line 4 is executed, then the maxsup operator

is applied to some states in ϕ which may result in non-optimal minimax backup
for other states in ϕ, and if the backup at line 5 is executed, α⋆ is assigned the
lower bound L over ϕ. Therefore we have for any (ŝ1, b̂1) ∈ SB :

⟨α⋆, (ŝ1, b̂1)⟩ ≤ [TV Γ
lb ](ŝ1, b̂1)

≤ [TV ⋆](ŝ1, b̂1) since V Γ
lb ≤ V ⋆

= V ⋆(ŝ1, b̂1) by Theorem 2. (35)

Combining this inequality with V Γ
lb ≤ V ⋆, we have V Γ ′

lb ≤ V ⋆ as required. ⊓⊔

Proof (Proof of Lemma 3). Combining Theorem 1, (3) and (4), the conclusion
can be obtained by following the argument in the proof of [37, Lemma 4] for NS-
POMDPs. ⊓⊔
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The following lemma is required to prove the convergence of the algorithm.

Lemma 7 (Finite terminal belief points) For any t ≥ 0, if Ψt ⊆ SB of
belief points where the trials performed by the procedure Explore of Algorithm 2
terminated at exploration depth t, then Ψt is a finite set.

Proof. Consider any t ≥ 0 and suppose that Ψt ⊆ SB is the set of belief points
where the trials performed by the procedure Explore terminated at depth t.
In order to prove that Ψt is a finite set, we first need to show the following
continuity of the lower and upper bounds. Using the same argument in the
proof Theorem 1, we can prove that the lower bound V Γ

lb also has the continuity
property of Theorem 1, i.e., for any (s1, b1), (s1, b

′
1) ∈ SB :

|V Γ
lb (s1, b1)− V Γ

lb (s1, b
′
1)| ≤ K(b1, b

′
1) . (36)

We still consider two beliefs (s1, b1), (s1, b
′
1) ∈ SB . Let (λ

⋆′
i )i∈Is1

be the solution
for V Υ

ub(s1, b
′
1) in (3), i.e.,

V Υ
ub(s1, b

′
1) =

∑
i∈Is1

λ⋆′
i yi +Kub(b

′
1,
∑

i∈Is1

λ⋆′
i b

i
1) . (37)

Now since (λ⋆′
i )i∈Is1

satisfies the constraints in (3) for Is1
, it follows that:

V Υ
ub(s1, b1) ≤

∑
i∈Is1

λ⋆′
i yi +Kub(b1,

∑
i∈Is1

λ⋆
i b

i
1)

=
(
V Υ
ub(s1, b

′
1)−Kub(b

′
1,
∑

i∈Is1

λ⋆
i b

i
1)
)
+Kub(b1,

∑
i∈Is1

λ⋆′
i b

i
1) by (37)

= V Υ
ub(s1, b

′
1) +

(
Kub(b1,

∑
i∈Is1

λ⋆′
i b

i
1)−Kub(b

′
1,
∑

i∈Is1

λ⋆
i b

i
1)
)

rearranging

≤ V Υ
ub(s1, b

′
1) +Kub(b1, b

′
1) by (4).

Using similar steps we can also show that:

V Υ
ub(s1, b

′
1) ≤ V Υ

ub(s1, b1) +Kub(b1, b
′
1)

and hence:
|V Υ

ub(s1, b1)− V Υ
ub(s1, b

′
1)| ≤ Kub(b1, b

′
1) . (38)

Let a belief point (st1, b
t
1) ∈ Ψt. Since the procedure Explore terminates at (st1, b

t
1)

with exploration depth t, then the action-observation pair (â1, ŝ1) computed by
(6) (from line 7 of Algorithm 2) satisfies

P (â1, ŝ1 | (st1, bt1), uub
1 , ulb

2 )excesst+1(ŝ1, b
st1,â1,u

lb
2 ,ŝ1

1 ) ≤ 0 .

