
PRE-PRINT. MANUSCRIPT UNDER REVIEW 1

Adversarial Robustness Certification
for Bayesian Neural Networks

Matthew Wicker∗, Andrea Patane†, Luca Laurenti‡ and Marta Kwiatkowska∗

∗ Department of Computer Science, University of Oxford, Oxford, United Kingdom
Email: ∗(matthew.wicker, marta.kwiatkowska)@cs.ox.ac.uk

† School of Computer Science and Statistics, Trinity College Dublin, Ireland
Email: †apatane@tcd.ie

‡ Delft Center for Systems and Control (DCSC), TU Delft, Delft, Netherlands
Email: ‡luca.laurenti@tudelft.nl

Abstract—We study the problem of certifying the robustness
of Bayesian neural networks (BNNs) to adversarial input per-
turbations. Given a compact set of input points T ⊆ Rm and a
set of output points S ⊆ Rn, we define two notions of robustness
for BNNs in an adversarial setting: probabilistic robustness and
decision robustness. Probabilistic robustness is the probability
that for all points in T the output of a BNN sampled from the
posterior is in S. On the other hand, decision robustness considers
the optimal decision of a BNN and checks if for all points in T the
optimal decision of the BNN for a given loss function lies within
the output set S. Although exact computation of these robustness
properties is challenging due to the probabilistic and non-convex
nature of BNNs, we present a unified computational framework
for efficiently and formally bounding them. Our approach is
based on weight interval sampling, integration, and bound
propagation techniques, and can be applied to BNNs with a large
number of parameters, and independently of the (approximate)
inference method employed to train the BNN. We evaluate the
effectiveness of our methods on various regression and classifica-
tion tasks, including an industrial regression benchmark, MNIST,
traffic sign recognition, and airborne collision avoidance, and
demonstrate that our approach enables certification of robustness
and uncertainty of BNN predictions.

Index Terms—Certification, Bayesian Neural Networks, Adver-
sarial Robustness, Classification, Regression, Uncertainty

I. INTRODUCTION

While neural networks (NNs) regularly obtain state-of-
the-art performance in many supervised machine learning
problems [1], [2], they have been found to be vulnerable to
adversarial attacks, i.e., imperceptible modifications of their
inputs that trick the model into making an incorrect prediction
[3]. Along with several other vulnerabilities [4], the discovery
of adversarial examples has made the deployment of NNs in
real-world, safety-critical applications – such as autonomous
driving or healthcare – increasingly challenging. The design
and analysis of methods that can mitigate such vulnerabilities
of NNs, or provide guarantees for their worst-case behaviour in

This project received funding from the ERC under the European Union’s
Horizon 2020 research and innovation programme (FUN2MODEL, grant
agreement No. 834115). MK further acknowledges funding from ELSA:
European Lighthouse on Secure and Safe AI project (grant agreement No.
101070617 under UK guarantee).

Preliminary work on this paper was done while Andrea Patane and Luca
Laurenti were at the University of Oxford funded by FUN2MODEL.

SPD.
LMT.

WARN.
0.5

1.0

0.75

Lower bound
on spd. lmt.
class
probability
0.81

Certified
robust
prediction

Class Probs.

SPD.
LMT.

WARN.
0.5

1.0

0.75

All class
probabilities
less than 𝜏
(0.75)

Certified
uncertain
prediction

Class Probs.

Fig. 1. Certifications for a traffic sign recognition benchmark with two classes:
speed limit (spd. lmt.) and warning sign (warn.). We plot original images, the
upper and lower-bound class probabilities as red and blue horizontal lines,
respectively, and a description of the result. Top Row: A 50 km/hr sign from
the GTSRB dataset. As the lower bound class probability is 0.81, we certify
that all images in the ball are classified correctly as speed limit signs and
therefore no adversarial examples exist. Bottom Row: A nonsense traffic
sign. As the upper bound probability for all classes is less than a threshold
(0.75), we certify that the BNN is uncertain.

adversarial conditions, has thus become of critical importance
[5], [6].

While retaining the advantages intrinsic to deep learning,
Bayesian neural networks (BNNs), i.e., NNs with a probability
distribution placed over their weights and biases [7], enable
probabilistically principled evaluation of model uncertainty.
Since adversarial examples are intuitively related to uncer-
tainty [8], the application of BNNs is particularly appealing in
safety-critical scenarios. In fact, model uncertainty of a BNN
can, in theory, be taken into account at prediction time to
enable safe decision-making [9]–[12]. Various techniques have
been proposed for the evaluation of their robustness, including
generalisation of gradient-based adversarial attacks (i.e., non-

ar
X

iv
:2

30
6.

13
61

4v
1

 [
cs

.L
G

]
 2

3
Ju

n
20

23

PRE-PRINT. MANUSCRIPT UNDER REVIEW 2

Bayesian) [13], statistical verification techniques [14], as well
as approaches based on pointwise (i.e., for a specific test point
x∗) uncertainty evaluation [15]. However, to the best of our
knowledge, a systematic approach for computing formal (i.e.,
with certified bounds) guarantees on the behaviour of BNNs
and their decisions against adversarial input perturbations is
still missing.

In this work, we develop a novel algorithmic framework
to quantify the adversarial robustness of BNNs. In particular,
following existing approaches for quantifying the robustness of
deterministic neural networks [16]–[18], we model adversarial
robustness as an input-output specification defined by a given
compact set of input points T ⊆ Rm and a given convex
polytope output set S ⊆ Rn. A neural network satisfies this
specification if all points in T are mapped into S, called a
safe set. Modelling specifications in this way encompasses
many other practical properties such as classifier monotonicity
[19] and individual fairness [20]. For a particular specification,
we focus on two main properties of a BNN of interest
for adversarial prediction settings: probabilistic robustness
[14], [21] and decision robustness [18], [22]. The former,
probabilistic robustness, is defined as the probability that a
network sampled from the posterior distribution is robust (e.g.,
satisfies a robustness specification defined by a given T and S).
Probabilistic robustness attempts to provide a general measure
of robustness of a BNN; in contrast, decision robustness
focuses on the decision step, and evaluates the robustness
of the optimal decision of a BNN. That is, a BNN satisfies
decision robustness for a property if, for all points in T , the
expectation of the output of the BNN in the case of regression,
or the argmax of the expectation of the softmax w.r.t. the
posterior distribution for classification, are contained in S.

Unfortunately, evaluating probabilistic and decision robust-
ness for a BNN is not trivial, as it involves computing distribu-
tions and expectations of high-dimensional random variables
passed through a non-convex function (the neural network
architecture). Nevertheless, we derive a unified algorithmic
framework based on computations over the BNN weight
space that yields certified lower and upper bounds for both
properties. Specifically, we show that probabilistic robustness
is equivalent to the measure, w.r.t. the BNN posterior, of the
set of weights for which the resulting deterministic NN is
robust, i.e., it maps all points of T to a subset of S. Computing
upper and lower bounds for the probability involves sampling
compact sets of weights according to the BNN posterior, and
propagating each of these weight sets, H , through the neural
network architecture, jointly with the input region T , to check
whether all the networks instantiated by weights in H are
safe. To do so, we generalise bound propagation techniques
developed for deterministic neural networks to the Bayesian
settings and instantiate explicit schemes for Interval Bound
Propagation (IBP) and Linear Bound Propagation (LBP) [23].
Similarly, in the case of decision robustness, we show that
formal bounds can be obtained by partitioning the weight
space into different weight sets, and for each weight set J of
the partition we again employ bound propagation techniques
to compute the maximum and minimum of the decision
of the NN for all input points in T and different weight

configurations in J . The resulting extrema are then averaged
according to the posterior measure of the respective weight
sets to obtain sound lower and upper bounds on decision
robustness.

