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Abstract. We study the problem of certifying the robustness of Bayesian
neural networks (BNNs) to adversarial input perturbations. Specifically,
we define two notions of robustness for BNNs in an adversarial setting:
probabilistic robustness and decision robustness. The former deals with
the probabilistic behaviour of the network, that is, it ensures robustness
across different stochastic realisations of the network, while the latter
provides guarantees for the overall (output) decision of the BNN. Al-
though these robustness properties cannot be computed analytically, we
present a unified computational framework for efficiently and formally
bounding them. Our approach is based on weight interval sampling, inte-
gration and bound propagation techniques, and can be applied to BNNs
with a large number of parameters independently of the (approximate)
inference method employed to train the BNN. We evaluate the effective-
ness of our method on tasks including airborne collision avoidance, medi-
cal imaging and autonomous driving, demonstrating that it can compute
non-trivial guarantees on medium size images (i.e., over 16 thousand in-
put parameters).

Keywords: Certification · Bayesian Neural Networks · Adversarial Ro-
bustness · Classification · Regression · Uncertainty

1 Introduction

While neural networks (NNs) regularly obtain state-of-the-art performance in
many supervised machine learning problems [2, 16], they are vulnerable to ad-
versarial attacks, i.e., imperceptible modifications of their inputs that result in
an incorrect prediction [46]. Along with several other vulnerabilities [8], the dis-
covery of adversarial examples has made the deployment of NNs in real-world,
safety-critical applications increasingly challenging. The design and analysis of
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methods that can mitigate such vulnerabilities, or compute provable guarantees
on their worst-case behaviour in adversarial conditions, is therefore of utmost
importance [48].

While retaining the advantages intrinsic to deep learning, Bayesian neural
networks (BNNs), i.e., NNs with a probability distribution placed over their
weights and biases [36], enable probabilistically principled evaluation of model
uncertainty. Because of their ability to model uncertainty [29], the applica-
tion of BNNs is particularly appealing in safety-critical scenarios, where un-
certainty could be taken into account at prediction time to enable safe decision-
making [4,12,35,61]. To this end, various techniques have been proposed for the
evaluation of BNNs’ robustness, including generalisation of gradient-based adver-
sarial attacks [33], statistical verification techniques [13], and formal verification
approaches aimed at verifying that the decisions made by a BNN are safe [1, 7]
or checking the robustness of the neural networks sampled from the BNN pos-
terior [7, 13, 31]. The increasingly diverse techniques for analysing robustness of
Bayesian neural networks have resulted in divergent robustness properties, some
directly analysing the stochasticity of the system [13] and others directly adapt-
ing robustness specifications from deterministic systems [7]. To the best of our
knowledge, there is a lack of systematic, unified approaches for computing for-
mal (i.e., with certified bounds) guarantees on the range of emergent quantitative
robustness properties against adversarial input perturbations for BNNs.

In this work, we develop a probabilistic verification framework to quantify the
adversarial robustness of BNNs. In particular, we model adversarial robustness
as an input-output specification defined by a given compact set of input points,
T ⊆ Rm, and a given convex polytope output set, S ⊆ Rn (called a safe set).
A neural network satisfies this specification if all points in T are mapped into
S. For a particular specification, we focus on two main properties of a BNN of
interest for adversarial prediction settings: probabilistic robustness [13, 54] and
decision robustness [7,25]. The former is defined as the probability that a network
sampled from the posterior distribution is robust, which thus provides a general
measure of the robustness of a BNN. In contrast, decision robustness focuses
on the decision step, and evaluates the robustness of the optimal decision of a
BNN. That is, a BNN satisfies decision robustness if, for all points in T , the
expectation of the output of the BNN in the case of regression, or the argmax
of the expectation of the softmax for classification, are contained in S.

Unfortunately, evaluating probabilistic and decision robustness for a BNN
is not trivial, as it involves computing distributions and expectations of high-
dimensional random variables passed through a non-convex function. Neverthe-
less, we derive a unified algorithmic framework based on computations over the
BNN weight space that yields certified lower and upper bounds for both prop-
erties. Specifically, we show that probabilistic robustness is equivalent to the
measure, w.r.t. the BNN posterior, of the set of weights for which the resulting
deterministic NN is robust. Computing upper and lower bounds for the proba-
bility involves sampling compact sets of weights according to the BNN posterior,
and propagating each of these weight sets, H, through the neural network ar-
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chitecture, jointly with the input region T , to check whether all the networks
instantiated by weights in H are safe. To do so, we generalise bound propagation
techniques developed for deterministic neural networks to the Bayesian setting
and instantiate explicit schemes for Interval Bound Propagation (IBP) and Lin-
ear Bound Propagation (LBP) [22]. Similarly, in the case of decision robustness,
we show that formal bounds can be obtained by partitioning the weight space
into different weight sets, and for each weight set J we employ bound propa-
gation techniques to compute the maximum and minimum of the decision of
the NN for any input point in T and any weight in the set J . The resulting
extrema are then averaged w.r.t. posterior measure to obtain sound lower and
upper bounds on decision robustness.

We empirically validate our framework using case studies from airborne colli-
sion avoidance [27], medical image recognition [60], and autonomous driving [44].
We demonstrate that our framework is able to compute sound upper and lower
bounds for both notions of robustness for Bayesian neural networks. Moreover,
we study the effect of approximate inference, as well as depth and width of the
neural network classifier, on our guarantees. We find that our approach, even
when using simple interval bound propagation, is able to provide non-trivial
certificates of adversarial robustness and predictive uncertainty properties for
Bayesian neural networks with four hidden layers and more than 16,000 input di-
mensions. We additionally use our approach to show how approximate Bayesian
posteriors may provide provably robust uncertainty estimation for random noise
inputs while failing to provide the same guarantees for more structured classes
of out-of-distribution inputs4.

In summary, this paper makes the following contributions5.

– We present an algorithmic framework based on convex relaxation techniques
for the robustness analysis of BNNs in adversarial settings.

– We derive explicit lower- and upper-bounding procedures based on IBP and
LBP for the propagation of input and weight intervals through the BNN
posterior function.

– We empirically show that our method can be used to certify BNNs consisting
of multiple hidden layers and with hundreds of neurons per layer.

Probabilistic robustness was introduced in [54]. This work extends [54] in several
aspects. In contrast to [54], which focused only on probabilistic robustness, here
we also tackle decision robustness and embed the calculations for the two prop-
erties in a common computational framework. Furthermore, while the method
in [54] only computes lower bounds, in this paper we also develop a technique
for upper bound computation. Finally, we extend the empirical analysis to in-
clude additional datasets, evaluation of convolutional architectures, scalability
analysis, as well as certification of out-of-distribution (OOD) uncertainty.

4 An implementation to reproduce all the experiments can be found at: https://
github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs

5 In view of space constraints, additional details are available in Appendix at https:
//arxiv.org/abs/2306.13614

https://github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs
https://github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs
 https://arxiv.org/abs/2306.13614
 https://arxiv.org/abs/2306.13614
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Related Works The vast majority of existing NN verification methods have
been developed specifically for deterministic NNs, with approaches including ab-
stract interpretation [22], mixed integer linear programming [20, 40, 47, 58, 64],
Monte Carlo search-based frameworks [26, 52, 59], convex relaxation [25, 49, 63]
and SAT/SMT [27, 28]. However, these methods cannot be directly applied to
BNNs because they all assume that the weights of the network are determin-
istic, i.e., fixed to a given value, while in the Bayesian setting weights are not
fixed, but distributed according to the BNN posterior. Statistical approaches to
quantify the robustness of BNNs that are ϵ approximately correct up to a con-
fidence/probability of error bounded by 1 − δ, for δ > 0, have been developed
in [13, 35]. In contrast, the methods in this paper do not rely on confidence in-
tervals and return guaranteed upper and lower bounds on the true probability
that a BNN satisfies a specific property.

Since the publication of our preliminary work [54], other papers have studied
the problem of verifying BNN robustness [1, 3, 7, 31, 55, 56]. However, [7] only
considers verification of BNNs with weight distributions of bounded support,
and consequently does not include Gaussian posterior distributions, which are
commonly employed in practice. [1] develops an approach based on dynamic
programming to certify decision robustness for BNNs, which improves the pre-
cision of BNN verification by performing bound propagation in the latent space
of BNNs, rather than working on the space of weights. However, this approach
is restricted to decision robustness. Further, [3] develops an approach based on
mixed integer linear programming (MILP), which is specific for probabilistic
robustness. It is unclear how these approaches could be extended to encom-
pass both probabilistic and decision robustness. In contrast, in this paper we
propose a simple and general framework that encompasses both decision and
probabilistic robustness, and can be applied to both fully-connected and con-
volutional neural network architectures. Another related method is [31], which
takes a distribution-free approach and considers a dynamical system whose one-
step dynamics includes a neural network, and computes the set of weights that
satisfy an infinite-horizon safety property. Note that, as the support of a Gaus-
sian distribution is unbounded, similarly to [7], this approach does not support
Gaussian posterior distributions over the weights. We also mention [56], which
builds on the results of [55] to develop certification for reach-avoid properties of
dynamical systems described by BNNs. Finally, [53] considers certifiable robust
training and introduces the concept of robust likelihood that we employ in our
experimental evaluation.

In the context of Bayesian learning, methods to compute adversarial robust-
ness measures have been explored for Gaussian processes (GPs), both for regres-
sion [14] and classification tasks [39,42]. However, because of the non-linearity in
NN architectures, GP-based approaches cannot be directly employed for BNNs.
Furthermore, the vast majority of approximate Bayesian inference methods for
BNNs do not utilise Gaussian approximations over the latent space [10]. In con-
trast, our method is specifically tailored to take into account the non-linear
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nature of BNNs and can be directly applied to a range of approximate Bayesian
inference techniques used in the literature.

2 Background on Bayesian Deep Learning

We consider a dataset of nD independent pairs of inputs and labels, D =
{(xi, yi)}nD

i=1, with xi ∈ Rm, where each output y ∈ Rn is either a one-hot
class vector for classification or a real-valued vector for regression. The aim of
Bayesian learning is to learn the function generating D via a feed forward-neural
network fw : Rm → Rn, parameterised by a vector w ∈ Rnw containing all
its weights and biases. We denote with fw,1, ..., fw,K the K layers of fw and
take the activation function of the ith layer to be σ(i), abbreviated to just σ in
the case of the output activation.6 Throughout this paper, we will use fw(x) to
represent pre-activation of the last layer.