Thus, for any (a1, s
′
1) ∈ A1×S1, if P (a1, s

′
1 | (st1, bt1), uub

1 , ulb
2 ) > 0, then we have

excesst+1(s
′
1, b

st1,a1,u
lb
2 ,s′1

1 ) ≤ 0, i.e.,

V Υ
ub(s

′
1, b

st1,a1,u
lb
2 ,s′1

1 )− V Γ
lb (s

′
1, b

st1,a1,u
lb
2 ,s′1

1 ) ≤ ρ(t+ 1) . (39)

Let (ulb
1 , u

lb
2 ) and (uub

1 , uub
2 ) be the minimax strategy profiles in stage games

[TV Γ
lb ](s

t
1, b

t
1) and [TV Υ

ub ](s
t
1, b

t
1), respectively. Then, we denote by J lb(u1, u2)
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and Jub(u1, u2) the value of the stage game at (st1, b
t
1) under the strategy pair

(u1, u2) ∈ P(A1)× P(A2 | S) when computing the backup values in (22) via V Γ
lb

and V Υ
ub , respectively. Thus, since (ulb

1 , u
lb
2 ) is a minimax strategy profile:

J lb(uub
1 , ulb

2 ) ≤ J lb(ulb
1 , u

lb
2 )

= [TV Γ
lb ](s

t
1, b

t
1) by definition of J lb

≤ [TV Υ
ub ](s

t
1, b

t
1) by Lemmas 2 and 3

= Jub(uub
1 , uub

2 ) by definition of Jub

≤ Jub(uub
1 , ulb

2 ) (uub
1 , uub

2 ) is a minimax strategy profile. (40)

Now using (40) we have:

[TV Υ
ub ](s

t
1, b

t
1)− [TV Γ

lb ](s
t
1, b

t
1) ≤ Jub(uub

1 , ulb
2 )− J lb(uub

1 , ulb
2 )

= β
∑

a1,s′1∈A1×S1
P (a1, s

′
1 | (st1, bt1), uub

1 , ulb
2 )

(V Γ
ub(s

′
1, b

st1,a1,u
lb
2 ,s′1

1 )− V Γ
lb (s

′
1, b

st1,a1,u
lb
2 ,s′1

1 )) by (22)

≤ β
∑

a1,s′1∈A1×S1
P (a1, s

′
1 | (st1, bt1), uub

1 , ulb
2 )ρ(t+ 1) by (39)

= βρ(t+ 1) since P is a distribution. (41)

Substituting (41) into the excess gap excesst(s
t
1, b

t
1) we have that the excess gap

after performing the point-based update at (st1, b
t
1) in line 10 of Algorithm 2:

excesst(s
t
1, b

t
1) ≤ βρ(t+ 1)− ρ(t)

= ρ(t)− 2(U − L)ε̄− ρ(t) by definition of ρ(t+ 1)

= −2(U − L)ε̄ rearranging.

Due to the continuity (36) and (38), for any (s1, b1), (s1, b
′
1) ∈ SB , we have

V Υ
ub(s1, b1)− V Γ

lb (s1, b1) ≤ V Υ
ub(s1, b

′
1)− V Γ

lb (s1, b
′
1) + 2Kub(b1, b

′
1) . (42)

Now, for every belief (st1, b1) ∈ SB satisfying Kub(b1, b
t
1) ≤ (U−L)ε̄, substituting

(42) into the excess gap excesst(s
t
1, b1):

excesst(s
t
1, b1) ≤ V Υ

ub(s
t
1, b

t
1)− V Γ

lb (s
t
1, b

t
1) + 2Kub(b1, b

t
1)− ρ(t)

βρ(t+ 1) + 2Kub(b1, b
t
1)− ρ(t) by (41)

≤ ρ(t)− 2(U − L)ε̄+ 2Kub(b1, b
t
1)− ρ(t) by definition of ρ(t+ 1)

≤ −2(U − L)ε̄+ 2(U − L)ε̄ since Kub(b1, b
t
1) ≤ (U − L)ε̄

= 0 rearranging

which means that (st1, b1) /∈ Ψt. Since P(SE) is compact and thus totally bounded,
we can conclude that Ψt is finite. ⊓⊔

Proof (Proof of Theorem 4). By the choice of ε̄, the sequence (ρ(t))t∈N is
monotonically increasing and unbounded. Since L ≤ V Γ

lb (sB) ≤ V Υ
ub(sB) ≤ U for
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all sB ∈ SB , the difference between V Γ
lb and V Υ

ub is bounded by U−L. Therefore,
there exists Tmax such that ρ(Tmax) ≥ U−L ≥ V Υ

ub(sB)−V Γ
lb (sB) for all sB ∈ SB ,

and therefore the recursive procedure Explore always terminates.
To demonstrate that Algorithm 2 terminates, we reason about the sets Ψt ⊆