We perform a systematic experimental investigation of our
framework on a variety of tasks. We first showcase the
behaviour of our methodology on a classification problem
from an airborne collision avoidance benchmark [24] and
on two safety-critical industrial regression benchmarks [25].
We then consider image recognition tasks and illustrate how
our method can scale to verifying BNNs on medium-sized
computer vision problems, including MNIST and a two-class
subset of the German Traffic Sign Recognition Benchmark
(GTSRB) dataset [26]. On small networks, such as those
used for airborne collision avoidance (∼5000 parameters), our
method is able to verify key properties in under a second, thus
enabling comprehensive certification over a fine partition of
the entire state space. Moreover, when employed in conjunc-
tion with adversarial training [27], we are able to obtain non-
trivial certificates for convolutional NNs (471,000 parameters)
on full-colour GTSRB images (2,352 dimensions).1 As an
example, we demonstrate the bounds on decision robustness
in Figure 1, where we plot the upper and lower bound class
probabilities (in red and blue respectively) for a BNN trained
on a two-class traffic sign recognition benchmark. The bounds
are computed for all images within a ℓ∞ ball with radius 2/255
of the two images in the left column of the figure. For the
top image of a speed limit sign, our lower bound allows us
to verify that the all images within the 2/255 are correctly
classified by the BNN as a 50 km/hr sign. For the bottom
image of a nonsense traffic sign, our upper bound allows us
to verify that the BNN is uncertain for this image and all
images in the ball.

In summary, this paper makes the following contributions.

● We present an algorithmic framework based on convex
relaxation techniques for the robustness analysis of BNNs
in adversarial settings.

● We derive explicit lower- and upper-bounding procedures
based on IBP and LBP for the propagation of input and
weight intervals through the BNN posterior function.

● We empirically show that our method can be used to
certify BNNs consisting of multiple hidden layers and
with hundreds of neurons per layer.

A preliminary version of this paper appeared as [21]. This
work extends [21] in several aspects. In contrast to [21],
which focused only on probabilistic robustness, here we also
tackle decision robustness and embed the calculations for
the two properties in a common computational framework.
Furthermore, while the method in [21] only computes lower
bounds, in this paper we also develop a technique for upper
bounds computation. Finally, we substantially extend the em-
pirical evaluation to include additional datasets, evaluation of
convolutional architectures and scalability analysis, as well as
certification of out-of-distribution uncertainty.

1An implementation to reproduce all the experiments can be found at: https:
//github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs.

https://github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs
https://github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs

PRE-PRINT. MANUSCRIPT UNDER REVIEW 3

II. RELATED WORK

Bayesian uncertainty estimates have been shown to empiri-
cally flag adversarial examples, often with remarkable success
[15], [28]. These techniques are, however, empirical and can
be circumvented by specially-tailored attacks that also target
the uncertainty estimation [29]. Despite these attacks, it has
been shown that BNN posteriors inferred by Hamiltonian
Monte Carlo tend to be more robust to attacks than their
deterministic counterparts [10]. Further, under idealised con-
ditions of infinite data, infinitely-wide neural networks and
perfect training, BNNs are provably robust to gradient-based
adversarial attacks [11]. However, while showing that BNNs
are promising models for defending against adversarial attacks,
the arguments in [10] and [11] do not provide concrete bounds
or provable guarantees for when an adversarial example does
not exist for a given BNN posterior.

In [9], [14], the authors tackle similar properties of BNNs
to those discussed in this paper. Yet these methods only
provide bounds on probabilistic robustness and the bounds
are statistical, i.e., only valid up to a user-defined, finite
probability 1 − δ, with δ > 0. In contrast, the method in this
paper covers both probabilistic and decision robustness and
computes bounds that are sound for the whole BNN posterior
(i.e., hold with probability 1). In [27], the authors incorpo-
rate worst-case information via bound propagation into the
likelihood in order to train BNNs that are more adversarially
robust; while that work develops a principled defense for
BNNs against attack, it does not develop or study methods
for analyzing or guaranteeing their robustness.

Since the publication of our preliminary work [21], the
study of [30] has further investigated certifying the posterior
predictive of BNNs. The definition in [30] corresponds to
a subset of what we refer to as decision robustness, but
their method only applies to BNNs whose posterior support
has been clipped to be in a finite range. Here, we pose a
more general problem of certifying decision and probabilistic
robustness of BNNs, and can handle posteriors on continuous,
unbounded support, which entails the overwhelming major-
ity of those commonly employed for BNNs. Furthermore,
following the preliminary version of this paper [21], [31]
introduced a technique for probabilistic robustness certification
implemented via a recursive algorithm the that operates over
the state-space of a model-based control scenario. [32] uses
similar methods to those presented in [21] to study infinite-
time horizon robustness properties of BNN control policies by
checking for safe weight sets and modifying the posterior so
that only safe weights have non-zero posterior support.

Most existing certification methods in the literature are
designed for deterministic NNs. Approaches studied include
abstract interpretation [23], mixed integer linear programming
[33]–[36], game-based approaches [37], [38], and SAT/SMT
[24], [39]. In particular, [18], [40], [41] employ relaxation
techniques from non-convex optimisation to compute guaran-
tees over deterministic neural network behaviours, specifically
using Interval Bound Propagation (IBP) and Linear Bound
Propagation (LBP) approaches. However, these methods can-
not be used for BNNs because they all assume that the weights

of the networks are deterministic, i.e., fixed to a given value,
while in the Bayesian setting we need to certify the BNN for
a continuous range of values for weights that are not fixed,
but distributed according to the BNN posterior.

In the context of Bayesian learning, methods to compute ad-
versarial robustness measures have been explored for Gaussian
processes (GPs), both for regression [42] and classification
tasks [43], [44]. However, because of the non-linearity in
NN architectures, GP-based approaches cannot be directly
employed for BNNs. Furthermore, the vast majority of approx-
imate Bayesian inference methods for BNNs do not employ
Gaussian approximations over latent space [45]. In contrast,
our method is specifically tailored to take into account the
non-linear nature of BNNs and can be directly applied to a
range of approximate Bayesian inference techniques used in
the literature.

III. BACKGROUND

In this section, we overview the necessary background and
introduce the notation we use throughout the paper. We focus
on neural networks (NNs) employed in a supervised learning
scenario, where we are given a dataset of nD pairs of inputs
and labels, D = {(xi, yi)}nDi=1, with xi ∈ Rm, and where each
target output y ∈ Rn is either a one-hot class vector for
classification or a real-valued vector for regression.

A. Bayesian Deep Learning

Consider a feed forward neural network fw ∶ Rm → Rn,
parametrised by a vector w ∈ Rnw containing all its weights
and biases. We denote with fw,1, ..., fw,K the K layers of fw

and take the activation function of the ith layer to be σ(i),
abbreviated to just σ in the case of the output activation.2

Throughout this paper, we will use fw(x) to represent pre-
activation of the last layer.