Bayesian deep learning starts with a prior distribution, p(w), over the vector
w of random variables associated to the weights. Placing a distribution over the
weights defines a stochastic process indexed by the input space, which we denote
as fw. Note that we use bold to distinguish the stochastic process parameterised
by a random variable, fw, and the deterministic function that results from sam-
pling a single parameter value, fw. To obtain the posterior distribution, the
BNN prior is updated according to the likelihood, p(D|w), via the Bayes rule,
i.e., p(w|D) ∝ p(D|w)p(w) [9]. The cumulative distribution of p(w|D), which we
denote as P (·), is such that for R ⊆ Rnw we have:

P (R) :=

∫
R

p(w|D)dw. (1)

The posterior p(w|D) is in turn used to calculate the output of a BNN on an
unseen point, x∗. The distribution over outputs is called the posterior predictive
distribution and is defined as:

p(y∗|x∗,D) =

∫
p(y∗|x∗, w)p(w|D)dw. (2)

When employing a Bayesian model, the overall final prediction is taken to be
a single value, ŷ, that minimizes the Bayesian risk of an incorrect prediction
according to the posterior predictive distribution and a loss function L. Formally,
the final decision of a BNN is computed as

ŷ = argmin
y∗

∫
Rn

L(y, y∗)p(y∗|x∗,D)dy∗. (3)

This minimization is the subject of Bayesian decision theory [6], and the final
form of ŷ depends on the specific loss function L employed in practice. In this

6 We assume, for the purposes of linear bound propagation in Appendix D.4, that
the activation functions have a finite number of inflection points, which holds for
activation functions commonly used in practice [23].
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paper, we focus on two standard loss functions widely employed for classification
and regression problems7, described in more detail below.

Classification For classification problems, the 0-1 loss, denoted ℓ0−1, is com-
monly employed. ℓ0−1 assigns a penalty of 0 to the correct prediction, and 1
otherwise. It can be shown that the optimal decision in this case is given by the
class for which the predictive distribution obtains its maximum, i.e.:

ŷ = argmax
i=1,...,n

pi(y
∗|x∗,D) = argmax

i=1,...,n
Ew∼p(w|D) [σi(f

w(x))] ,

where σi represents the ith output component of the softmax function.

Regression For regression problems, the ℓ2 loss is generally employed. ℓ2 assigns
a penalty to a prediction according to its ℓ2 distance from the ground truth. It
can be shown that the optimal decision in this case is given by the expected value
of the BNN output over the posterior distribution, i.e., ŷ = Ew∼p(w|D) [f

w(x)] .
Unfortunately, because of the non-linearity of neural network architectures, the
computation of the posterior distribution over the weights, p(w|D), is generally
intractable [36]. Hence, various approximation methods have been studied to
perform inference with BNNs in practice. Among these, we will consider Hamil-
tonian Monte Carlo (HMC) [36] and Variational Inference (VI) [10]. While HMC
is a sample-based method that involves defining a Markov chain whose invariant
distribution is pw(w|D) [36], VI proceeds by finding a Gaussian approximating
distribution over the weight space q(w) ∼ pw(w|D) in a trade-off between ap-
proximation accuracy and scalability. For simplicity of notation, in the rest of
the paper we will indicate with p(w|D) the posterior distribution estimated by
either of the two methods, and clarify the methodological differences when they
arise.

3 Problem Statement

We focus on local specifications defined over an input compact set T ⊆ Rm,
which we assume to be a box (axis-aligned linear constraints), and output set
S ⊆ Rn in the form of a convex polytope:

S = {y ∈ Rn |CSy + dS ≥ 0}, (4)

where CS ∈ RnS×n and dS ∈ RnS are the matrix and vector encoding the poly-
tope constraints, with nS being the number of output constraints. Throughout
the paper we will refer to an input-output set pair, T and S, as defined above,
as a robustness specification. We note that our formulation of robustness specifi-
cation captures various important properties used in practice, such as classifier

7 In Appendix B we discuss how our method can be generalised to other losses com-
monly employed in practice.
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monotonicity [45], adversarial robustness [24,26], and individual fairness [5]. For
instance, targeted adversarial robustness for classification, which aims to find an
adversarial example belonging to a specified class, can be captured by setting CS

to an nS × n matrix of all zeros with a −1 in the diagonal entry corresponding
to the true class and a 1 on the diagonal entry corresponding to the target class.
Similarly, for regression, one uses CS to encode the absolute deviation from the
target value and dS to encode the maximum tolerable deviation.

Probabilistic robustness accounts for the probabilistic behaviour of a BNN
with respect to a robustness specification.

Definition 1 (Probabilistic robustness). Given a Bayesian neural network
fw, an input set T ⊆ Rm and an output set S ⊆ Rn, also called safe set of
outputs, define probabilistic robustness as

Psafe(T, S) := Probw∼p(w|D)(∀x ∈ T, fw(x) ∈ S). (5)

Given η ∈ [0, 1], we then say that fw is probabilistically robust, or safe, for
robustness specifications (T, S) with probability at least η iff Psafe(T, S) ≥ η.

Probabilistic robustness considers the adversarial behaviour of the model while
accounting for the uncertainty arising from the posterior distribution. In par-
ticular, Psafe(T, S) quantifies the proportion of networks sampled from fw that
satisfy a given input-output specification, and can be used directly as a mea-
sure of compliance for Bayesian neural networks [7,17,35]. Exact computation of
Psafe(T, S) is hindered by the size and non-linearity of neural networks. There-
fore, in this work, we aim to compute provable bounds on probabilistic robust-
ness.

Problem 1 (Bounding probabilistic robustness). Given a Bayesian neural network
fw, an input set T ⊆ Rm and a set S ⊆ Rn of safe outputs, compute (non-trivial)
lower and upper bounds PL

safe and PU
safe such that

PL
safe ≤ Psafe(T, S) ≤ PU

safe. (6)

3.1 Decision Robustness

While Psafe attempts to measure the probability of robustness of neural networks
sampled from the BNN posterior, we are often interested in evaluating robustness
w.r.t. a specific decision. In order to do so, we consider decision robustness, which
is computed over the final decision of the BNN. In particular, given a loss function
and a decision ŷ we have the following.

Definition 2 (Decision robustness). Consider a Bayesian neural network
fw, an input set T ⊆ Rm and an output set S ⊆ Rn. Assume that the decision
for a loss L for x ∈ Rm is given by ŷ(x) (Equation 3). Then, the Bayesian
decision is considered to be robust if ∀x ∈ T, ŷ(x) ∈ S.
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Fig. 1. A diagram illustrating a single iteration of the computational flow for the
certification process of a BNN w.r.t. decision robustness (green) and probabilistic ro-
bustness (purple). This process is summarised in Algorithm 1.

As discussed in Section 2, since the specific form of the decision depends on the
loss function, the definition of decision robustness takes different form depending
on whether the BNN is used for classification or for regression. We thus arrive
at the following problem.

Problem 2 (Bounding decision robustness). Let fw be a BNN with posterior
distribution p(w|D). Consider a robustness specification (T , S) and assume L =
ℓ0−1 for classification or L = ℓ2 for regression. We aim at computing (non-trivial)
lower and upper bounds DL

safe and DU
safe such that:

DL
safe ≤ E[s(fw(x))] ≤ DU

safe ∀x ∈ T,

where s corresponds to the likelihood function σ in the case of classification (e.g.,
the softmax) and simply denotes the identity function in the case of regression.

Problem 2 suggests that, while for regression we can simply bound the ex-
pected output of the BNN, for classification we need to bound the predictive
posterior to compute bounds on the final decision, i.e., we need to propagate
these inside the softmax. This is similar to what is done for deterministic neural
networks, where, in the case of classification, the bounds are often computed
over the logits, and then used to provide guarantees for the final decision [25].

3.2 Approach Outline

We design an algorithmic framework for computing worst- and best-case bounds
(lower and upper bounds, respectively) on local robustness properties for Bayesian
neural networks, taking account of both the posterior distribution (PL

safe and
PU
safe) and the overall model decision (DL

safe and DU
safe). First, we show how the

two robustness properties of Definitions 1 and 2 can be reformulated in terms of
computation over weight intervals. This allows us to derive a unified approach,
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which enables bounding of the robustness of the BNN posterior (i.e., probabilis-
tic robustness) and that of the overall model decision (i.e., decision robustness)
by means of bound propagation and posterior integral computation over hyper-
rectangles. For a discussion of when each bound may be useful see Appendix A.

A visual outline for our framework is presented in Figure 1. The presentation
of the framework is organised as follows. We first introduce a general theoret-
ical schema for bounding the robustness quantities of interest (Section 4). We
then show how the required integral computations can be achieved for practical
Bayesian posterior inference techniques (Section 5.1). This allows us to extend
bound propagation techniques to deal with both input variable intervals and
intervals over the weight space, which we rely on to instantiate approaches re-
spectively based on Interval Bound Propagation (Section 5.2) and Linear Bound
Propagation techniques (Appendix C). Finally, in Section 6, we present an over-
all algorithm that produces the desired bounds.

4 BNN Adversarial Robustness via Weight Sets

We show how a single computational framework can be leveraged to compute
bounds on both definitions of BNN robustness. We start by converting the com-
putation of robustness into the weight space and then define a family of weight
intervals that we utilise to bound the integrations required by both definitions.
Proofs for the main results in this section are presented in Appendix D.

4.1 Bounding Probabilistic Robustness

We first show that the computation of Psafe(T, S) is equivalent to computing a
maximal set of safe weights H such that each network associated to weights in
H is safe w.r.t. the robustness specification at hand.

Definition 3 (Maximal safe and unsafe sets). We say that H ⊆ Rnw is
the maximal safe set of weights from T to S, or simply the maximal safe set of
weights, iff H = {w ∈ Rnw | ∀x ∈ T, fw(x) ∈ S}. Similarly, we say that K ⊆ Rnw

is the maximal unsafe set of weights from T to S, or simply the maximal unsafe
set of weights, iff K = {w ∈ Rnw | ∃x ∈ T, fw(x) ̸∈ S}.

Intuitively, H and K simply encode the input-output specifications S and T in
the BNN weight space. The following lemma, which follows from Equation 5,
allows us to relate the maximal sets of weights to probabilistic robustness.

Lemma 1. Let H and K be the maximal safe and unsafe sets of weights from
T to S. Assume that w ∼ p(w|D). Then, it holds that

P (H) =

∫
H

p(w|D)dw = Psafe(T, S) = 1−
∫
K

p(w|D)dw = 1− P (K). (7)

Unfortunately, an exact computation of sets H and K is infeasible in general
and may not be possible to capture using any finite number of sets. However,
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we can compute subsets of H and K. Such subsets can then be used to compute
upper and lower bounds on the value of Psafe(T, S) by considering subsets of the
maximal safe and unsafe weights.

Definition 4 (Safe and unsafe sets). Given a maximal safe set H or a max-
imal unsafe set K of weights, we say that Ĥ and K̂ are a safe and unsafe set of
weights from T to S iff Ĥ ⊆ H and K̂ ⊆ K, respectively.