SB of belief points where the trials performed by the procedure Explore termi-
nated at exploration depth t. Initially, Ψt = ∅ for every 0 ≤ t < Tmax. Whenever
the Explore recursion terminates at exploration depth t (i.e., the condition on
line 9 does not hold), the belief stB (which was the last belief considered during
the trial) is added into the set Ψt, i.e., Ψt ≜ Ψt∪{stB}. Since the agent state space
S1 is finite and the number of possible termination depth is finite (0 ≤ t < Tmax)
and the set Ψt is finite by Lemma 7, the algorithm has to terminate. Then, com-
bining Lemmas 2 and 3, the conclusion follows directly. ⊓⊔

Lemma 8 (LP for upper bound) For particle-based belief (s1, b1), let P (sE ; b1)
be the probability of particle sE under b1. Consider the function Kub = K, i.e.,

Kub(b1, b
′
1) =

1
2 (U − L)

∑
b1(sE)+b′1(sE)>0|P (sE ; b1)− P (sE ; b

′
1)| . (43)

Then, V Υ
ub(s1, b1) is the optimal value of the LP:

minimise
∑

k∈Is1

λkyk + 1/2(U − L)
∑

sE∈S+
E
csE subject to

csE ≥ |P (sE ; b1)−
∑

k∈Is1

λkP (sE ; b
k
1)|, λk ≥ 0 and

∑
k∈Is1

λk = 1

for sE ∈ S+
E and k ∈ Is1

, where S+
E = {sE ∈ SE | b1(sE) +

∑
k∈Is1

bk1(sE) > 0}.

Proof. The result follows directly from (3) and (43). ⊓⊔

Theorem 7 (LP for minimax operator over upper bound, extended
version of Theorem 5). For the function Kub, see (43), and particle-based
belief (s1, b1) represented by {(siE , κi)}Nb

i=1, we have that [TV Υ
ub ](s1, b1) is the op-

timal value of the LP (13).

Proof. We first prove that given any s1 ∈ S1, V
Υ
ub(s1, ·) is a convex function.

Consider any two beliefs b1, b
′
1 ∈ P(SE) and τ, τ ′ ≥ 0 such that τ + τ ′ = 1. Let

(λ⋆
k)k∈Is1

and (λ′⋆
k )k∈Is1

be optimal solutions of (3) for V Υ
ub(s1, b1) and V Υ

ub(s1, b
′
1)

respectively, i.e.,

V Υ
ub(s1, b1) =

∑
k∈Is1

λ⋆
kyk +Kub(b1,

∑
k∈Is1

λ⋆
kb

k
1)

V Υ
ub(s1, b

′
1) =

∑
k∈Is1

λ′⋆
k yk +Kub(b

′
1,
∑

k∈Is1

λ′⋆
k b

k
1) . (44)

From the constraints of (3) it follows that:

τλ⋆
k + τ ′λ′⋆

k ≥ 0 for all k ∈ Is1 and
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k ) = 1. (45)

Also let:

S1
E = {sE ∈ SE | b1(sE) + b′1(sE) +

∑
k∈Is1

bk1(sE) > 0} (46)
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S2
E = {sE ∈ SE | b1(sE) +

∑
k∈Is1

bk1(sE) > 0} (47)

S3
E = {sE ∈ SE | b′1(sE) +

∑
k∈Is1

bk1(sE) > 0} . (48)

Now using (43) and (46) we have:

Kub(τb1 + τ ′b′1,
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )b
k
1)

= 1
2 (U − L)

∑
sE∈S1

E
|τb1(sE) + τ ′b′1(sE)−

∑
k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )b
k
1(sE)|

≤ 1
2 (U − L)

∑
sE∈S1

E

(∣∣∣τ(b1(sE)−∑
k∈Is1

λ⋆
kb

k
1(sE)

)
+ τ ′

(
b′1(sE)−

∑
k∈Is1

λ′⋆
k b

k
1(sE)

)∣∣∣) rearranging

= 1
2 (U − L)