Bayesian learning of deep neural network starts with a
prior distribution, pw(w), over the vector of random variables
associated to the weights, w. Placing a distribution over the
weights defines a stochastic process indexed by the input
space, which we denote as fw. After the data set D has been
observed, the BNN prior distribution is updated according to
the likelihood, p(D∣w) = ∏nD

i=1 p(yi∣xi,w), which models how
likely (probabilistically speaking) we are to observe an output
under the stochasticity of our model parameters and observa-
tional noise [47]. The likelihood function, p(yi∣xi,w), gener-
ally takes the shape of a softmax for multiclass classification
and a multivariate Gaussian for regression. The posterior dis-
tribution over the weights given the dataset is then computed
by means of the Bayes formula, i.e., p(w∣D) ∝ p(D∣w)p(w).
The cumulative distribution of p(w∣D) we denote as P (⋅), so
that for R ⊆ Rnw we have:

∫
R
p(w∣D)dw = P (R). (1)

2We assume that the activation functions have a finite number of inflection
points, which holds for activation functions commonly used in practice [46].

PRE-PRINT. MANUSCRIPT UNDER REVIEW 4

The posterior p(w∣D) is in turn used to calculate the output of
a BNN on an unseen point, x∗. The distribution over outputs
is called the posterior predictive distribution and is defined as:

p(y∗∣x∗,D) = ∫ p(y∗∣x∗,w)p(w∣D)dw. (2)

Equation (2) defines a distribution over the BNN output. When
employing a Bayesian model, the overall final prediction is
taken to be a single value, ŷ, that minimizes the Bayesian risk
of an incorrect prediction according to the posterior predictive
distribution and a loss function L. Formally, the final decision
of a BNN is computed as

ŷ = argmin
y
∫
Rn
L(y, y∗)p(y∗∣x∗,D)dy∗.

This minimization is the subject of Bayesian decision theory
[48], and the final form of ŷ clearly depends on the specific
loss function L employed in practice. In this paper, we
focus on two standard loss functions widely employed for
classification and regression problems.3

a) Classification Decisions: The 0-1 loss, ℓ0−1, assigns
a penalty of 0 to the correct prediction, and 1 otherwise. It
can be shown that the optimal decision in this case is given
by the class for which the predictive distribution obtains its
maximum, i.e.:

ŷ = argmax
i=1,...,n

pi(y∗∣x∗,D) = argmax
i=1,...,n

Ew∼p(w∣D) [σi(fw(x))] ,

where σi represents the ith output component of the softmax
function.

b) Regression Decisions: The ℓ2 loss assigns a penalty
to a prediction according to its ℓ2 distance from the ground
truth. It can be shown that the optimal decision in this case
is given by the expected value of the BNN output over the
posterior distribution, i.e.:

ŷ = Ew∼p(w∣D) [fw(x)] .

Unfortunately, because of the non-linearity of neural net-
work architectures, the computation of the posterior distribu-
tion over weights, p(w∣D), is generally intractable [7]. Hence,
various approximation methods have been studied to perform
inference with BNNs in practice. Among these methods,
we will consider Hamiltonian Monte Carlo (HMC) [7] and
Variational Inference (VI) [45], which we now briefly describe.

1) Hamiltonian Monte Carlo (HMC): HMC proceeds by
defining a Markov chain whose invariant distribution is
pw(w∣D), and relies on Hamiltonian dynamics to speed up
the exploration of the space. Differently from VI discussed
below, HMC does not make parametric assumptions on the
form of the posterior distribution, and is asymptotically correct
[7]. The result of HMC is a set of samples that approximates
pw(w∣D).

3In Appendix B we discuss how our method can be generalised to other
losses commonly employed in practice.

2) Variational Inference (VI): VI proceeds by finding a
Gaussian approximating distribution over the weight space
q(w) ∼ pw(w∣D) in a trade-off between approximation ac-
curacy and scalability. The core idea is that q(w) depends
on some hyperparameters that are then iteratively optimized
by minimizing a divergence measure between q(w) and
pw(w∣D). Samples can then be efficiently extracted from
q(w).

For simplicity of notation, in the rest of the paper we will
indicate with p(w∣D) the posterior distribution estimated by
either of the two methods, and clarify the methodological
differences when they arise.

IV. PROBLEM STATEMENTS

We focus on local specifications defined over an input
compact set T ⊆ Rm and output set S ⊆ Rn in the form of a
convex polytope:

S = {y ∈ Rn ∣CSy + dS ≥ 0}, (3)

where CS ∈ RnS×n and dS ∈ RnS are the matrix and vector
encoding the polytope constraints, and nS is the number of
output constraints considered. For simplicity of presentation,
we assume that T is defined as a box (axis-aligned linear
constraints).4 However, we stress that all the methods in
this paper can be extended to the more general case where
T is a convex polytope. Our formulation of input-output
specifications can be used to capture important properties
such as classifier monotonicity [49] and individual fairness
[20], but in this work we focus exclusively on adversarial
robustness. Targeted adversarial robustness, where one aims to
force the neural network into a particular wrong classification,
is captured in this framework by setting T to be an over-
approximation of an ℓp ball around a given test input, and
setting CS to an nS ×n matrix of all zeros with a −1 entry in
the diagonal entry corresponding to the true class and a 1 on
the diagonal entry corresponding to the target class or classes.
For regression, one uses CS to encode the absolute deviation
from the target value and dS to encode the maximum tolerable
deviation. Throughout the paper we will refer to an input-
output set pair, T and S, as defined above as a robustness
specification.

A. Probabilistic Robustness

Probabilistic robustness accounts for the probabilistic be-
haviour of a BNN in adversarial settings.

Definition 1 (Probabilistic robustness). Given a Bayesian
neural network fw, an input set T ⊆ Rm and a set S ⊆ Rn of
safe outputs, then probabilistic robustness is defined as

Psafe(T,S) ∶= Probw∼p(w∣D)(∀x ∈ T, fw(x) ∈ S). (4)

4Note that, where a specification is not in this form already, one can first
compute a bounding box R = [xL, xU] (or a finite sequence of them) such
that T ⊆ R, and then proving that the output specification holds for R also
proves that it holds for T . In the case that we do not prove that an output
specification holds, then we cannot guarantee it is violated by nature of our
method being sound but not complete.

PRE-PRINT. MANUSCRIPT UNDER REVIEW 5

H

Dec.
Robustness

Prob.
Robustness

Posterior Distribution

H
id

de
n

La
ye

r 1

H
id

de
n

La
ye

r 2

O
ut

pu
t L

ay
er

1 Sample from the posterior distribution,
create rectangle around weights

2 Propagate through the neural network

3 Keep track of output bounds 4 Use Proposition 1 or Proposition 2
to compute final bounds

Outline of Our Approach

if

Add H to safe set

Add H to the
weight set

Compute worst-case
lower bound

Bounds Modelling
Input Perturbations

Fig. 2. A diagram illustrating a single iteration of the computational flow for the certification process of a BNN w.r.t. decision robustness (green) and
probabilistic robustness (purple). This process is summarised in Algorithm 1.

Given η ∈ [0,1], we then say that fw is probabilistically
robust, or safe, for specifications T and S, with probability
at least η iff:

Psafe(T,S) ≥ η

Probabilistic robustness considers the adversarial behaviour
of the model while accounting for the uncertainty arising from
the posterior distribution. Psafe(T,S) represents the (weighted)
proportion of neural networks sampled from fw that satisfy
a given input-output specification (captured by T and S)
and can be used directly as a measure of compliance for
Bayesian neural networks. As such, probabilistic robustness is
particularly suited to quantification of the robustness of a BNN
to adversarial perturbations [9], [22], [50]. Exact computation
of Psafe(T,S) is hindered by both the size and non-linearity of
neural networks. As Psafe(T,S) cannot be computed exactly
for general BNNs, in this work we tackle the problem of
computing provable bounds on probabilistic robustness.