Without maximality, we no longer have strict equality in Lemma 1, but we
can use Ĥ and K̂ to arrive at bounds on the value of probabilistic robustness.
Specifically, we proceed by defining Ĥ and K̂ as the union of a family of disjoint
weight intervals, as these can provide flexible approximations of H and K. That
is, we consider H = {Hi}nH

i=1, with Hi = [wL,H
i , wU,H

i ] and K = {Ki}nK
i=1, with

Ki = [wL,K
i , wU,K

i ], such that Hi ⊂ H and Ki ⊂ K, Ĥ =
⋃nH

i=1 Hi, K̂ =
⋃nK

i=1 Ki,
and Hi ∩ Hj = ∅ and Ki ∩ Kj = ∅, for any i ̸= j. Hence, as a consequence of

Lemma 1, and by the fact that Ĥ ⊆ H and K̂ ⊆ K, we obtain the following.

Proposition 1 (Bounds on probabilistic robustness). Let H and K be the
maximal safe and unsafe sets of weights from T to S. Consider two families of
pairwise disjoint weight intervals H = {Hi}nH

i=1, K = {Ki}nK
i=1 , where for all i it

holds that Hi ⊆ H and Ki ⊆ K. Let Ĥ ⊆ H and K̂ ⊆ K be non-maximal safe
and unsafe sets of weights, with Ĥ =

⋃nH

i=1 Hi and K̂ =
⋃nK

i=1 Ki. Assume that
w ∼ p(w|D). Then, it holds that

PL
safe :=

nH∑
i=1

P (Hi) ≤ Psafe(T, S) ≤ 1−
nK∑
i=1

P (Ki) =: PU
safe, (8)

that is, PL
safe and PU

safe are lower and upper bounds on probabilistic robustness.

Through the use of Proposition 1, we can thus bound probabilistic robustness by
performing computation over sets of safe and unsafe intervals.8 Before explaining
in detail how such bounds can be explicitly computed, we first show, in the next
section, how a similar derivation leads us to analogous bounds and computations
for decision robustness.

4.2 Bounding Decision Robustness

The key difference between our formulation of probabilistic robustness and that
of decision robustness is that, for the former, we are only interested in the be-
haviour of neural networks extracted from the BNN posterior that satisfy the
robustness requirements (hence the distinction between H- and K-weight inter-
vals), whereas to compute sound bounds on decision robustness we need to take
into account the overall worst-case behaviour of an expected value computed
for the BNN predictive distribution. As such, rather than computing safe and

8 In Appendix E.4 we extend the results to general hyper-rectangles by using the
Bonferroni bound.
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unsafe sets, we only need a family of weight sets, J = {Ji}nJ
i=1, which we can rely

on for bounding Dsafe(T, S). In the following, we explicitly show how to do this
for classification with likelihood σ. The bound for regression follows similarly by
using the identity function as σ.

Proposition 2 (Bounding decision robustness). Let J = {Ji}nJ
i=1, with

Ji ⊂ Rnw , be a family of disjoint weight intervals. Let σL and σU be vectors
that lower- and upper-bound the co-domain of the final activation function, and
c ∈ {1, . . . ,m} an index spanning the BNN output dimension. Define:

DL
safe,c :=

nJ∑
i=1

P (Ji) min
x∈T
w∈Ji

σc(f
w(x)) + σL

(
1−

nJ∑
i=1

P (Ji)

)
(9)

DU
safe,c :=

nJ∑
i=1

P (Ji) max
x∈T
w∈Ji

σc(f
w(x)) + σU

(
1−

nJ∑
i=1

P (Ji)

)
. (10)

Consider DL
safe = [DL

safe,1, . . . , D
L
safe,m] and DU

safe = [DU
safe,1, . . . , D

U
safe,m], then:

DL
safe ≤ Ep(w|D)[σ(f

w(x))] ≤ DU
safe ∀x ∈ T,

that is, DL
safe and DU

safe bound the predictive posterior in T .

Intuitively, the first term in the bounds of Equations (9) (and similarly(10))
considers the worst-case output for the input set T and each interval Ji, while the
second term accounts for the worst-case value of the posterior mass not captured
by the family of intervals J . The bound is valid for any family of intervals J .
Ideally, however, the partition should be finer around regions of high probability
mass of the posterior distribution, as these make up the dominant term in the
computation of the posterior predictive. We discuss in Section 5 how we select
these intervals in practice so as to empirically obtain non-vacuous bounds.

4.3 Computation of the Lower and Upper Bounds

We now propose a unified approach to computing the lower and upper bounds.
We observe that Equations (8), (9) and (10) require the integration of the pos-
terior distribution over weight intervals. While this is in general intractable, we
have built the bounds so that Hi, Ki and Ji are axis-aligned hyper-rectangles,
and so the computation can be done exactly for commonly used approximate
Bayesian inference methods (discussed in detail in Section 5.1).

For the explicit computation of decision robustness, the only missing ingre-
dient is then the computation of the minimum and maximum of σ(fw(x)) for
x ∈ T and w ∈ Ji. We do this by bounding the BNN output for any given rect-
angle, R, in the weight space. That is, we will compute upper and lower bounds
yL and yU such that:

yL ≤ min
x∈T
w∈R

fw(x) yU ≥ max
x∈T
w∈R

fw(x), (11)
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which can then be used to bound σ(fw(x)) by simple propagation over the
softmax. The derivation of such bounds will be the subject of Section 5.2.

Finally, observe that, whereas for decision robustness we can simply select any
weight interval Ji, for probabilistic robustness one needs to make a distinction
between safe sets (Hi) and unsafe sets (Ki). It turns out that this can be done
by bounding the output of the BNN in each of these intervals. For example, in
the case of the safe sets, by definition we have that ∀w ∈ Hi,∀x′ ∈ T it follows
that fw(x′) ∈ S. By defining yL and yU as in Equation (11), we can see that it
suffices to check whether [yL, yU ] ⊆ S. Hence, the computation of probabilistic
robustness also depends on the computation of such bounds.

Therefore, once we have shown how to compute P (R) for any weight interval
and yL and yU , the bounds in Proposition 1 and Proposition 2 can be computed
explicitly, and we can thus bound probabilistic and decision robustness.

5 Explicit Bound Computation

In this section, we provide details of the computational schema needed to calcu-
late the theoretical bounds presented in Section 4.

5.1 Integral Computation over Weight Intervals

Key to the bound computation is the ability to compute the integral of the pos-
terior distribution over a combined set of weight intervals. Crucially, the shape
of the weight sets H = {Hi}nH

i=1, K = {Ki}nK
i=1 and J = {Ji}nJ

i=1 is a parameter of
the method, which can be leveraged to simplify the integral computation depend-
ing on the particular form of the approximate posterior distribution. We build
each weight interval as an axis-aligned hyper-rectangle of the form R = [wL, wU ]
for wL and wU ∈ Rnw .

Weight Intervals for Decision Robustness In the case of decision robust-
ness, it suffices to sample any weight interval Ji to compute the bounds we de-
rived in Proposition 2. Clearly, the bound is tighter if the J family is finer around
the area of high probability mass for p(w|D). In order to obtain such a family we
proceed as follows. First, we define a weight margin γ > 0, whose role is to param-
eterise the radius of the weight intervals. We then iteratively sample weight vec-
tors wi from p(w|D), for i = 1, . . . , nJ , and define Ji = [wL

i , w
U
i ] = [wi−γ,wi+γ].

Thus defined weight intervals naturally concentrate around the area of greater
density for p(w|D), while asymptotically covering the whole support of the dis-
tribution.

Weight Intervals for Probabilistic Robustness On the other hand, for the
computation of probabilistic robustness one has to make a distinction between
safe and unsafe weight intervals, Hi and Ki. As explained in Section 4.3, this
can be done by bounding the output of the BNN in each of these intervals.
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For example, in the case of the safe sets, by definition, Hi is safe if and only if
∀w ∈ Hi,∀x′ ∈ T we have that fw(x′) ∈ S. Thus, in order to build a family of
safe (respectively unsafe) weight intervalsHi (resp.Ki), we proceed as follows. As
for decision robustness, we iteratively sample weights wi from the posterior used
to build hyper-rectangles of the form Ri = [wi − γ,wi + γ]. We then propagate
Ri through the BNN and check whether the output is (resp. is not) a subset of
S. The derivation of such bounds on propagation will be the subject of Section
5.2.

Once the family of weights is computed, it remains to compute the cumulative
distribution over such sets. The specific computations depend on the particular
form of Bayesian approximate inference that is employed. We discuss explic-
itly the case of Gaussian variational approaches, and of sample-based posterior
approximation (e.g., HMC).

Variational Inference For variational approximations, p(w|D) takes the form
of a multi-variate Gaussian distribution over the weight space. The resulting
computations reduce to the integral of a multi-variate Gaussian distribution
over a finite-sized axis-aligned rectangle, which can be computed using standard
methods from statistics [15]. In particular, under the common assumption of
variational inference with a Gaussian distribution with diagonal covariance ma-
trix [30], i.e., p(w|D) = N (µ,Σ), with Σ = diag(Σ1, . . . , Σnw

), we obtain the
following result for the posterior integration:

P (R) =

∫
R

p(w|D)dw =

nw∏
j=1

1

2

(
erf

(
µj − wL

i√
2Σj

)
− erf

(
µj − wu

i√
2Σj

))
. (12)

By plugging this into the bound equations for probabilistic robustness and for
decision robustness, one obtains a closed-form formula for the bounds given
weight set interval families H, K and J .

Sample-based Approximations In the case of sample-based posterior ap-
proximation (e.g., HMC), we have that p(w|D) defines a distribution over a
finite set of weights. In this case we can simplify the computations by selecting
the weight margin γ = 0, so that each sampled interval is of the form R = [wi, wi]
and its probability under the discrete posterior will trivially be:

P (Ri) = p(wi|D). (13)

5.2 Bounding Bayesian Neural Network Output

Given an input set, T , and a weight interval, R = [wL, wU ], the second key step in
computing probabilistic and decision robustness is the bounding of the output
of the BNN over R given T . That is, we need to derive methods to compute
[yL, yU ] such that ∀w ∈ [wL, wU ],∀x′ ∈ T it follows that fw(x′) ∈ [yL, yU ].
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In this section, we consider Interval Bound Propagation (IBP) as a method for
computing the desired output set over-approximations, and defer the discussion
of Linear Bound Propagation (LBP) to Appendix C. Before discussing IBP in
more detail, we first introduce common notation for the rest of the section. We
consider feed-forward neural networks of the form:

z(0) = x, ζ
(k+1)
i =

nk∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i , z

(k)
i = σ(ζ

(k)
i ) (14)

for k = 1, . . . ,K and i = 0, . . . , nk, where K is the number of hidden layers,
σ(·) is a pointwise activation function, W (k) ∈ Rnk×nk−1 and b(k) ∈ Rnk are the
matrix of weights and vector of biases that correspond to the kth layer of the
network, and nk is the number of neurons in the kth hidden layer. Note that,
while Equation (14) is written explicitly for fully-connected layers, convolutional
layers can be accounted for by embedding them in fully-connected form [63].