∑
sE∈S1

E

(
τ |b1(sE)−

∑
k∈Is1

λ⋆
kb

k
1(sE)|

+ τ ′|b′1(sE)−
∑

k∈Is1

λ′⋆
k b

k
1(sE)|

)
since τ, τ ′ ≥ 0

= 1
2 (U − L)τ

∑
sE∈S2

E

∣∣b1(sE)−∑
k∈Is1

λ⋆
kb

k
1(sE)

∣∣
+ 1

2 (U − L)τ ′
∑

sE∈S3
E

∣∣b′1(sE)−∑
k∈Is1

λ′⋆
k b

k
1(sE)

∣∣ by (47) and (48)

= τKub(b1,
∑

k∈Is1

λ⋆
kb

k
1) + τ ′Kub(b

′
1,
∑

k∈Is1

λ′⋆
k b

k
1) (49)

Next, from (3) we have:

V Υ
ub(s1, τb1 + τ ′b′1) = min(λk)k∈Is1

∑
k∈Is1

λkyk +Kub(τb1 + τ ′b′1,
∑

k∈Is1

λkb
k
1)

≤
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )yk +Kub(τb1 + τ ′b′1,
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )b
k
1) by (45)

≤
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )yk + τKub(b1,
∑

k∈Is1

λ⋆
kb

k
1)

+ τ ′Kub(b
′
1,
∑

k∈Is1

λ′⋆
k b

k
1) by (49)

= τV Υ
ub(s1, b1) + τ ′V Υ

ub(s1, b
′
1) by (44)

and hence V Υ
ub(s1, ·) is convex in P(SE).

The inequality (38) shows that V Υ
ub(s1, ·) is continuous in P(SE). By following

the proof of [19, Proposition 4.12], we can prove that there exists a set Γ ′ of
functions F(S) such that V Υ

ub(s1, b1) = supα∈Γ ′⟨α, (s1, b1)⟩ for all (s1, b1) ∈ SB .
Therefore, according to Theorem 2, for any (s1, b1) ∈ SB :

[TV Υ
ub ](s1, b1) = maxu1∈P(A1)minu2∈P(A2|S)E(s1,b1),u1,u2

[r(s, a)]

+ β
∑

a1,s′1
P (a1, s

′
1 | (s1, b1), u1, u2)V

Υ
ub(s

′
1, b

s1,a1,u2,s
′
1

1 )

= minu2∈P(A2|S)maxu1∈P(A1)E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

a1,s′1
P (a1, s

′
1 | (s1, b1), u1, u2)V

Υ
ub(s

′
1, b

s1,a1,u2,s
′
1

1 ) . (50)

We now define a payoff function J : P(A1)× P(A2 | S) → R to be the objective
of the maximin and minimax optimisation in (50) such that for u1 ∈ P(A1) and
u2 ∈ P(A2 | S), letting E1 = E(s1,b1),u1,u2

[r(s, a)], pa1 = u1(a1), p
a1,u2,s

′
1 =
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P (s′1 | (s1, b1), a1, u2) then we have:

J(u1, u2) = E1 + β
∑

a1,s′1
pa1pa1,u2,s

′
1V Υ

ub(s
′
1, b

s1,a1,u2,s
′
1

1 )

= E1 + β
∑

a1,s′1∈A1×S1
pa1pa1,u2,s

′
1min(λk)k∈I

s′
1(∑

k∈Is′
1

λkyk +Kub

(
b
s1,a1,u2,s

′
1

1 ,
∑

k∈Is′
1

λkb
s1,a1,u2,s

′
1

1

))
by (3).

Now combining this with (43) we have:

J(u1, u2) = E1 + β
∑

a1,s′1
pa1pa1,u2,s

′
1V Υ

ub(s
′
1, b

s1,a1,u2,s
′
1

1 )

= E1 + β
∑

a1,s′1∈A1×S1
pa1pa1,u2,s

′
1minν,d

(∑
k∈Is′

1

νkyk + 1
2 (U − L)