Problem 1 (Bounding probabilistic robustness). Given a
Bayesian neural network fw, an input set T ⊆ Rm and a
set S ⊆ Rn of safe outputs, compute (non-trivial) PL

safe and
PU

safe such that

PL
safe ≤ Psafe(T,S) ≤ PU

safe. (5)

We highlight the difference between this problem definition
and those discussed in prior works [9], [14]. In particular,
prior works compute upper and lower bounds that hold with
probability 1−δ for some pre-specified δ. While such statistical
bounds can provide an estimation for Psafe(T,S), these may
not be sufficient in safety-critical contexts where strong, worst-
case guarantees over the full behaviour of the BNN are
necessary. The problem statement above holds with probability
1 and represents sound guarantees on Psafe(T,S).

B. Decision Robustness

While Psafe attempts to measure the compliance of all
functions in the support of a BNN posterior, we are often
interested in evaluating robustness w.r.t. a specific decision.
In order to do so, we consider decision robustness, which is

computed over the final decision of the BNN. In particular,
given a loss function and a decision ŷ we have the following.

Definition 2 (Decision robustness). Consider a Bayesian
neural network fw, an input set T ⊆ Rm and a set S ⊆ Rn of
safe outputs. Assume that the decision for a loss L for x ∈ Rm

is given by ŷ(x). Then, the Bayesian decision is considered
to be robust if:

∀x ∈ T ŷ(x) ∈ S. (6)

We notice that, since the specific form of the decision
depends on the loss employed in practice, the definition of
decision robustness takes different form depending on whether
the BNN is used for classification or for regression. In partic-
ular, we instantiate the definition for the two cases of standard
loss discussed in Section III.

In the regression case, using the mean square loss we have
that ŷ(x) = E[fw(x)], so that if we find upper and lower
bounds on E[fw(x)] for all x ∈ T , i.e., for i = 1, ...,m:

DL
safe,i ≤min

x∈T
E [fw

i (x)] , DU
safe,i ≥max

x∈T
E [fw

i (x)] ,

we can then simply check whether these are within S.
For the classification case, where the decision is given by

the argmax of the predictive posterior, note that, in order
to check the condition in Definition 2, it suffices to compute
lower and upper bounds on the posterior predictive in T , i.e.:

DL
safe,i ≤min

x∈T
E [σi(fw(x))] , DU

safe,i ≥max
x∈T

E [σi(fw(x))] ,

for i = 1, . . . ,m. It is easy to see that the knowledge of
DL

safe,i and DU
safe,i for all i = 1, . . . ,m can be used to provide

guarantees of the model decision belonging to S, as defined in
Equation (3), by simply propagating these bounds through the
equations. Therefore, for both classification and regression we
have to bound an expectation of the BNN output over the pos-
terior distribution, with the additional softmax computations
for classification. We thus arrive at the following problem for
bounding decision robustness.

Problem 2 (Bounding decision robustness). Let fw be a BNN
with posterior distribution p(w∣D). Consider an input-output

PRE-PRINT. MANUSCRIPT UNDER REVIEW 6

specification (T , S) and assume L = ℓ0−1 for classification or
L = ℓ2 for regression. We aim at computing (non-trivial) lower
and upper bounds DL

safe and DU
safe such that:

DL
safe ≤ E[s(fw(x))] ≤DU

safe ∀x ∈ T,

where s = σ for classification and s = I for regression.

Note that, while for regression we bound the decision
directly, for classification we compute the bounds on the
predictive posterior and use these to compute bounds on the
final decision. This is similar to what is done for deterministic
neural networks, where in the case of classification the bounds
are often computed over the logit, and then used to provide
guarantees for the final decision [18]. As with probabilistic
robustness, our bounds on decision robustness are sound
guarantees and do not have a probability of error as with
statistical bounds.

C. Outline of our Approach:

We design an algorithmic framework for worst-case and
best-case bounds on local robustness properties in Bayesian
neural networks, taking account of both the posterior dis-
tribution (PL

safe and PU
safe) and the overall model decision

(DL
safe and DU

safe). First, we show how the two robustness
properties of Definitions 1 and 2 can be reformulated in
terms of computation over weight intervals. This allows us
to derive a unified approach to the bounding of the robustness
of the BNN posterior (i.e., probabilistic robustness) and of
the robustness of the overall model decision (i.e., decision
robustness) that is based on bound propagation and posterior
integral computation over hyper-rectangles. A visual outline
for our framework is presented in Figure 2. We organise the
presentation of our framework by first introducing a general
theoretical framework for bounding the robustness quantities
of interest (Section V). We will then show how the required
integral computations can be achieved for Bayesian posterior
inference techniques commonly used in practice (Section
VI-A). Hence, we will show how to extend bound propagation
techniques to deal with both input variable intervals and
intervals over the weight space, and will instantiate approaches
based on Interval and Linear Bound Propagation techniques
(Section VI-B). Finally (Section VII), we will present an
overall algorithm that produces the desired bounds.

V. FORMULATING BNN ADVERSARIAL ROBUSTNESS VIA
WEIGHT SETS

In this section, we show how a single computational frame-
work can be leveraged to compute bounds on both definitions
of BNN robustness. We start by converting the computation
of robustness into weight space and then define a family of
weight intervals that we leverage to bound the integrations
required by both definitions. Interestingly, we find that the
resulting theoretical bounds in both cases depend on the same
quantities. Proofs for the main results in this section are
presented in Appendix C.

A. Bounding Probabilistic Robustness

We first show that the computation of Psafe(T,S) is equiv-
alent to computing a maximal set of safe weights H such
that each network associated to weights in H is safe w.r.t. the
robustness specification at hand.

Definition 3 (Maximal safe and unsafe sets). We say that H ⊆
Rnw is the maximal safe set of weights from T to S, or simply
the maximal safe set of weights, iff H = {w ∈ Rnw ∣ ∀x ∈
T, fw(x) ∈ S}. Similarly, we say that K ⊆ Rnw is the maximal
unsafe set of weights from T to S, or simply the maximal
unsafe set of weights, iff K = {w ∈ Rnw ∣ ∃x ∈ T, fw(x) /∈ S}.

Intuitively, H and K simply encode the input-output spec-
ifications S and T in the BNN weight space. The following
lemma, which trivially follows from Equation 4, allows us to
directly relate the maximal sets of weights to the probability
of robustness.

Lemma 1. Let H and K be the maximal safe and unsafe sets
of weights from T to S. Assume that w ∼ p(w∣D). Then, it
holds that

P (H) = ∫
H
p(w∣D)dw = Psafe(T,S) = (7)

1 − ∫
K
p(w∣D)dw = 1 − P (K).

Lemma 1 simply translates the robustness specification from
being concerned with the input-output behaviour of the BNN
to an integration on the weight space.

An exact computation of sets H and K is infeasible in
general. However, we can easily compute subsets of H and
K. Such subsets can then be used to compute upper and lower
bounds on the value of Psafe(T,S) by considering subsets of
the maximal safe and unsafe weights.

Definition 4 (Safe and unsafe sets). Given a maximal safe set
H or a maximal unsafe set K of weights, we say that Ĥ and
K̂ are a safe and unsafe set of weights from T to S iff Ĥ ⊆H
and K̂ ⊆K, respectively.

Ĥ and K̂ can include any safe and unsafe weights, respec-
tively, without requiring they are maximal. Without maximal-
ity, we no longer have strict equality in Lemma 1, but instead
we arrive at bounds on the value of probabilistic robustness.