We write W
(k)
i: for the vector comprising the elements from the ith row of

W (k), and similarly W
(k)
:j for that comprising the elements from the jth column.

ζ(K+1) represents the final output of the network (or the logit in the case of
classification networks), that is, ζ(K+1) = fw(x). We write W (k),L and W (k),U

for the lower and upper bound induced by R for W (k), and b(k),L and b(k),U

for the bounds of b(k), for k = 0, . . . ,K. Observe that z(0), ζ
(k+1)
i and z

(k)
i

are all functions of the input point x and of the combined vector of weights
w = [W (0), b(0), . . . ,W (K), b(K)]. We omit the explicit dependency for simplicity
of notation. Finally, we remark that, as both the weights and the input vary in
a given set, the middle expression of Equation (14) defines a quadratic form.

Interval Bound Propagation (IBP) IBP has already been employed for fast
certification of deterministic neural networks [25]. The only adjustment needed
in our setting is that, at each layer, we also need to propagate the interval of
the weight matrix [W (k),L,W (k),U ] and that of the bias vector [b(k),L, b(k),U ].
This can be done by noticing that the minimum and maximum of each term of

the bi-linear form of Equation (14), that is, of each monomial W
(k)
ij z

(k)
j , lies in

one of the four corners of the interval [W
(k),L
ij ,W

(k),U
ij ] × [z

(k),L
j , z

(k),U
j ], and by

adding the minimum and maximum values respectively attained by b
(k)
i . As in the

deterministic case, interval propagation through the activation function proceeds
by observing that generally employed activation functions are monotonic. This
is summarised in the following proposition.

Proposition 3. Let fw(x) be the network defined by Equation (14), let for k =
0, . . . ,K:

t
(k),L
ij = min{W (k),L

ij z
(k),L
j ,W

(k),U
ij z

(k),L
j ,W

(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j } (15)

t
(k),U
ij = max{W (k),L

ij z
(k),L
j ,W

(k),U
ij z

(k),L
j ,W

(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j } (16)
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where i = 1, . . . , nk+1, j = 1, . . . , nk, z
(k),L = σ(ζ(k),L), z(k),U = σ(ζ(k),U ) and

ζ(k+1),L =
∑
j

t
(k),L
:j + b(k),L, ζ(k+1),U =

∑
j

t
(k),U
:j + b(k),U . (17)

Then we have that ∀x ∈ T and ∀w ∈ R: fw(x) = ζ(K+1) ∈
[
ζ(K+1),L, ζ(K+1),U

]
.

The minima and maxima in Proposition 3 are the tightest possible bounds
one can compute on matrix multiplication. A more efficient scheme for this prop-
agation is detailed in [50], which can be seen as an adaptation of [41] to NN oper-
ations. Additionally, our approach can be linked to abstract interpretation with
simultaneous abstract sets (in our case from the orthotope domain) over inputs
and weights [22]. Regardless, [37] shows that both have an over-approximation
factor of 1.5. Similar bound formulations have been employed across the deter-
ministic NN certification literature [19, 43, 51, 57]. In Appendix C, we employ
linear bounds on Equation 17, which can tighten the bounds computed by our
method as shown initially in [54]. In [1] dynamic programming is used to tighten
these bounds further, and in [43], outside the context of BNNs, an extension of
CROWN is developed for the same problem. We emphasise that, regardless of
the propagation or tightening employed, each of these approaches can be seen
as an instantiation of the framework provided in this work.

Algorithm 1 Lower Bounds for BNN Probabilistic Robustness

Input: T – Input Region, fw – Bayesian Neural Network, p(w|D) – Posterior Distri-
bution with variance Σ, N – Number of Samples, γ – Weight margin.
Output: A sound lower bound on Psafe(T, S).

1: H ← ∅ # H is a set of known safe weight intervals
2: v ← γ · I ·Σ # Elementwise product to obtain width of weight margin
3: for i← 0 to N do
4: w(i) ∼ p(w|D)
5: # Assume weight intervals are built to be disjoint
6: [w(i),L, w(i),U ]← [wi − v, wi + v]
7: # Interval/Linear Bound Propagation, Section 5.2
8: yL, yU ← Propagate(f, T, [w(i),L, w(i),U ])
9: if [yL, yU ] ⊂ S then
10: H ← H

⋃
{[w(i),L, w(i),U ]}

11: end if
12: end for
13: PL

safe ← 0.0
14: for [w(i),L, w(i),U ] ∈ H do
15: PL

safe = PL
safe + P ([w(i),L, w(i),U ]) # Compute safe weight probs, Section 5.1

16: end for
17: return PL

safe
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6 Complete Bounding Algorithm

In this section, we assemble complete algorithms for the computation of bounds
on Psafe(T, S) and Dsafe(T, S) based on the results discussed so far, leaving the
detailed algorithms to Appendix E. Appendix A discusses further use cases for
the bounds. The computational complexity of the algorithm is discussed in Ap-
pendix F.

6.1 Lower-bounding Algorithm

We provide a step-by-step outline for how to compute lower bounds on Psafe(T, S)
in Algorithm 1. We start (line 1) by initialising the family of safe weight sets H
to be the empty set and by scaling the weight margin with the posterior weight
scale (line 2). We then iteratively (line 3) proceed by sampling weights from
the posterior distribution (line 4), building candidate weight boxes (line 6), and
propagating the input and weight box through the BNN (line 8). We next check
whether the propagated output set is inside the safe output region S, and, if
so, update the family of weights H to include the weight box currently under
consideration (lines 9 and 10). Finally, we rely on the results in Section 5.1 to
compute the overall probabilities over all the weight sets in H, yielding a valid
lower bound for Psafe(T, S). For clarity of presentation, we assume that all the
weight boxes that we sample in lines 4–6 are pairwise disjoint, as this simplifies
the probability computation. The general case with overlapping weight boxes
relies on the Bonferroni bound and is given in Appendix E.4.

The algorithm for the computation of a lower bound on Dsafe(T, S) (listed
in the Appendix E as Algorithm 2) proceeds in an analogous way, but without
the need to perform the check in line 9, and by adjusting line 15 to the formula
from Proposition 2.

6.2 Upper-bounding Algorithm

Upper-bounding Psafe(T, S) and Dsafe(T, S) follows the same computational flow
as Algorithm 1. The algorithms for the computation of upper bounds on prob-
abilistic and decision robustness are listed respectively as Algorithm 3 and 4
in Appendix E. We again proceed by sampling a rectangle around the weights,
propagate bounds through the NN, and compute the probabilities of weight in-
tervals. The key change to the algorithm to allow upper bound computation
involves computing the best case, rather than the worst case, for y for deci-
sion robustness (line 12 in Algorithm 3) and ensuring that the entire interval
[yL, yU ] /∈ S (line 18) for probabilistic robustness.

7 Experiments

In this section we experimentally validate our framework on a variety of tasks,
including airborne collision avoidance, medical imaging, and autonomous driv-
ing applications. We mainly focus on verifying the adversarial robustness and
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Variational Inference Hamiltonian Monte Carlo
Standard Likelihood Robust Likelihood Standard Likelihood Robust Likelihood

Fig. 2. Top Row: Lower bounds on Psafe. Bottom Row: Lower bounds on Dsafe.
Left Two Columns: Bound values for VI-inferred BNN averaged over 1000 test-
set examples using various likelihoods, number of samples, and weight-margin values.
Right Two Columns: Bound values for HMC-inferred BNN averaged over 1000 test-
set examples using various likelihoods, number of samples, and values of ϵ.

uncertainty of classification problems that use the 0-1 loss. For a discussion of
how our framework applies to a wider class of specifications see Appendix A,
and Appendix B for an extension to other decision rules. In each case study,
we take the input set to be the interval Tϵ(x) := [x − ϵ, x + ϵ], where ϵ ≥ 0 is
a parameter that we vary in our experiments. For all experiments, S is the set
of all vectors where the true class is returned. Experiments are run on a server
equipped with 2x AMD EPYC 9334 CPUs and 2x NVIDIA L40 GPUs. Details
on training hyper-parameters can be found in Appendix G.

7.1 Airborne Collision Avoidance

We start with the airborne collision avoidance benchmark, which is commonly
used to evaluate the robustness of neural network controllers in a safety-critical
scenario [27, 28]. In particular, we consider the horizontal collision avoidance
scenario (HCAS) from [27], and work with a single hidden layer neural network
with 125 hidden neurons trained both using Variational Online Gauss Newton
(VOGN) [30] and Hamiltonian Monte Carlo (HMC) [36]. We infer posteriors
using both the standard likelihood and the robust likelihood proposed in [53].
In Figure 2 we study the guarantees that our method is able to provide for
each combination of the inference method and likelihood. We plot the lower
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Fig. 3. Top Row: Computed lower bound values on Psafe for robust-likelihood VOGN
posterior (right) and standard VOGN posterior (left). Bottom Row: Computed lower
bound Psafe values for the VOGN posterior while varying depth and width parameters
of the BNN architecture.

bound on Psafe and Dsafe resulting from Algorithm 1 averaged over 1000 test-set
samples. In each plot we show the effect of varying the critical parameters of
our algorithm, including the number of samples and, for VOGN, the width of
the weight margin γ, as defined in Section 5. As expected, in all cases, we find
that taking more samples and using a higher weight margin consistently yields
a higher lower bound. HMC requires significantly more samples to cover the
probability mass as there is no margin parameter when certifying probability
mass functions, i.e., probability distributions with discrete support. Thus, each
sample covers a fixed, small amount of mass, while even one sample from the
VOGN posterior, with a suitable weight margin, is able to give non-trivial lower
bounds, e.g., 0.8 in the case of a Psafe lower bound for the the robust likelihood
BNN in Figure 2. The fact that higher ϵ values lead to smaller values of the
lower bound is also expected, as larger ϵ implies a greater radius for the initial
set T.
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7.2 Image Classification

We now turn our attention to image classification, considering first the widely
used MNIST benchmark with 28 by 28 pixel grey-scale images [32] and then two
safety-critical tasks from medical image classification and autonomous driving.

Fig. 4. Left: Different training image resolutions on a training image sample from
PneumoniaMNIST. Right: Our computed lower bounds on Dsafe, which correspond
to adversarial robustness certificates as we vary the resolution fed into a VOGN-inferred
BNN.