∑
sE∈S+

E
dsE

)
where

ν = (ν
a1,s

′
1

k )(a1,s′1)∈A1×S1,k∈Is′
1

and c = (d
a1,s

′
1

s′
E

)
(a1,s′1)∈A1×S1,s′E∈S

a1,s′1
E

are real-valued vectors of variables subject to the following linear constraint

d
a1,s

′
1

s′E
≥ |P (s′E ; b

s1,a1,u2,s
′
1

1 )−
∑

k∈Is′
1

ν
a1,s

′
1

k P (s′E ; b
k
1)|

ν
a1,s

′
1

k ≥ 0 for k ∈ Is′
1
and

∑
k∈Is′

1

ν
a1,s

′
1

k = 1 (51)

and S
a1,s

′
1

E = {s′E ∈ SE |
∑

a2∈A2
b
s1,a1,a2,s

′
1

1 (s′E) +
∑

k∈Is′
1

bk1(s
′
E) > 0}. Letting

Ca1,s
′
1 = 1

2 (U − L)
∑

s′
E
∈S

a1,s′1
E

d
a1,s

′
1

s′
E

it follows that J(u1, u2) equals:

minν,c
(
E1 + β

∑
(a1,s′1)∈A1×S1

pa1pa1,u2,s
′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
))

(52)

Now, given any u2 ∈ P(A2 | S), let Λ be the feasible set for (ν, c), which is convex
using (51). We then define a game with strategy spaces Λ and P(A1) and payoff
function Ju2

: Λ × P(A1) → R which is the objective of (52), i.e., for (ν, c) ∈ Λ
and u1 ∈ P(A1):

Ju2
((ν, c), u1) = E1 + β

∑
a1,s′1

pa1pa1,u2,s
′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
)
. (53)

Combining (50), (52) and (53) we have:

[TV Υ
ub ](s1, b1) = minu2∈P(A2|S)maxu1∈P(A1)J(u1, u2)

= minu2∈P(A2|S)maxu1∈P(A1)min(ν,c)∈ΛJu2((ν, c), u1) . (54)

We next show that the von Neumann’s Minimax Theorem [27] applies to the
game with payoff function Ju2

and strategy spaces Λ and P(A1). This theorem
requires that:
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– Λ and P(A1) are compact convex sets;
– Ju2

is a continuous function that is concave-convex, i.e., Ju2
((ν, c), ·) is con-

cave for fixed (ν, c) and Ju2
(·, u1) is convex for fixed u1.

Clearly Λ and P(A1) are compact convex sets and by (53), Ju2
is bilinear in ν, c

and u1, and thus concave in P(A1) and convex in Λ. Hence we can apply von
Neumann’s Minimax Theorem, which gives us:

maxu1∈P(A1) min(ν,c)∈Λ Ju2
((ν, c), u1) = min(ν,c)∈Λ maxu1∈P(A1) Ju2

((ν, c), u1) .

Therefore, using this result and (54) we have that:

[TV Υ
ub ](s1, b1) = minu2∈P(A2|S)min(ν,c)∈Λmaxu1∈P(A1)Ju2

((ν, c), u1)

= minu2∈P(A2|S)min(ν,c)∈Λmaxu1∈P(A1)

(
E1+

+ β
∑

a1,s′1
pa1pa1,u2,s

′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
))

by (53)

= minu2∈P(A2|S)min(ν,c)∈Λmaxa1∈A1

(
E1+

+ β
∑

s′1∈S1
pa1,u2,s

′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
))

where the final equality follows from the fact that, for fixed u2 and ν and c, the
objective is linear in u1, from which [TV Υ

ub ](s1, b1) can be formulated as the LP
problem given by minimise v subject to:

v ≥ E1 + β
∑

s′1∈S1
pa1,u2,s

′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
))

for all a1 ∈ A1. (55)

Letting λ
a1,s

′
1

k = pa1,u2,s
′
1ν

a1,s
′
1

k and c
a1,s

′
1

s′E
= pa1,u2,s

′
1d

a1,s
′
1

s′E
, we can reformulate

(55) as minimise v subject to:

v ≥
∑Nb

i=1

∑
a2
κip

s1,s
i
E

a2 r((s1, s
i
E), (a1, a2)) + β

∑
s′1∈S1

va1,s′1

va1,s′1
=

∑
k∈Is′

1

λ
a1,s

′
1

k yk + 1
2 (U − L)

∑
s′E∈S

a1,s′1
E

ĉ
a1,s

′
1

s′E
.