We proceed by defining Ĥ and K̂ as the union of a
family of disjoint weight intervals, as these can provide
flexible approximations of H and K. That is, we consider
H = {Hi}nH

i=1 , with Hi = [wL,H
i ,wU,H

i] and K = {Ki}nK

i=1 ,
with Ki = [wL,K

i ,wU,K
i] such that Hi ⊂ H and Ki ⊂ K,

Ĥ = ⋃nH

i=1 Hi, K̂ = ⋃nK

i=1 Ki, and Hi∩Hj = ∅ and Ki∩Kj = ∅,
for any i ≠ j. Hence, as a consequence of Lemma 1, and by
the fact that Ĥ = ⋃nH

i=1 Hi ⊂ H and K̂ = ⋃nK

i=1 Ki ⊂ K, we
obtain the following.

Proposition 1 (Bounds on probabilistic robustness). Let H
and K be the maximal safe and unsafe sets of weights from
T to S. Consider two families of pairwise disjoint weight
intervals H = {Hi}nH

i=1 , K = {Ki}nK

i=1 , where for all i:

Hi ⊆H, Ki ⊆K. (8)

PRE-PRINT. MANUSCRIPT UNDER REVIEW 7

Let Ĥ ⊆ H and K̂ ⊆ K be non-maximal safe and unsafe sets
of weights, with Ĥ = ⋃nH

i=1 Hi and K̂ = ⋃nK

i=1 Ki. Assume that
w ∼ p(w∣D). Then, it holds that

PL
safe ∶=

nH

∑
i=1

P (Hi) ≤ Psafe(T,S,w) ≤ 1 −
nK

∑
i=1

P (Ki) =∶ PU
safe,

(9)

that is, PL
safe and PU

safe are, respectively, lower and upper
bounds on probabilistic robustness.

Through the use of Proposition 1 we can thus bound
probabilistic robustness by performing computation over sets
of safe and unsafe intervals. Note that the bounds are given
in the case where H and K are families of pairwise disjoint
weight sets. The general case can be tackled by using the
Bonferroni bound, which is discussed in Appendix D-D for
hyper-rectangular weight sets.

Before explaining in detail how such bounds can be explic-
itly computed, first, in the next section, we show how a similar
derivation leads us to analogous bounds and computations for
decision robustness.

B. Bounding Decision Robustness

The key difference between our formulation of probabilistic
robustness and that of decision robustness is that, for the
former, we are only interested in the behaviour of neural
networks extracted from the BNN posterior that satisfy the
robustness requirements (hence the distinction between H- and
K-weight intervals), whereas for the computation of bounds
on decision robustness we need to take into account the overall
worst-case behaviour of an expected value computed for the
BNN predictive distribution in order to compute sound bounds.
As such, rather than computing safe and unsafe sets, we only
need a family of weight sets, J = {Ji}nJ

i=1, and rely on that
for bounding Dsafe(T,S). We explicitly show how this can
be done for classification with likelihood σ. The bound for
regression follows similarly by using the identity function as
σ.

Proposition 2 (Bounding decision robustness). Let J =
{Ji}nJ

i=1, with Ji ⊂ Rnw be a family of disjoint weight intervals.
Let σL and σU be vectors that lower and upper bound the co-
domain of the final activation function, and c ∈ {1, . . . ,m} an
index spanning the BNN output dimension. Define:

DL
safe,c ∶=

nJ

∑
i=1

P (Ji)min
x∈T
w∈Ji

σc(fw(x)) + σL(1 −
nJ

∑
i=1

P (Ji)) (10)

DU
safe,c ∶=

nJ

∑
i=1

P (Ji)max
x∈T
w∈Ji

σc(fw(x)) + σU(1 −
nJ

∑
i=1

P (Ji)) . (11)

Consider the vectors DL
safe = [DL

safe,1, . . . ,D
L
safe,m] and DU

safe =
[DU

safe,1, . . . ,D
U
safe,m], then it holds that:

DL
safe ≤ Ep(w∣D)[σ(fw(x))] ≤DU

safe ∀x ∈ T,

that is, DL
safe and DU

safe are lower and upper bounds on the
predictive distribution in T .

Intuitively, the first terms in the bounds of Equations (10)
and (11) consider the worst-case output for the input set T and

each interval Ji, while the second term accounts for the worst-
case value of the posterior mass not captured by the family of
intervals J by taking a coarse, overall bound on that region.
The provided bound is valid for any family of intervals J .
Ideally, however, the partition should be finer around regions
of high probability mass of the posterior distribution, as these
make up the dominant term in the computation of the posterior
predictive. We will discuss in Section VI how we select these
intervals in practice so as to empirically obtain non-vacuous
bounds.

C. Computation of the Bounds

We now propose a unified approach to computing these
lower and upper bounds. We first observe that the bounds
in Equations (9), (10) and (11) require the integration of
the posterior distribution over weight intervals, i.e., P (Hi),
P (Ki) and P (Ji). While this is in general intractable, we have
built the bound so that Hi, Ki and Ji are axis-aligned hyper-
rectangles, and so the computation can be done exactly for
approximate Bayesian inference methods used in practice. This
will be the topic of Section VI-A, where, given a rectangle in
weight space of the form R = [wL,wU], we will show how
to compute P (R) = ∫R p(w∣D)dw.

For the explicit computation of decision robustness, the only
missing ingredient is then the computation of the minimum
and maximum σ(fw(x)) for x ∈ T and w ∈ Ji. We do this
by bounding the BNN output for any given rectangle in the
weight space R. That is, we will compute upper and lower
bounds yL and yU such that:

yL ≤min
x∈T
w∈R

fw(x) yU ≥max
x∈T
w∈R

fw(x), (12)

which can then be used to bound σ(fw(x)) by simple
propagation over the softmax (if needed). The derivation of
such bounds will be the subject of Section VI-B.

Finally, observe that, whereas for decision robustness we
can simply select any weight interval Ji, for probabilistic
robustness one needs to make a distinction between safe sets
(Hi) and unsafe sets (Ki). It turns out that this can be done
by bounding the output of the BNN in each of these intervals.
For example, in the case of the safe sets, by definition we have
that ∀w ∈Hi,∀x′ ∈ T it follows that fw(x′) ∈ S. By defining
yL and yU as in Equation (12), we can see that it suffices
to check whether [yL, yU] ⊆ S. Hence, the computation of
probabilistic robustness also depends on the computation of
such bounds (again, discussed in Section VI-B).

Therefore, once we have shown how the computation of
P (R) for any weight interval and yL and yU can be done, the
bounds in Proposition 1 and Proposition 2 can be computed
explicitly, and we can thus bound probabilistic and decision
robustness. Section VII will assemble these results together
into an overall computational flow of our methodology.

VI. EXPLICIT BOUND COMPUTATION

In this section, we provide details on the specific compu-
tations needed to calculate the theoretical bound presented in
Section V for probabilistic and decision robustness. We start

PRE-PRINT. MANUSCRIPT UNDER REVIEW 8

by discussing how a weight intervals family can be generated
in practice, and how to integrate over them in Section VI-A.
In Section VI-B, we then derive a scheme based on convex-
relaxation techniques for bounding the output of BNNs.