MNIST Digit Recognition In Figure 3, we present two plots certifying (via
lower bounds on Psafe) a single hidden layer neural network with 100 hidden
neurons with parameters inferred using VOGN [30], BayesByBackprop [10] and
NoisyAdam [62], using both robust and standard likelihoods as for the airborne
collision avoidance case study. In the top row of Figure 3, we plot the computed
lower bounds as we increase the value of ϵ. For the posterior inferred by each
inference method using the standard likelihood, we observe that our method is
only able to certify low values of Psafe, even for small values of ϵ, e.g., 0.001.
However, for the robust likelihood posteriors, we are able to certify non-trival
robustness guarantees even at ϵ = 0.1. Additionally, we observe that BayesBy-
Backprop [10] has consistently lower certified values of Psafe. We hypothesise
that this is due to BayesByBackprop having a higher variance posterior, which
in turn results in the propagation of wider weight intervals that can introduce
significant approximation.

In the bottom half of Figure 3, we study how our lower bounds on Psafe

change as we increase the depth and width of the neural network architecture.
For this study we exclusively employ VOGN, but, as previously, still utilise
the standard (left) and robust (right) likelihoods. We find that, for the standard
likelihood, we are able to obtain high lower bounds (greater than 0.7) for all one-
layer networks regardless of width, but struggle with increasing depths. For the
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posteriors inferred using the robust likelihood, we observe that the lower bounds
produced by our approach only begin to decrease when the depth reaches three
layers with significant width. We additionally highlight that, for the posteriors
inferred using the robust likelihood, we use a much larger ϵ (=0.03) compared to
what is used to get non-trivial bounds in the standard training case (ϵ = 0.001).

Fig. 5. Computing upper bounds on Dsafe to certify robust uncertainty estimates from
posteriors inferred on PneumoniaMNIST. Left: Uncertainty certificates for Pneumo-
niaMNIST posterior on MNIST dataset. Right: Uncertainty certificates for Pneumo-
niaMNIST posterior on FashionMNIST dataset.

Medical Image Classification We now turn our attention to a more realis-
tic safety-critical application from the medical image classification domain. In
particular, we study the PneumoniaMNIST dataset from the MedMNIST suite
of benchmarks [60]. PneumoniaMNIST is a dataset of greyscale images of chest
X-rays that pose a binary classification problem, with one class representing
normal chest X-rays and the other class presenting with pneumonia. In the most
recent iteration of the MedMNIST benchmark, an option for different resolutions
is provided ranging from 28 by 28, the same resolution as MNIST, up to 224
by 224, the same resolution as the popular, large-scale ImageNet dataset [18].
In the left-hand-side plot of Figure 4, we visualize the significant differences
between these input dimensionalities. We use these datasets to study how well
our certification approaches scale with increasing input dimensionality. We work
with a four-layer convolutional architecture with two 2D convolution layers, an
average pooling layer, and a final fully-connected layer consisting of 50 neurons.
For each network studied in this section, we use the robust likelihood of [53] in
order to obtain non-trivial certifications. Additionally, we turn our attention to
bounding decision robustness, Dsafe, rather than probabilistic robustness, Psafe,
employed for MNIST evaluation. Decision robustness is more appropriate here
due to the safety-critical nature of pneumonia classification, compared to hand-



Adversarial Robustness Certification for Bayesian Neural Networks 21

written digit classification. In particular, we begin by computing lower bounds
on Dsafe, which in turn allows us to compute adversarial robustness certificates
commensurate with those computed for deterministic neural networks. We find
(see the right-hand-side plot of Figure 4) that an increase in resolution corre-
sponds to a significant decrease in the lower bounds computed by our approach,
which is a result of greater approximation introduced by bound propagation
techniques. Nevertheless, on images with 128 by 128 resolution, our guarantees
continue to provide non-trivial bounds.

In addition to computing lower bounds on Dsafe to certify the adversarial
robustness of our trained posteriors, we also compute upper bounds on Dsafe to
provide certificates that our posterior is provably, robustly uncertain on given
out-of-distribution inputs. To study this, we use the MNIST dataset as well as
the FashionMNIST dataset (consisting of greyscale, 28 by 28, images of cloth-
ing items) as out-of-distribution examples for pneumonia classification. We then
consider an example uncertain if the maximum value of the posterior predictive
distribution is less than 0.8 (an arbitrary, user-definable threshold, which may
require calibration to the specific setting). In Figure 5 we plot the proportion of
test-set inputs for which the inferred posterior is robustly uncertain on MNIST
(left plot) and FashionMNIST (right plot). For very small values of ϵ, we notice
that the network is much more robustly uncertain on MNIST examples then on
FashionMNIST examples. Further, we find that, similarly to robustness certifi-
cation, we are unable to certify any non-trivial uncertainty properties for images
with 224 by 224 resolution.

Test Data USA Traffic Signs

Nonsense Traffic Sign Random Noise

Fig. 6. Analysis of BNN inferred on GTSRB dataset. Left: Example in-distribution
image (top left) and out-of-distribution images. Right: Adversarial robustness certifi-
cates (red) and uncertainty certificates (shades of green) using lower and upper bounds
on Dsafe respectively for different levels of ϵ.

Traffic Sign Recognition Classification Our final safety-critical case study
comes from autonomous navigation using the German Traffic Sign Recognition
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Benchmark (GTSRB) [44]. In particular, we study a three-class subset of the
GTSRB dataset with a three-layer CNN model with parameters inferred using
the robust likelihood and VOGN. In Figure 6 we plot an example of the 50
km/h sign (an in-distribution image) and different examples from three different
out-of-distribution datasets: United States Traffic Signs, Nonsense Traffic Signs,
and random noise. The first two are small sets of images curated from royalty
free image databases online and the third is sampled from a unit normal dis-
tribution. Using each of these datasets, we study both adversarial robustness
(ensuring a sufficiently high Dsafe lower bound) and uncertainty properties (en-
suring sufficiently low Dsafe upper bound) of the trained network that achieves
96% test-set accuracy. In the right-hand-side plot of Figure 6 (in red), we show
that our method is able to compute non-trivial adversarial robustness guaran-
tees up to ϵ = 0.001. In various shades of green, we show that the uncertainty
guarantees we compute are also non-trivial for similar values of ϵ.

8 Conclusion

In this work, we introduced a computational framework for evaluating robustness
properties of BNNs operating under adversarial settings. In particular, we have
discussed how probabilistic robustness and decision robustness can be upper-
and lower-bounded via a combination of posterior sampling, integral computa-
tion over boxes and bound propagation techniques. We have detailed how to
compute these properties for the case of HMC and VI posterior approximation,
and how to instantiate the bounds for interval and linear bound propagation
techniques. We emphasise that the framework presented is general and can be
adapted to different inference techniques, and to most of the verification tech-
niques employed for deterministic neural networks. The main limitation of the
approach presented here arises directly from the Bayesian nature of the under-
lying model, i.e., the need to bound and partition at the weight space level
(which is not needed for deterministic neural networks, with the weight fixed
to a specific value). Nevertheless, the methods presented here provide the first
general-purpose, formal technique for the verification of probabilistic and deci-
sion robustness, as well as uncertainty quantification, in Bayesian neural net-
works, systematically evaluated on a range of tasks and network architectures.
We hope this can serve as a sound basis for future practical applications in
safety-critical scenarios.
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Appendix

This appendix provides additional details of the proposed robustness evaluation
methodology, bounding algorithms, proofs of the main results, as well as hyper-
parameters and network architectures for reproducing our experiments.

A Use Cases for Lower and Upper Bounds

In this section we expand on the methodology for robustness certification sup-
ported by the bounding algorithms. Specifically, we present the use cases for each
bound we derive in this paper and highlight their importance. We also discuss
various kinds of uncertainty measures (full definitions and discussion in [21]), as
well as how one can obtain certification on these quantities. A summary of the
suggested use cases is given in Table 1.

Table 1. Use cases for each lower and upper bound presented in this paper.

Property Application Bound for Certification

Correctness Classification Lower & Upper on Dsafe(T, S)

Aleatoric Uncert. Classification Upper on Dsafe(T, S)

Epistemic Uncert. (OOD) Classification Lower & Upper on Psafe(T, S)

Correctness Regression Lower & Upper on Dsafe(T, S)

Aleatoric Uncert. Regression Lower & Upper on Dsafe(T, S)

Epistemic Uncert. (OOD) Regression Lower & Upper on Psafe(T, S)

Correctness One of the most widely studied properties in NN robustness is
that of “correctness” [28], which requires prediction of the NN to match the
ground truth even in the face of adversarial perturbations. For classification,
as discussed in the main text, correctness boils down to checking that, for all
adversarial perturbations, the argmax of the softmax output remains the same.
For regression, due to the continuous nature of outputs, correctness involves es-
tablishing a range of outputs that correspond to the tolerable error. Given that
correctness relies on the ultimate decision of the BNN in either the classification
or regression, we use upper and lower bounds on the posterior predictive expec-
tation (i.e., DL

safe and DU
safe). To prove that classification is correct, one must

prove that the lower bound of the true class softmax probability is higher than
the upper bound of all other classes softmax probability, which implies:

∀x ∈ T, argmaxE
[
σ(fw(x))

]
= c

For regression one must use upper and lower bounds in order to show that output
prediction lies within tolerable error. For this, one needs to check that the end
points of the decision, [DL

safe, D
L
safe], are contained within the tolerance region.
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Aleatoric Uncertainty Measures of aleatoric uncertainty are input-dependent
and come from the noise within the data observation process [21]. For classifica-
tion, the aleatoric uncertainty is usually measured as maxi∈[n] Ep(w|D)σ(f

w(x))i.
This is also termed the ‘confidence.’ For regression, one can predict both the
mean and variance of a Gaussian likelihood, where the variance represents the
aleatoric uncertainty [38]. Computing bounds on the posterior predictive mean
allows us to ensure that a point has sufficiently high (or low) aleatoric uncer-
tainty. For classification, DL

safe represents a lower bound on Ep(w|D)σ(f
w(x))i,

and thus DL
safe allows us to bound aleatoric uncertainty. For regression, the same

holds, except it is only the bound DL
safe in the dimension corresponding to the

predicted variance.

Epistemic Uncertainty Model or epistemic uncertainty measures the uncer-
tainty from the lack of data at training time. We expect that epistemic uncer-
tainty is high for out-of-distribution samples. Epistemic uncertainty is measured
as the spread of prediction from various models under the posterior distribution.
To measure this, it is natural to consider the variance of the posterior predictive
distribution. Given an out-of-distribution input x, one can certify that Psafe is
not sufficiently high for any class. This guarantees that there does not exist one
class that the BNN maps all of its predictions into, and thus guarantees that the
BNN is uncertain. By checking Psafe across in- and out-of-distribution points,
modellers can certify that their BNN is well calibrated with respect to epistemic
uncertainty.