for all a1 ∈ A1 and s′1 ∈ S1, where u2(a2|s1, siE) = p
s1,s

i
E

a2 . We next compute the

constraints for λ
a1,s

′
1

k and ĉ
a1,s

′
1

s′E
. According to the belief update (7):

pa1,u2,s
′
1b

s1,a1,u2,s
′
1

1 (s′E) = P (s′1 | (s1, b1), a1, u2)
P (s′1, s

′
E | (s1, b1), a1, u2)

P (s′1 | (s1, b1), a1, u2)

= P (s′1, s
′
E | (s1, b1), a1, u2) rearranging

=
∑Nb

i=1

∑
a2
κip

s1,s
i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

where the final equality follows from the definition of a particle-based belief.

Since ν
a1,s

′
1

k and d
a1,s

′
1

s′E
are subject to the linear constraints (51), it follows that:

c
a1,s

′
1

s′E
≥

∣∣∣∑Nb

i=1

∑
a2
κip

s1,s
i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)
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Fig. 4: Pedestrian-vehicle interaction: local transition diagram over the local
states, i.e., vehicle speeds (m/s), with actions corresponding to the possible ac-

celerations of the vehicle, i.e., +3, 0 and −3 (m/s
2
).

−
∑

k∈Is′
1

λ
a1,s

′
1

k P (s′E ; b
k
1)
∣∣∣∑

k∈Is′
1

λ
a1,s

′
1

k =
∑Nb

i=1

∑
a2,s′E

κip
s1,s

i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

λ
a1,s

′
1

k ≥ 0 (56)

for all (a1, s
′
1) ∈ A1 × S1, 1 ≤ i ≤ Nb and s′E ∈ SE , k ∈ Is′

1
. Thus, the

optimization problem can be reformulated as the LP problem in (13). ⊓⊔

E Further Case Study Details and Statistics

Finally, we give some additional details and statistics for the models developed
for the two case studies used for evaluation in Section 7.

Pedestrian-vehicle interaction. The one-sided NS-POSG for the pedestrian-
vehicle scenario is defined as follows:

– S1 = Loc1×Per1, where:

Loc1 = {30, 27, 24, 21, 18, 15, 12, 9, 6, 3, 0}
Per1 = {“unlikely to cross”, “likely to cross”, “very likely to cross”}

are the vehicle’s discrete speeds (km/h) and perceived pedestrian intentions.
– SE = {((x1, y1), (x2, y2)) ∈ (R2)2 | 0 ≤ x1, x2 ≤ 20 ∧ 0 ≤ y1, y2 ≤ 10},

where (x1, y1) and (x2, y2) are the top-left coordinates of the 2D fixed-size
bounding boxes of size 0.5×1.5 (m2) around the pedestrian at the previous
and current steps, respectively.

– A = A1×A2, where A1 = {−3, 0, 3} (m/s
2
) are the possible accelerations of

the vehicle, and A2 = {cross, back} are the possible directions the pedestrian
can choose to move.

– For each local state v1 ∈ Loc1 and environment state ((x1, y1), (x2, y2)) ∈
SE , we let obs1(v1, ((x1, y1), (x2, y2))) = fmax

ped ((x1, y1), (x2, y2)), where fped :
SE → P(Per1) is a data-driven pedestrian intention classifier implemented
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via a feed-forward NN with ReLU activation functions and trained over the
PIE dataset in [29]. Note here obs1 is independent of the local state of Ag1.

– For (v1, per1) ∈ Loc1×Per1, v
′
1 ∈ Loc1 and (a1, a2) ∈ A we have:

δ1((v1, per1), (a1, a2))(v
′
1) =

{
1 if v′1 = gnext(v1, a1)
0 otherwise

where gnext : Loc1 × A1 → Loc1 is the speed update function of the vehicle
with the transition diagram in Fig. 4.

– For v1 ∈ Loc1, ((x1, y1), (x2, y2)), ((x
′
1, y

′
1), (x

′
2, y

′
2)) ∈ SE and (a1, a2) ∈ A

we have δE(v1, ((x1, y1), (x2, y2)), (a1, a2))((x
′
1, y

′
1), (x

′
2, y

′
2)) = 1 where

x′
1 = x2, y′1 = y2,

x′
2 = x2 +move(a2)v2∆t, y′2 = y2 − v1∆t− a1

2
∆t2,

v2 = 4.5 (m/s) is the speed of the pedestrian, move(a2) is the direction of the
movement of the pedestrian action, i.e.,move(cross)=−1 andmove(back)=1,
and ∆t = |gnext(v1, a1)− v1|/|a1| if a1 ̸= 0 and 0.3 (s) otherwise.