A. Integral Computation over Weight Intervals

Key to the computation of the bounds derived in Section
V is the ability to compute the integral of the posterior
distribution over a combined set of weight intervals. Crucially,
the shape of the weight sets H = {Hi}nH

i=1 , K = {Ki}nK

i=1 and
J = {Ji}nJ

i=1 is a parameter of the method, so that it can
be chosen to simplify the integral computation depending on
the particular form of the approximate posterior distribution
used. We build each weight interval as an axis-aligned hyper-
rectangle of the form R = [wL,wU] for wL and wU ∈ Rnw .

a) Weight Intervals for Decision Robustness: In the case
of decision robustness it suffices to sample any weight interval
Ji to compute the bounds we derived in Proposition 2. Clearly,
the bound is tighter if the J family is finer around the area of
high probability mass for p(w∣D). In order to obtain such a
family we proceed as follows. First, we define a weight margin
γ > 0 that has the role of parameterising the radius of the
weight intervals we define. We then iteratively sample weight
vectors wi from p(w∣D), for i = 1, . . . , nJ , and finally define
Ji = [wL

i ,w
U
i] = [wi−γ,wi+γ]. As such, thus defined weight

intervals naturally hover around the area of greater density for
p(w∣D), while asymptotically covering the whole support of
the distribution.

b) Weight Intervals for Probabilistic Robustness: On the
other hand, for the computation of probabilistic robustness
one has to make a distinction between safe weight intervals
Hi and unsafe ones Ki. As explained in Section V-C, this
can be done by bounding the output of the BNN in each of
these intervals. For example, in the case of the safe sets, by
definition, Hi is safe if and only if ∀w ∈ Hi,∀x′ ∈ T we
have that fw(x′) ∈ S. Thus, in order to build a family of safe
(respectively unsafe) weight intervals Hi (Ki), we proceed
as follows. As for decision robustness, we iteratively sample
weights wi from the posterior used to build hyper-rectangles
of the form Ri = [wi−γ,wi+γ]. We then propagate the BNN
through R and check whether the output of the BNN in R
is (is not) a subset of S. The derivation of such bounds on
propagation will be the subject of Section VI-B.

Once the family of weights is computed, there remains
the computation of the cumulative distribution over such sets.
The explicit computations depend on the particular form of
Bayesian approximate inference that is employed. We discuss
explicitly the case of Gaussian variational approaches, and
of sample-based posterior approximation (e.g., HMC), which
entails the majority of the approximation methods used in
practice [51].

c) Variational Inference: For variational approximations,
p(w∣D) takes the form of a multi-variate Gaussian distribution
over the weight space. The resulting computations reduce to
the integral of a multi-variate Gaussian distribution over a
finite-sized axis-aligned rectangle, which can be computed
using standard methods from statistics [52]. In particular,

under the common assumption of variational inference with
a Gaussian distribution with diagonal covariance matrix [53],
i.e., p(w∣D) = N(µ,Σ), with Σ = diag(Σ1, . . . ,Σnw), we
obtain the following result for the posterior integration:

P (R) = ∫
R
p(w∣D)dw = (13)

nw

∏
j=1

1

2

⎛
⎝

erf
⎛
⎝
µj −wL

i√
2Σj

⎞
⎠
− erf

⎛
⎝
µj −wu

i√
2Σj

⎞
⎠
⎞
⎠
.

By plugging this into the bounds of Equation (9) for P (Hi)
and P (Ki) for probabilistic robustness and in Equations (10)
and (11) for decision robustness, one obtains a closed-form
formula for the bounds given weight set interval families H,
K and J .

d) Sample-based approximations: In the case of sample-
based posterior approximation (e.g., HMC), we have that
p(w∣D) defines a distribution over a finite set of weights. In
this case we can simplify the computations by selecting the
weight margin γ = 0, so that each sampled interval will be of
the form R = [wi,wi] and its probability under the discrete
posterior will trivially be:

P (Ri) = p(wi∣D). (14)

B. Bounding Bayesian Neural Networks’ Output

Given an input specification, T , and a weight interval, R =
[wL,wU], the second key step in computing probabilistic and
decision robustness is the bounding of the output of the BNN
over R given T . That is, we need to derive methods to compute
[yL, yU] such that, by construction, ∀w ∈ [wL,wU],∀x′ ∈ T
it follows that fw(x′) ∈ [yL, yU].

In this section, we discuss interval bound propagation (IBP)
and linear bound propagation (LBP) as methods for computing
the desired output set over-approximations. Before discussing
IBP and LBP in detail, we first introduce common notation
for the rest of the section. We consider feed-forward neural
networks of the form:

z(0) = x (15)

ζ
(k+1)
i =

nk

∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i i = 0, . . . , nk+1 (16)

z
(k)
i = σ(ζ(k)i) i = 0, . . . , nk (17)

for k = 1, . . . ,K, where K is the number of hidden layers,
σ(⋅) is a pointwise activation function, W (k) ∈ Rnk×nk−1 and
b(k) ∈ Rnk are the matrix of weights and vector of biases
that correspond to the kth layer of the network and nk is
the number of neurons in the kth hidden layer. Note that,
while Equations (15)–(17) are written explicitly for fully-
connected layers, convolutional layers can be accounted for
by embedding them in fully-connected form [41].

We write W
(k)
i∶ for the vector comprising the elements from

the ith row of W (k), and similarly W
(k)
∶j for that comprising

the elements from the jth column. ζ(K+1) represents the
final output of the network (or the logit in the case of
classification networks), that is, ζ(K+1) = fw(x). We write
W (k),L and W (k),U for the lower and upper bound induced

PRE-PRINT. MANUSCRIPT UNDER REVIEW 9

by R for W (k) and b(k),L and b(k),U for those of b(k), for
k = 0, . . . ,K. Observe that z(0), ζ

(k+1)
i and z

(k)
i are all

functions of the input point x and of the combined vector
of weights w = [W (0), b(0), . . . ,W (K), b(K)]. We omit the
explicit dependency for simplicity of notation. Finally, we
remark that, as both the weights and the input vary in a given
set, Equation (16) defines a quadratic form.

a) Interval Bound Propagation (IBP): IBP has already
been employed for fast certification of deterministic neural
networks [18]. For a deterministic network, the idea is to
propagate the input box around x, i.e., T = [xL, xU], through
the first layer, so as to find values z(1),L and z(1),U such
that z(1) ∈ [z(1),L, z(1),U], and then iteratively propagate
the bound through each consecutive layer for k = 1, . . . ,K.
The final box constraint in the output layer can then be
used to check for the specification of interest [18]. The only
adjustment needed in our setting is that at each layer we
also need to propagate the interval of the weight matrix
[W (k),L,W (k),U] and that of the bias vector [b(k),L, b(k),U].
This can be done by noticing that the minimum and maximum
of each term of the bi-linear form of Equation (16), that is, of
each monomial W (k)

ij z
(k)
j , lies in one of the four corners of

the interval [W (k),L
ij ,W

(k),U
ij]×[z(k),Lj , z

(k),U
j], and by adding

the minimum and maximum values respectively attained by
b
(k)
i . As in the deterministic case, interval propagation through

the activation function proceeds by observing that generally
employed activation functions are monotonic, which permits
the application of Equation (17) to the bounding interval.
Where monotonicity does not hold, we can bound any ac-
tivation function that has finitely many inflection points by
splitting the function into piecewise monotonic functions. This
is summarised in the following proposition.

Proposition 3. Let fw(x) be the network defined by the set
of Equations (15)–(17), let for k = 0, . . . ,K:

t
(k),L
ij =min{W (k),L

ij z
(k),L
j ,W

(k),U
ij z

(k),L
j ,

W
(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j }

t
(k),U
ij =max{W (k),L

ij z
(k),L
j ,W

(k),U
ij z

(k),L
j ,

W
(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j }

where i = 1, . . . , nk+1, j = 1, . . . , nk, and z(k),L = σ(ζ(k),L),
z(k),U = σ(ζ(k),U) and:

ζ(k+1),L = ∑
j

t
(k),L
∶j + b(k),L

ζ(k+1),U = ∑
j

t
(k),U
∶j + b(k),U .