B Certifying Further Decision Rules

As discussed in the main paper, decision robustness is clearly dependent on
the function used for Bayesian decisions for the given learning model. In the
main paper we have given explicit results for the two standard losses, ℓ0−1 for
classification and ℓ2 for regression. However, with some minor adjustments, our
method can be employed for different losses too. In this section we give the
details for the ℓ1 loss for regression and weighted loss for classification.

B.1 Bounding Decisions for the ℓ1 Loss

For the ℓ1 decision loss, it is known that the median of the posterior predictive
distribution is the value that minimizes the loss. Thus, we must bound the
median, defined as usual to be m(Z) := x ⇐⇒

∫ x

−∞ pZ(v)dv = 0.5. Assuming∑N
i=1 P (Ji) = 1.0, we can arrive at a lower bound by picking yLm to be our

median lower bound such that
∑m

i=1 P (Ji) ≤ 0.5 but
∑m+1

i=1 P (Ji) ≥ 0.5. One can
similarly find an upper bound via this routine by first computing upper bounds
for each weight rectangle and then picking yUm such that

∑m
i=1 P (Ji) ≥ 0.5 but∑m−1

i=0 P (Ji) ≤ 0.5. When the condition
∑N

i=1 P (Ji) = 1.0 does not hold, we
can modify the procedure to obtain valid bounds on the median. We assume
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that
∑N

i=1 P (Ji) = 1.0 − η for any η such that 0.5 > η > 0. Then we pick
the lower bound to the median to be yLm such that η +

∑m
i=1 P (Ji) ≤ 0.5 but

η+
∑m+1

i=1 P (Ji) ≥ 0.5. This yields a valid bound on the median. Similar formulas
can be computed for the upper bound, by relying on the laws of complementary
probabilities.

B.2 Bounding Decisions for the 0-K Loss

In some safety-critical decision-making problems, particularly in medical diagno-
sis, predicting one class is associated with with greater risk (formally, loss) than
predicting another. In this case, the 0-1 loss is made more general and is defined
as the 0-K loss, which assigns a penalty of 0 to the correct prediction, and Ki

otherwise, where i indexes the classes. Thus, the posterior expected losses in
a binary classification case are K0p(y0|x,D) and K1p(y1|x,D). In this scenario
the decision rule is not to take the argmax as before, but to predict class i if

the p(yi|x,D) >
Ki∑nc

i=0 Ki
, which is straightforward in our framework. To certify

this decision rule it suffices to check that DL
safe,i ≥

Ki∑nc

i=0 Ki
. We refer interested

readers to Section 4.4.3 of [6] for more in-depth discussion.

C Linear bound propagation (LBP)

We now discuss how LBP can be used to lower-bound the BNN output over T
and R as an alternative to IBP. In LBP, instead of propagating bounding boxes,
one finds lower and upper linear bounding functions (LBFs) for each layer and
then propagates them through the network. As the bounding function has an
extra degree of freedom w.r.t. the bounding boxes obtained through IBP, LBP
usually yields tighter bounds, though at an increased computational cost. Since
in deterministic networks non-linearity comes only from the activation functions,
in the deterministic case LBFs are computed by bounding the activation func-
tions and propagating the bounds through the affine function that defines each
layer.

In our setting, given T in the input space and R for the first layer in the weight
space, we start with the observation that LBFs can be obtained and propagated
through commonly employed activation functions as discussed in [63].

Lemma 2. Let fw(x) be defined by Equation (14). For each hidden layer k =
1, . . . ,K, consider a bounding box in the pre-activation function, i.e. such that

ζ
(k)
i ∈ [ζ

(k),L
i , ζ

(k),U
i ] for i = 1, . . . , nk. Then there exist coefficients α

(k),L
i , β

(k),L
i ,

α
(k),U
i and β

(k),U
i of lower and upper LBFs on the activation function such

that for all ζ
(k)
i ∈ [ζ

(k),L
i , ζ

(k),U
i ] it holds that: α

(k),L
i ζ

(k)
i + β

(k),L
i ≤ σ(ζ

(k)
i ) ≤

α
(k),U
i ζ

(k)
i + β

(k),U
i .
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The lower and upper LBFs can thus be minimised and maximised to propagate
the bounds of ζ(k) in order to compute a bounding interval [z(k),L, z(k),U ] for
z(k) = σ(ζ(k)). Then, LBFs for the monomials of the bi-linear form of Equation
(14) can be derived using McCormick’s inequalities [34]:

W
(k)
ij z

(k)
j ≥ W

(k),L
ij z

(k)
j +W

(k)
ij z

(k),L
j −W

(k),L
ij z

(k),L
j (18)

W
(k)
ij z

(k)
j ≤ W

(k),U
ij z

(k)
j +W

(k)
ij z

(k),L
j −W

(k),U
ij z

(k),L
j (19)

for every i = 1, . . . , nk, j = 1, . . . , nk−1 and k = 1, . . . ,K. The final linear bound
can be obtained by iterating the application of Lemma 2 and Equations (18)–
(19) through every layer. This is summarised in the following proposition, which
is proved in Appendix D along with an explicit construction of the LBFs.

Proposition 4. Let fw(x) be the network defined by Equation (14). Then for
every k = 0, . . . ,K there exists lower and upper LBFs on the pre-activation
function of the form:

ζ
(k+1)
i ≥ µ

(k+1),L
i · x+

k−1∑
l=0

⟨ν(l,k+1),L
i ,W (l)⟩+ ν

(k,k+1),L
i ·W (k)

i: + λ
(k+1),L
i

ζ
(k+1)
i ≤ µ

(k+1),U
i · x+

k−1∑
l=0

⟨ν(l,k+1),U
i ,W (l)⟩+ ν

(k−1,k+1),U
i ·W (k)

i: + λ
(k+1),U
i

for i = 1, . . . , nk+1, where ⟨·, ·⟩ is the Frobenius product between matrices, ·
is the dot product between vectors, and the explicit formulas for the LBF co-

efficients, i.e., µ
(k+1),L
i , ν

(l,k+1),L
i , λ

(k+1),L
i , µ

(k+1),U
i , ν

(l,k+1),U
i , are given in

Appendix D.4. Let ζ
(k),L
i and ζ

(k),U
i , respectively, be the minimum and the maxi-

mum of the right-hand side of the two equations above; then we have that ∀x ∈ T
and ∀w ∈ R: fw(x) = ζ(K+1) ∈

[
ζ(K+1),L, ζ(K+1),U

]
.

D Proofs

In this section we provide proofs for the main theoretical results stated in the
paper.

D.1 Lemma 1

Proof. By the definition of the maximal safe weight set we have w ∈ H ⇐⇒
∀x ∈ T, fw(x) ∈ S. Moreover, we have that the probability of a weight being in
such a set is given as Probw∼p(w|D)(w ∈ H) =

∫
H
p(w|D)dw. By making explicit

the definition of H, together these two give us

Probw∼p(w|D)(∀x ∈ T, fw(x) ∈ S) =

∫
H

p(w|D)dw.

The second equality stated in the lemma follows directly from the latter result
and the property of complementary probabilities, with w ∈ H and w ∈ K being
two complementary events.



30 M. Wicker et al.

D.2 Proposition 2

Proof. We prove the results explicitly for the lower bound; the derivation of the
upper bound is analogous. Consider the minimisation over T of the expected
value computed over the posterior distribution of Problem 2 for output index
c ∈ {1, . . . ,m}:

min
x∈T

Ep(w|D)[σc(f
w(x))] = min

x∈T

∫
σc(f

w(x))p(w|D)dw.

Let I = Rnw \
⋃nJ

i=1 Ji Since the weight intervals in J are disjointed we can rely
on the linearity of integrals to obtain:

min
x∈T

∫
σc(f

w(x))p(w|D)dw = min
x∈T

(
nJ∑
i=1

∫
Ji

σc(f
w(x))p(w|D)

+

∫
I

σc(f
w(x))p(w|D)

)
.

We notice that, for every x,
∫
Ji
σc(f

w(x))p(w|D) ≥ minw∈Ji
σc(f

w(x))
∫
Ji
p(w|D).

By combining this result with the above chain of equalities, and further relying
on the property of minimum, we obtain that:

min
x∈T

(
nJ∑
i=1

∫
Ji

σc(f
w(x))p(w|D) +

∫
I

σc(f
w(x))p(w|D)

)
≥

nJ∑
i=1

∫
Ji

p(w|D)dw min
x∈T
w∈Ji

σc(f
w(x))+

σL

(
1−

nJ∑
i=1

∫
Ji

p(w|D)dw

)
= DL

safe,c,

which proves the theorem statement.

D.3 Proposition 3

Proof. The bounding box can be computed iteratively in the number of hidden
layers of the network, K. We show how to compute the lower bound of the
bounding box; the computation for the maximum is analogous.

Consider the k-th network layer, for k = 0, . . . ,K, we want to find for i =
1, . . . nk+1:

min
W

(k)
i: ∈[W

(k),L
i: ,W

(k),U
i: ]

z(k)∈[z(k),L,z(k),U ]

b
(k)
i ∈[b

(k),L
i ,b

(k),U
i ]

z
(k+1)
i = σ

 nk∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i

 .
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As the activation function σ is monotonic, it suffices to find the minimum of:∑nk

j=1 W
(k)
ij z

(k)
j + b

(k)
i . Since W

(k)
ij z

(k)
j is a bi-linear form defined on an hyper-

rectangle, it follows that it obtains its minimum in one of the four corners of the

rectangle [W
(k),L
ij ,W

(k),U
ij ]× [z

(k),L
j , z

(k),U
j ].

Let t
(k),L
ij = min{W (k),L

ij z
(k),L
j ,W

(k),U
ij z

(k),L
j ,W

(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j } we hence

have:
nk∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i ≥

nk∑
j=1

t
(k),L
ij + b

(k),L
i =: ζ

(k+1),L
i .

Thus for everyW
(k)
i: ∈ [W

(k),L
i: ,W

(k),U
i: ], z(k) ∈ [z(k),L, z(k),U ] and b

(k)
i ∈ [b

(k),L
i , b

(k),U
i ]

we have:

σ

 nk∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i

 ≥ σ
(
ζ
(k+1),L
i

)

that is z
(k+1),L
i = σ

(
ζ
(k+1),L
i

)
is a lower bound to the solution of the minimi-

sation problem posed above.

D.4 Proposition 4

We first state the following lemma that follows directly from the definition of
linear functions:

Lemma 3. Let fL(t) =
∑

j a
L
j tj + bL and fU (t) =

∑
j a

U
j tj + bU be lower and

upper LBFs to a function g(t) ∀t ∈ T , i.e., fL(t) ≤ g(t) ≤ fU (t) ∀t ∈ T .
Consider two real coefficients α ∈ R and β ∈ R. Define

āLj =

{
αaLj ifα ≥ 0

αaUj ifα < 0
b̄L =

{
αbL + β ifα ≥ 0

αbU + β ifα < 0
(20)

āUj =

{
αaUj ifα ≥ 0

αaLj ifα < 0
b̄U =

{
αbU + β ifα ≥ 0

αbL + β ifα < 0
(21)

Then:

f̄L(t) :=
∑
j

āLj tj + b̄L ≤ αg(t) + β ≤
∑
j

āUj tj + b̄U

=: f̄U (t)

That is, LBFs can be propagated through linear transformation by redefining the
coefficients through Equations (20)–(21).