A crash occurs if the environment state is in the set:

Rcrash = {((x1, y1), (x2, y2)) ∈ SE | 0 ≤ x2 ≤ 0.5 ∧ 0 ≤ y2 ≤ 2.5}

i.e., the current bounding box around the pedestrian has a distance of no more
than 0.5 and 1.0 (m) along the x and y coordinates to the vehicle, respectively
(recall the bounding box has size 0.5×1.5 (m2)). The reward structure is such
that, for any (s1, sE) ∈ S and a ∈ A, r((s1, sE), a) = −200 if sE ∈ Rcrash and 0
otherwise.

Pursuit-evasion game. We modify the example presented in [19] by consid-
ering a continuous environment R ≜ {(x, y) ∈ R2 | 0 ≤ x, y ≤ 3} that is
partitioned into multiple cells by perception functions. In this game, we have
a pursuer agent Agp that tries to catch an evader agent Age. In each step, the

evader moves by picking from the set of actions Ae ≜ {up, down, left, right}. The
pursuer moves in a similar manner with additional diagonal movements, and thus
has the action set Ap ≜ {up, down, left, right, upleft, upright, downleft, downright}.

The evader has full observation and knows the exact location of both players.
The pursuer has partial observation, that is, it knows which cell it is in, but does
not know its exact location and does not know which cell the evader is in. The
perception function of the pursuer employs an NN classifier fR : R → P(Grid),
where Grid ≜ {(i, j) | 1 ≤ i, j ≤ 3}, which takes the location (coordinates) of
the pursuer as input and outputs a probability distribution over nine abstract
grid points (cells), thus partitioning the environment as illustrated by Fig. 5.
This is modelled as a one-sided NS-POSG as follows.

– S1 = Loc1×Per1, where the local state Loc1 = {⊥} is a dummy state and
Per1 = Grid .
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Fig. 5: Representation of a regular (left) and coarse (right) perception function
for the pursuit-evasion example. Each graph depicts the boundaries of the nine
abstract grid cells learnt by the classifiers. The pre-images of the regular and
coarse perception functions are composed of 48 and 50 polytopes, respectively.

– SE = {((xp, yp), (xe, ye)) ∈ R2}.
– A = A1×A2, where A1 = Ap and A2 = Ae.
– obsi(⊥, (xp, yp)) = fmax

R (xp, yp) and the NN classifier fR : R → P(Grid)
is implemented via a feed-forward NN with one hidden ReLU layer and 14
neurons.

– For environment states sE = ((xp, yp), (xe, ye)), s′E = ((x′
p, y

′
p), (x

′
e, y

′
e)),

local state loc1 and joint action a = (a1, a2):

δE(⊥, sE , a)(s
′
E) =

∏
i∈{p,e}δEi

((xi, yi), ai)(x
′
i, y

′
i)

where for i ∈ {p, e}:

δEi
((xi, yi), ai)(x

′
i, y

′
i) =

{
1 if x′

i = xi + dxai
and y′i = yi + dyai

0 otherwise

and the pairs (dxai
, dyai

) indicate the direction of movement under action ai,
e.g., (dxup , d

y
up) = (0, 1) and (dxleft , d

y
left) = (−1, 0).

The capture condition in [19] is also used, that is, the evader is captured if it is
in the same cell as the pursuer, which means the set of capture states Rcapture

is given by:

{((xp, yp), (xe, ye)) ∈ SE | ∃(i, j) ∈ Grid , (i−1≤xp, xe<i) ∧ (j−1≤yp, ye<j)} .

Differently from [19], the game does not end once the evader is captured, allowing
for the possibility of multiple captures. In case the pursuer is successful, that
is, it enters the same cell as the evader, it receives a reward of 100. This can
be modelled by assigning that value to any state-action pair with the state in
Rcapture .