Then we have that ∀x ∈ T and ∀w ∈ R:

fw(x) = ζ(K+1) ∈ [ζ(K+1),L, ζ(K+1),U] .

The proposition above, whose proof is Appendix C-C
(Appendix C subsection C), yields a bounding box for the
output of the neural network in T and R.

b) Linear Bound Propagation (LBP): We now discuss
how LBP can be used to lower-bound the BNN output over T
and R as an alternative to IBP. In LBP, instead of propagating

bounding boxes, one finds lower and upper Linear Bounding
Functions (LBFs) for each layer and then propagates them
through the network. As the bounding function has an extra
degree of freedom w.r.t. the bounding boxes obtained through
IBP, LBP usually yields tighter bounds, though at an increased
computational cost. Since in deterministic networks non-
linearity comes only from the activation functions, LBFs in the
deterministic case are computed by bounding the activation
functions, and propagating the bounds through the affine
function that defines each layer.

Similarly, in our setting, given T in the input space and
R for the first layer in the weight space, we start with the
observation that LBFs can be obtained and propagated through
commonly employed activation functions for Equation (17), as
discussed in [41].

Lemma 2. Let fw(x) be defined by Equations (15)–(17). For
each hidden layer k = 1, . . . ,K, consider a bounding box in
the pre-activation function, i.e. such that ζ(k)i ∈ [ζ(k),Li , ζ

(k),U
i]

for i = 1, . . . , nk. Then there exist coefficients α
(k),L
i , β(k),Li ,

α
(k),U
i and β

(k),U
i of lower and upper LBFs on the activation

function such that for all ζ(k)i ∈ [ζ(k),Li , ζ
(k),U
i] it holds that:

α
(k),L
i ζ

(k)
i + β

(k),L
i ≤ σ(ζ(k)i) ≤ α

(k),U
i ζ

(k)
i + β

(k),U
i .

The lower and upper LBFs can thus be minimised and
maximised to propagate the bounds of ζ(k) in order to compute
a bounding interval [z(k),L, z(k),U] for z(k) = σ(ζ(k)). Then,
LBFs for the monomials of the bi-linear form of Equation (16)
can be derived using McCormick’s inequalities [54]:

W
(k)
ij z

(k)
j ≥W (k),L

ij z
(k)
j +W

(k)
ij z

(k),L
j −W

(k),L
ij z

(k),L
j (18)

W
(k)
ij z

(k)
j ≤W (k),U

ij z
(k)
j +W

(k)
ij z

(k),L
j −W

(k),U
ij z

(k),L
j (19)

for every i = 1, . . . , nk, j = 1, . . . , nk−1 and k = 1, . . . ,K.
The bounds of Equations (18)–(19) can thus be used in
Equation (16) to obtain LBFs on the pre-activation function
of the following layer, i.e. ζ(k+1). The final linear bound
can be obtained by iterating the application of Lemma 2 and
Equations (18)–(19) through every layer. This is summarised
in the following proposition, which is proved in Appendix C
along with an explicit construction of the LBFs.

Proposition 4. Let fw(x) be the network defined by the set of
Equations (15)–(17). Then for every k = 0, . . . ,K there exists
lower and upper LBFs on the pre-activation function of the
form:

ζ
(k+1)
i ≥ µ(k+1),Li ⋅ x +

k−1
∑
l=0
⟨ν(l,k+1),Li ,W (l)⟩+

ν
(k,k+1),L
i ⋅W (k)

i∶ + λ
(k+1),L
i for i = 1, . . . , nk+1

ζ
(k+1)
i ≤ µ(k+1),Ui ⋅ x +

k−1
∑
l=0
⟨ν(l,k+1),Ui ,W (l)⟩+

ν
(k−1,k+1),U
i ⋅W (k)

i∶ + λ
(k+1),U
i for i = 1, . . . , nk+1

where ⟨⋅, ⋅⟩ is the Frobenius product between matrices, ⋅ is the
dot product between vectors, and the explicit formulas for the
LBF coefficients, i.e., µ(k+1),Li , ν(l,k+1),Li , λ(k+1),Li , µ(k+1),Ui ,
ν
(l,k+1),U
i , are given in Appendix C-D.

PRE-PRINT. MANUSCRIPT UNDER REVIEW 10

Now let ζ
(k),L
i and ζ

(k),U
i , respectively, be the minimum

and the maximum of the right-hand side of the two equations
above; then we have that ∀x ∈ T and ∀w ∈ R:

fw(x) = ζ(K+1) ∈ [ζ(K+1),L, ζ(K+1),U] .

Algorithm 1 Lower Bounds for BNN Probabilistic Robustness
Input: T – Input Region, fw – Bayesian Neural Network, p(w∣D)
– Posterior Distribution with variance Σ, N – Number of Samples,
γ – Weight margin.
Output: A sound lower bound on Psafe(T,S).

1: # H is a set of known safe weight intervals
2: H ← ∅
3: # Elementwise product to obtain width of weight margin
4: v ← γ ⋅ I ⋅Σ
5: for i← 0 to N do
6: w(i) ∼ p(w∣D)
7: # Assume weight intervals are built to be disjoint
8: [w(i),L,w(i),U] ← [wi − v,wi + v]
9: # Interval/Linear Bound Propagation, Section VI-B

10: yL, yU ← Propagate(f, T, [w(i),L,w(i),U])
11: if [yL, yU] ⊂ S then
12: H ←H⋃{[w(i),L,w(i),U]}
13: end if
14: end for
15: PL

safe ← 0.0
16: for [w(i),L,w(i),U] ∈ H do
17: # Compute safe weight probs, Section VI-A
18: PL

safe = PL
safe + P ([w(i),L,w(i),U])

19: end for
20: return PL

safe

VII. COMPLETE BOUNDING ALGORITHM

Using the results presented in Section VI, it is possible to
explicitly compute the bounds on probabilistic and decision
robustness derived in Section V. In this section, we bring
together all the results discussed so far, and assemble complete
algorithms for the computation of bounds on Psafe(T,S)
and Dsafe(T,S). We discuss the procedure to lower bound
Psafe(T,S) in Algorithm 1. We then discuss the details of up-
per bounds and bounds on Dsafe(T,S), leaving the algorithms
and their description for these bounds to Appendix D.

A. Lower Bounding Algorithm

We provide a step-by-step outline for how to compute lower
bounds on Psafe(T,S) in Algorithm 1. We start on line 2
by initializing the family of safe weight sets H to be the
empty set and by scaling the weight margin with the posterior
weight scale (line 4). We then iteratively (line 5) proceed
by sampling weights from the posterior distribution (line 6),
building candidate weight boxes (line 8), and propagate the
input and weight box through the BNN (line 10). We next
check whether the propagated output set is inside the safe
output region S, and if so update the family of weights H
to include the weight box currently under consideration (lines
11 and 12). Finally, we rely on the results in Section VI-A to
compute the overall probabilities over all the weight sets in
H, yielding a valid lower bound for Psafe(T,S). For clarity
of presentation, we assume that all the weight boxes that we

sample in lines 6–8 are pairwise disjoint, as this simplifies the
probability computation. The general case with overlapping
weight boxes relies on the Bonferroni bound and is given in
Appendix D-D. The algorithm for the computation of the lower
bound on Dsafe(T,S) (listed in the Appendix D as Algorithm
2) proceeds in an analogous way, but without the need to
perform the check in line 11, and by adjusting line 18 to the
formula from Proposition 2.