We now prove Proposition 4 iteratively on k = 1, . . . ,K, that is, for i =

1, . . . , nk there exist f
(k),L
i (x,W ) and f

(k),U
i (x,W ) lower and upper LBFs such
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that:

ζ
(k)
i ≥ f

(k),L
i (x,W ) := µ

(k),L
i · x+ (22)

k−2∑
l=0

⟨ν(l,k),Li ,W (l)⟩+ ν
(k−1,k),L
i ·W (k−1)

i: + λ
(k),L
i

ζ
(k)
i ≤ f

(k),U
i (x,W ) := µ

(k),U
i · x+ (23)

k−2∑
l=0

⟨ν(l,k),Ui ,W (l)⟩+ ν
(k−1,k),U
i ·W (k−1)

i: + λ
(k),U
i

and iteratively find valid values for the LBFs coefficients, i.e., µ
(k),L
i , ν

(l,k),L
i ,

λ
(k),L
i , µ

(k),U
i , ν

(l,k),U
i and λ

(k),U
i .

For the first hidden-layer we have that ζ
(1)
i =

∑
j W

(0)
ij xj+b

(0)
i . By inequality

(18) and using the lower bound for b
(0)
i we have:

ζ
(1)
i ≥

∑
j

(
W

(0),L
ij xj +W

(0)
ij xL

j −W
(0),L
ij xL

j

)
+ b

(0),L
i

= W
(0),L
i: · x+W

(0)
i: · xL −W

(0),L
i: · xL + b

(0),L
i

which is a lower LBF on ζ(1). Similarly, using Equation (19) we obtain:

ζ
(1)
i ≤ W

(0),U
i: · x+W

(0)
i: · xL −W

(0),U
i: · xL + b

(0),U
i

which is an upper LBF on ζ(1). By setting:

µ
(1),L
i = W

(0),L
i: , µ

(1),U
i = W

(0),U
i:

ν
(0,1),L
i = z(0),L , ν

(0,1),U
i = xL

λ
(1),L
i = −W

(0),L
i: · xL + b

(0),L
i

λ
(1),U
i = −W

(0),U
i: · xL + b

(0),U
i

we obtain LBFs f
(1),L
i (x,W ) and f

(1),U
i (x,W ) of the form (22)–(23).

Given the validity of Equations (22)–(23) up to a certain k, we now show

how to compute the LBF for layer k + 1. Specifically, given f
(k),L
i (x,W ) and

f
(k),U
i (x,W ) we explicitly compute f

(k+1),L
i (x,W ) and f

(k+1),U
i (x,W ). Let ζ

(k),L
i =

min f
(k),L
i (x,W ) and ζ

(k),U
i = max f

(k),U
i (x,W ) be the minimum and maximum

of the two LBFs (which can be computed analytically as the functions are lin-

ear). For Lemma 2 there exists a set of coefficients such that z
(k)
i = σ(ζ

(k)
i ) ≥

α
(k),L
i ζ

(k)
i + β

(k),L
i . By Lemma 3 we know that there exists f̄

(k),L
i (x,W ) with

coefficients µ̄
(k),L
i , ν̄

(l,k),L
i , λ̄

(k),L
i obtained through Equations 20–21 such that:

z
(k)
i ≥ α

(k),L
i f

(k),L
i (x,W ) + β

(k),L
i ≥ f̄

(k),L
i (x,W )
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that is f̄
(k),L
i (x,W ) is a lower LBF on z

(k)
i with coefficients µ̄

(k),L
i , ν̄

(l,k),L
i , λ̄

(k),L
i .

Analogously, let f̄
(k),U
i (x,W ) be the upper LBF on z

(k)
i computed in a similar

way.

Consider now the bi-linear layer ζ
(k+1)
i =

∑
j W

(k)
ij z

(k)
j + b

(k)
i . From Equa-

tion (18) we know that: W
(k)
ij z

(k)
j ≥ W

(k),L
ij z

(k)
j + W

(k)
ij z

(k),L
j − W

(k),L
ij z

(k),L
j .

By applying Lemma 3 with α = W
(k),L
ij and β = 0 we know that there exists

a lower LBF f̂
(k),L
ij (x,W ) with a set of coefficients a

(k),L
ij , b

(l,k),L
ij and c

(k),L
ij

computed applying Equations (20)–(21) to µ̄
(k),L
i , ν̄

(l,k),L
i , λ̄

(k),L
i such that:

W
(k),L
ij z

(k)
j ≥ f̂

(k),L
ij (x,W ). Hence we have:

ζ
(k+1)
i =

∑
j

W
(k)
ij z

(k)
j + b

(k)
i ≥

∑
j

(
W

(k),L
ij z

(k)
j +

W
(k)
ij z

(k),L
j −W

(k),L
ij z

(k),L
j

)
+ b

(k),L
i ≥∑

j

f̂
(k),L
ij (x,W ) +

∑
j

W
(k)
ij z

(k),L
j −

∑
j

W
(k),L
ij z

(k),L
j + b

(k),L
i =

∑
j

(
a
(k),L
ij · x+

k−2∑
l=0

⟨b(l,k),Lij ,W (l)⟩

+ b
kl−1,k),L
ij ·W (k−1)

j: + c
(k),L
ij

)
+

W
(k)
i: · z(k),L −W

(k),L
i: z(k),L.

By setting

µ
(k+1),L
i =

∑
j

a
(k),L
ij

ν
(l,k+1),L
i =

∑
j

b
(l,k),L
ij k = 0, . . . , l − 2

ν
(k−1,k+1),L
i = b

(k−1,k),L
i

ν
(k,k+1),L
i = z(k),L

λ
(k+1),L
i =

∑
j

c
(k),L
ij −W

(k),L
i: · z(k),L + b

(k),L
i

and re-arranging the elements in the above inequality, we finally obtain:

ζ
(k+1)
i ≥ µ

(k+1),L
i · x+

k−1∑
l=0

⟨ν(l,k+1),L
i ,W (l)⟩+

ν
(k,k+1),L
i ·W (k)

i: + λ
k+1),L
i =: f

(k+1),L
i (x,W )
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which is of the form of Equation (22) for the lower LBF for the k + 1-th layer.
Similarly, an upper LBF of the form of Equation (23) can be obtained by using
Equation (19) in the chain of inequalities above.

E Algorithms and Discussion

Algorithm 2 Lower Bounds for Dsafe(T, S)

Input: T – Compact Input Region, fw – Bayesian Neural Network, p(w|D) – Posterior
Distribution, N – Number of Samples, γ – Weight margin.
Output: A sound lower bound on Dsafe(T, S).

1: # J is an arbitrary set of weight intervals
2: J ← ∅
3: # Ψ̂ is a set of worst-case predicted outputs
4: Ψ̂ ← ∅
5: # Element-wise products to get width of weight margin.
6: v ← γ · I ·Σ
7: for i← 0 to N do
8: w(i) ∼ p(w|D)
9: # Assume weight intervals are built to be disjoint
10: [w(i),L, w(i),U ]← [wi − v, wi + v]
11: # Interval/Linear Bound Propagation, Section 5.2
12: yL, yU ← Propagate(f, T, [w(i),L, w(i),U ])
13: # Output worst-case see Section VI-F
14: yworst ← Output-Worst([yL, yU ])
15: J ← J

⋃
{[w(i),L, w(i),U ]}, Ψ̂ ← Ψ̂

⋃
{yworst}

16: end for
17: ymean ← 0.0; ptotal ← 0.0
18: for i← 0 to |Ji| do
19: # Mult. weight probs and output bounds.
20: ymean = ymean + Ψ̂iP (Ji)
21: ptotal = ptotal + P (Ji)
22: end for
23: # Complete the bound according to Proposition 2.
24: DL

safe = ymean + (1− ptotal)σ
L

25: return DL
safe

E.1 Lower Bound on Dsafe(T, S)

In Algorithm 2, we provide step-by-step pseudocode for lower-boundingDsafe(T, S).
One can notice that the algorithm follows a similar computational flow to Algo-
rithm 1 in the main text. Namely, on lines 2 and 4 we establish the sets that we
will keep track of (weight intervals and worst-case outputs, respectively). Then,
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in lines 7–16, we iteratively sample pairwise disjoint weight intervals and com-
pute their worst-case outputs. On line 14, a key modification is added compared
to the lower bound on Psafe(T, S), which is the computation of the worst-case
output. In the case of softmax classification we have that Output-Worst takes
the form:

Output-Worst([yL, yU ]) =
exp(yLc )

exp(yLc ) +
∑nc

l ̸=c exp(y
U
l )

(24)

That is, the lower bound for the true class and the upper bound for all other
classes. For regression Output-Worst = yL. Both formuals represent the worst-
case output and satisfy the conditions needed for Proposition 2 in the main text.
Finally, in lines 17-22 we compute the necessary components for our bound in
Proposition 2 and complete the bound on line 24. Overall, the computational
complexity of this algorithm is exactly the same as the lower bound on prob-
abilistic safety and in practice the computational times are only fractionally
different.

E.2 Upper Bound on Psafe(T, S)

We provide pseudocode for the computation of the upper bound on Psafe(T, S)
in Algorithm 3. To do this we compute unsafe weight sets. We wish to determine
that a weight interval is unsafe, i.e., the logical negation of our safety property:
¬(fw(x) ∈ S ∀x ∈ T ) = (∃x s.t. fw(x) /∈ S). Notice that, unlike the procedure
for computing safety, here we do not need to jointly propagate a weight-space
interval together with the full input specification T , as we only need to find
a single x which causes the entire weight interval to be mapped outside of S,
and note that every x ∈ T returns a valid bound. Finding an x that violates
the property is identical to the formulation for adversarial examples. Thus, in
order to test if there exists a single input that causes the weight interval to be
unsafe, we leverage the developments in adversarial attacks in order to attack
each sampled weight wi (line 10 of Algorithm 3).

E.3 Upper Bound on Dsafe(T, S)

We provide pseudocode for the computation of the upper bound onDsafe(T, S) in
Algorithm 4. The main modification to this algorithm is a change from comput-
ing the worst-case output to computing the best-case output. This is done with
the Output-Best function. In the case of softmax classification Output-Best

takes the form:

Output-Best(yL, yU ) =
exp(yUc )

exp(yUc ) +
∑nc

l ̸=c exp(y
L
l )

(25)

and for regression, Output-Best = yU .
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Algorithm 3 Upper Bounding Psafe(T, S)

Input: T – Input Set, S – Safe Set, fw – Bayesian Neural Network, w – Posterior
Distribution, N – Number of Samples, γ – Weight Margin.
Output: Safe upper bound on Psafe(T, S).