A model where the pursuer agent Agp has two pursuers under its control
was also developed. For that model, the actions available to the pursuer agent
are pairs corresponding to a chosen direction of movement for each pursuer,
where each pursuer can now only move horizontally or vertically, i.e., the ac-
tions available to the pursuer agent are given by Ap ≜ ({up, down, left, right})2.
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Model
Initial

β |Γ | Lower bound |Υ | Upper bound
Iter.

Time
pts. init. final init. final (min)

Pursuit-evasion
(one pursuer)

1 0.7 184 0 5.0653 265 333.33 9.1819 169 15
1 0.7 515 0 5.2798 788 333.33 6.6317 264 120
2 0.7 413 0 4.5299 998 333.33 11.570 299 120
1 0.8 468 0 9.8827 731 500.00 16.289 170 120
1 0.9 331 0 22.387 731 1000.0 58.906 130 120
1 0.99 5 0 34.973 128 10000 35.972 44 3

Pursuit-evasion
(two pursuers)

1 0.7 509 0 14.134 790 333.33 39.943 274 120

Pedestrian-vehicle
1 0.7 1,928 0 620.54 4936 666.67 666.67 297 120
2 0.7 2,783 0 526.34 8532 666.67 666.67 363 120
1 0.8 2,089 0 805.92 5708 1000.0 1000.0 330 120

Table 1: Statistics for a set of one-sided NS-POSG solution instances. The bold
entries for the pursuit-evasion model correspond to that with the coarser per-
ception function (see Fig. 5).
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Fig. 6: Lower and upper bound values for a pursuit-evasion game with one pur-
suer when β = 0.7.

Additionally, the perception function of the pursuer agent is modified to take
the coordinates of both pursuers and output the perceived grid cell for each of
them. In this scenario, a capture happens if the evader is in the same grid cell
as either pursuer.

Statistics. Table 1 shows statistics for solving various instances, varying the
number of points in the initial belief and discount factor β. The table presents the
initial and final values of the upper and lower bounds, the number of α-functions
generated for the lower bound computation (|Γ |), the number of belief points for
the upper bound computation (|Υ |), and the number of iterations and the time
required. In the experiments, we have set a timeout of 120 minutes (except for
the first row where the timeout was reduced to 15 minutes). In addition, Figure 6
shows how the lower and upper bound values change for the initial belief as the
number of iterations increases for one instance of the pursuit-evasion game.

Since our algorithm is anytime, lower and upper bounds hold throughout
computations and we successfully generate meaningful strategies (discussed fur-
ther below) on a range of models. However, computation is generally slow due
to the number of LP problems to solve (whose size increases with |Γ | and |Υ |),
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as well as expensive operations over polyhedra and the probabilistic branching
of mixed strategies to guide exploration.

Both Table 1 and Figure 6 illustrate the impact of these factors. In the first
two rows of Table 1 we observe the difference between a 15 and 120 minute
timeout for the same instance of pursuit-evasion game with a single pursuer.
As can be seen, the increase in the timeout causes the lower bound to improve
(increase) by 0.2145, while the upper bound improves (decreases) by 2.55. With
a timeout of 15 minutes we see that 169 iterations are performed; however, due
to the number of α-functions growing from 184 to 515, increasing the timeout
to 120 minutes only allows 95 more iterations to be performed.

Considering Figure 6, we initially see a sharp decrease of the upper bound,
but improvement to either bound becomes progressively harder as computation
progresses. The entry for the pursuit-evasion game with a single pursuer with a
coarser perception function in Table 1 (highlighted in bold) is the only instance
that converges before the timeout due to the fact that the number of reachable
regions is smaller.

The table also demonstrates that, as expected, larger discount factors lead to
larger lower and upper bounds. For the pursuit-evasion model with two pursuers,
the larger difference between the lower and upper bound values reached at the
timeout is a consequence of a higher branching factor during exploration slowing
down the computation, as we have 64 joint actions in each state. For the entries
related to the pedestrian-vehicle interaction model in Table 1, the final upper
bound values match their initial values due to the fact that the initial beliefs
were selected so that it should be possible to avoid a crash if an optimal strategy
was played.

We note that HSVI for finite one-sided POSGs, in [19], is already computa-
tionally very expensive, even with multiple optimisations ([19] uses a timeout of
10 hours, versus 2 hours here).
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