1: # K is a set of known unsafe weight intervals
2: K ← ∅
3: # Element-wise products to get width of weight margin.
4: v ← γ · I ·Σ
5: for i← 0 to N do
6: w(i) ∼ p(w|D)
7: # Assume weight intervals are built to be disjoint
8: [w(i),L, w(i),U ]← [wi − v, wi + v]
9: # FGSM/PGD
10: xadv ← Attack(f, wi, T )
11: # Interval/Linear Bound Propagation
12: yL, yU ← Propagate(f, xadv, [w

(i),L, w(i),U ])
13: if ∀y ∈ [yL, yU ]y /∈ S) then
14: K ← K

⋃
{[w(i),L, w(i),U ]}

15: end if
16: end for
17: Punsafe ← 0.0
18: for i = 0..|K| do
19: Punsafe = Punsafe + P (Ki)
20: end for
21: PU

safe = 1− Punsafe

22: return PU
safe



Adversarial Robustness Certification for Bayesian Neural Networks 37

Algorithm 4 Upper Bounding Dsafe(T, S)

Input: T – Input Set, fw – Bayesian Neural Network, p(w|D) – Posterior Distribution,
N – Number of Samples, γ – Weight margin.
Output: A sound lower bound on Dsafe(T, S).

1: # H is a set of known safe weight intervals
2: J ← ∅
3: # Ψ̂ is a set of best-case predicted outputs
4: Ψ̂ ← ∅
5: # Element-wise products to get width of weight margin.
6: v ← γ · I ·Σ
7: for i← 0 to N do
8: w(i) ∼ p(w|D)
9: [w(i),L, w(i),U ]← [wi − v, wi + v]
10: # Interval/Linear Bound Propagation, Section 5.2
11: yL, yU ← Propagate(f, T, [w(i),L, w(i),U ])
12: # Output upperbound see Eq (25)
13: yupper ← Output-Best([yL, yU ])
14: J ← J

⋃
{[w(i),L, w(i),U ]}, Ψ̂ ← Ψ̂

⋃
{yupper}

15: end for
16: ymean ← 0.0; ptotal ← 0.0
17: for i← 0 to N do
18: # Mult. weight probs and output bounds
19: ymean = ymean + Ψ̂iP (Hi)
20: ptotal = ptotal + P (Hi)
21: end for
22: # Complete the bound according to Proposition 2.
23: DU

safe = ymean + (1− ptotal)σ
U

24: return DU
safe

E.4 Bonferroni Bounds for Overlapping Weight Intervals

A key challenge of Proposition 1 in the case of variational inference is ensuring
that the hyper-rectangles are pairwise disjoint (i.e., Ĥi∩Ĥj = ∅). If this is not the
case, then enforcing independence can be computationally tricky, as the relative
complement of two or more hyper-rectangles is not necessarily a hyper-rectangle.
While one could modify the sampling procedure to reject overlapping intervals,
or could devise a scheme for sampling pairwise disjoint hyper-rectangles, for high
values of N and for a large number of parameters this becomes computationally
intensive. To solve this, we highlight that the disjoint union of two or more hyper-
rectangles is necessarily a hyper-rectangle. Therefore, we can employ Bonferroni
inequalities [11] to get upper and lower bound on the posterior probability of
non-disjoint hyper-rectangles:

Corollary 1. Assume that Σ, the covariance matrix of the posterior distribution
of the weights, is diagonal with diagonal elements Σ1, ..., Σnw

. Let Ĥ1, ..., ĤM be
M safe sets of weights not necessary satisfying Ĥi∩Ĥj = ∅ and let the probability
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of any k of these safe sets simultaneously occurring be defined as:

Sk :=
⊔

i1<...<ik

Hi1 ⊔ ... ⊔Hik

We then have that for any even integer v and odd integer u that the probability
of the weights under the posterior is bounded:

v∑
j=1

(−1)jProb(Sj) ≤ Prob(Ĥ1, ..., ĤM ) ≤
u∑

j=1

(−1)jProb(Sj)

where Prob(Sj) is computed according to Corollary 2 as Sj is a single hyper-
rectangle.

Now that we can compute if a weight interval is guaranteed to be safe and can ob-
tain a lower bound to the posterior probability covered by many weight intervals,
we can combine these subroutines into algorithms for computing the required
probability bounds. For bounds on decision robustness we need to consider the
upper or lower bound output in conjunction with this probability. Recall that
the upper or lower bound output determined by Output-Worst or Output-Best
described in Appendix E and the upper and lower bounds are stored such that
the output bound of Ji is stored in Ψ̂i. To get a lower bound we modify the
above corollary to be:

v∑
j=1

(−1)jProb(Sj)max{Ψ̂i}ji=1 ≤
M∑
i=1

Ψ̂iProb(Ĵi). (26)

To get an upper bound we use:

M∑
i=1

Ψ̂iProb(Ĵi) ≤
u∑

j=1

(−1)jProb(Sj)min{Ψ̂i}ji=1

Here we can use the max operator for our lower bound and min for our upper
bound as every value in the set {Ψ̂i}Mi=1 is a valid output bound for the disjoint
union of hyper-rectangles.

F Computational Complexity

Calculations for probabilistic robustness and decision robustness follow the same
computational flow and include bounding of the neural network output, sampling
from the posterior distribution, and computation of integrals over boxes on the
input and weight space.

Regarding Algorithm 1 (or equivalently Algorithm 2 for decision robustness),
it is clear that the computational complexity scales linearly with the number of
samples, N , taken from the posterior distribution. Observe that, in order to ob-
tain a tight bound on the integral computation, N needs to be large enough such
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that N samples of the posterior with width γ span an area of high probability
mass for p(w|D). Unfortunately, this means that, for a given approximation er-
ror magnitude, N needs to scale quadratically on the number of hidden neurons.
Given the sampling of the hyper-rectangles, computation of the integral over the
weight boxes proceeds through Equations (12) and (13). The integration over
the weight boxes requires constant time for HMC (though a good quality HMC
posterior approximation scales with the number of parameters) and O(nw) for
VI. The final step needed for the method is bound propagation, which clearly
differs when using IBP or LBP. In particular, the cost of performing IBP is
O(Kn̂m̂), where K is the number of hidden layers and n̂ × m̂ is the size of
the largest weight matrix W (k), for k = 0, . . . ,K. LBP is, on the other hand,
O(K2n̂m̂). Overall, the time complexity for certifying a VI BNN with IBP is
therefore O(NnwKn̂m̂), and similar formulas can be obtained for alternative
combinations of inference and propagation techniques that are employed. We
remark that, while sound, the bounds we compute are not guaranteed to con-
verge to the true values of Psafe(T, S) and Dsafe(T, S) in the limit of the number
of samples N because of the introduction of over-approximation errors during
bound propagation.

G All Experimental Parameters

In this section we detail all of the hyper-parameters for each network trained
and describe the convolutional architectures used in our experiments.

G.1 Horizontal Collision Avoidance (HCAS)

Infer. Epochs Batch Depth Width LR Loss Burn in Decay Prior ϵ λ

VOGN 75 512 1 125 0.05 Standard - - 2.5 - -

VOGN 75 512 1 125 0.15 Robust - - 2.5 0.15 0.5

HMC 75 - 1 125 0.05 Standard 20 0.3 2.5 - -

HMC 75 - 1 125 0.05 Robust 1 0.3 2.5 0.15 0.5
Table 2. Experimental Configurations for Horizontal Collision Avoidance
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G.2 MNIST Handwritten Digits

Inference Epochs Batchsize Depth Width LR Decay Loss ϵ λ Prior

VOGN 40 128 1 125 0.1 0.1 Standard - - 1.0

VOGN 40 512 1 125 0.1 0.1 Robust 0.05 0.25 1.0

NA 40 512 1 125 0.025 0.1 Standard - - 1.0

NA 40 512 1 125 0.025 0.1 Robust 0.05 0.75 1.0

BBB 40 512 1 125 0.075 0.01 Standard - - 0.5

BBB 40 512 1 125 0.08 0.01 Robust 0.05 0.75 0.5
Table 3. Experimental Configurations for MNIST

G.3 German Traffic Sign Recognition Benchmark

In the German Traffic Sign Recognition Benchmark (GTSRB) experiment, we
use Variational Online Gaussian Newton (VOGN) inference. The model is trained
for 50 epochs with a batch size of 32. The learning rate is set to 0.001, and no
decay is applied (decay rate is 0.00). The loss function is the robust loss, specif-
ically configured with ϵ set to 0.01 and λ set to 0.1, to enhance the model’s
robustness. The model is designed to classify traffic signs into 3 different classes.
Additionally, a prior of 1.0 is applied in the model configuration to regularize the
learning process and prevent overfitting. The architecture of the neural network
used in this experiment is a sequential model constructed as follows. The first
layer is a convolutional layer (Conv2D) with 4 filters, each of size 4 × 4, and
ReLU activation function. This layer takes an input of shape 30× 30× 3 (30x30
pixel images with 3 color channels). Following this, an average pooling layer
(AveragePooling2D) with a pool size of 4 × 4 is applied to reduce the spatial
dimensions of the feature maps. The output is then flattened into a 1D vector
by the Flatten layer, which is then fed into a dense layer (Dense) with 50 units
and ReLU activation function. The final layer is another dense layer with the
number of units equal to the number of classes (3 in this case) and a softmax
activation function, which outputs the class probabilities.

G.4 PneumoniaMNIST

In the PneumoniaMNIST experiment, we again utilize Variational Online Gaus-
sian Newton (VOGN) inference over 30 epochs with a batch size of 128. The
learning rate is set to 0.075 with no decay applied (decay rate is 0.0). The loss
function is the robust loss to enhance model resilience, configured with ϵ set to
0.015 and λ set to 0.25. The dataset used is PneumoniaMNIST, which consists
of images with an input dimension of 28x28 pixels. A prior of 1.0 is incorporated
to regularize the learning process. The neural network architecture employed in
this experiment is a sequential model constructed as follows. The first layer is a
convolutional layer (Conv2D) with 10 filters, each of size 4×4, and ReLU activa-
tion function. Following this, another Conv2D layer with the same configuration
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is added. An average pooling layer (AveragePooling) is applied to downsample
the feature maps. The output is then flattened into a 1D vector by the Flat-
ten layer, followed by a dense layer (Dense) with 50 units and ReLU activation
function. The final layer is a dense layer with 2 units and softmax activation
function, which outputs the probabilities for the two classes.
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