B. Upper Bounding Algorithm

Upper bounding Psafe(T,S) and Dsafe(T,S) follows the
same computational flow as Algorithm 1. The pseudocode
outlines computation of probabilistic and decision robustness
are listed respectively in Algorithm 3 and 4 in Appendix D
subsection A and Appendix D subsection B. We again proceed
by sampling a rectangle around weights, propagate bounds
through the NN, and compute the probabilities of weight
intervals. The key change to the algorithm to allow upper
bound computation involves computing the best case, rather
than the worst case, for y in for decision robustness (line 12 in
Algorithm 3) and ensuring that the entire interval [yL, yU] ∉ S
(line 18) for probabilistic robustness. In Appendix D sub-
section B we also discuss how adversarial attacks can be
leveraged to improve the upper bounds.

C. Computational Complexity

Calculations for probabilistic robustness and decision ro-
bustness follow the same computational flow and include:
bounding of the neural network output, sampling from the
posterior distribution, and computation of integrals over boxes
on the input and weight space.

Regarding Algorithm 1 (or equivalently Algorithm 2 for
decision robustness), it is clear that the computational com-
plexity scales linearly with the number of samples, N , taken
from the posterior distribution. Observe that, in order to obtain
a tight bound on the integral computation, N needs to be
large enough such that N samples of the posterior with
width γ span an area of high probability mass for p(w∣D).
Unfortunately, this means that, for a given approximation error
magnitude, N needs to scale quadratically on the number of
hidden neurons. Given the sampling of the hyper-rectangles,
computation of the integral over the weight boxes is done
through Equations (13) and (14). The integration over the
weight boxes is done in constant time for HMC (though a
good quality HMC posterior approximation scales with the
number of parameters) and O(nw) for VI. The final step
needed for the methodology is that of bound propagation,
which clearly differs when using IBP or LBP. In particular,
the cost of performing IBP is O(Kn̂m̂), where K is the
number of hidden layers and n̂ × m̂ is the size of the largest
weight matrix W (k), for k = 0, . . . ,K. LBP is, on the other
hand, O(K2n̂m̂). Overall, the time complexity for certifying
a VI BNN with IBP is therefore O(NnwKn̂m̂), and similar
formulas can be obtained for alternative combinations of
inference and propagation techniques that are employed. We
remark that, while sound, the bounds we compute are not
guaranteed to converge to the true values of Psafe(T,S) and

PRE-PRINT. MANUSCRIPT UNDER REVIEW 11

 L
ow

er
 B

ou
nd

 o
n

.

Fig. 3. Top Left: Encounter geometry, ground truth and property labels: Clear
of Conflict (COC), Strong Left/Right (SL/R), Weak Left/Right (WL/R), for
a collision scenario. Diagrams modified from [24]. Bottom Left: Encounter
geometry labelled with features used for collision avoidance prediction. Right:
Bounds on decision robustness obtained for HMC and VI trained BNNs for
each property.

Dsafe(T,S) in the limit of the number of sample N because
of the introduction of over-approximation errors due to bound
propagation.

VIII. EXPERIMENTS

In this section, we empirically investigate the suitability of
our certification framework for the analysis of probabilistic
and decision robustness in BNNs. We focus our analysis on
four different case studies. First, we provide a comprehensive
evaluation of an airborne collision avoidance system [24]. To
do so, we partition the entire input space into 1.8 million
different specifications and bound Psafe(T,S) and Dsafe(T,S)
by computing the bounds for each specification. We then turn
our attention to an industrial regression benchmark [25] and
demonstrate how our analysis can provide tight characteri-
zation of the worst-case error of predictions in adversarial
settings in relation to the magnitude of the maximum attack
allowed. Next, we analyse the scalability of our method in
the well-known MNIST dataset for handwritten digits recog-
nition [55], along with its behaviour on out-of-distribution
input samples. Finally, we we study a two-class subset of
the German Traffic Sign Recognition Benchmark (GTSRB)
dataset [26], whose input space is 1500 dimensions larger
than what has previously been studied for BNN certification
against adversarial examples, showcasing that we are still able
to compute non-trivial guarantees in this setting. For each
dataset, we first describe the problem setting and BNN used
to solve it, along with its hyperparameters. We then discuss
the properties of interest for each dataset. Finally, we provide
discussion and illustration of our bounds performance. All the
experiments have been run on 4 NVIDIA 2080Ti GPUs in
conjunction with 4 24-core Intel Core Xeon 6230.

A. Airborne Collision Avoidance

Our first case study is the Horizontal airborne Collision
Avoidance System (HCAS) [24], a dataset composed of mil-
lions of labelled examples of intruder scenarios.

Fig. 4. Left: Box plots showing the distribution of upper and lower bounds
for VI (top) and HMC (bottom). Right: Histograms showing gap between
upper and lower bounds for VI (top) and HMC (bottom).

1) Problem Setting: The task of the BNN is to predict a
turn advisory for an aircraft given another oncoming aircraft,
including clear of conflict (COC), weak left (WL), weak right
(WR), strong left (SL), and strong right (SR). These are
depicted in the top left of Figure 3. We follow the learning
procedure described in [24], where encounter scenarios are
partitioned into 40 distinct datasets. We then learn a BNN to
predict the correct advisories for each dataset, resulting in 40
different BNNs which need to be analysed.

To analyze the system of 40 BNNs, we first discretize
the entire state-space into 1.8 million mutually exclusive
input specifications. The input specifications are sized ac-
cording to the spacing of the ground truth labels supplied
by [24]. Namely, we consider an ℓ∞ norm ball with dif-
ferent widths for each input dimension. Those widths are
[0.016,0.025,0.025,0.05]. The output specification is taken
to be the set of all softmax vectors such that the argmax
of the softmax corresponds to the true label. We separate
these output specifications into 5 different properties, which
we termed ϕj for j = 0, . . . ,4 corresponding to each of the
possible advisories. For all properties in this section we use
LBP with 5 samples with a weight margin of 2.5 standard
deviations.

We train BNNs with Variational Online Gauss Newton
(VOGN), where the posterior approximation is a diagonal co-
variance Gaussian, and wih Hamiltonian Monte Carlo (HMC).
The BNN architecture has a single hidden layer with 125
hidden units, the same size as the original system proposed
in [24]. We use a diagonal covariance Gaussian prior with
variance 0.5 for VOGN and a prior variance of 2.5 for HMC.

2) Analysis with Psafe(T,S) Certification: For each of the
1.8 million disjoint input specification, we compute both upper
and lower bounds on Psafe(T,S). Given that probabilistic ro-
bustness is a real-valued probability and not a binary predicate,
practitioners must select thresholds that reflect a strong belief
that a value is safe or unsafe. We call these thresholds τsafe

PRE-PRINT. MANUSCRIPT UNDER REVIEW 12

TABLE I
CERTIFICATION OF AIRBORNE COLLISION AVOIDANCE OVER A COMPLETE PARTITION OF THE INPUT SPACE. EACH STATE IS EITHER CERTIFIED SAFE,

UNSAFE, OR NOT CERTIFIABLE WITH THE CHOSEN THRESHOLDS. NUMBER OF STATES AND PROPORTIONS ARE REPORTED ALONG WITH THE NUMBER OF
BNNS INVOLVED IN THE SYSTEM FOR EACH PROPERTY.

Total Inputs # Certified Safe (Psafe(T,S) > 0.98) # Certified Unsafe (Psafe(T,S) < 0.05) # Uncertifiable # BNNs
ϕ0 795,853 620,158 (77.9%) 168,431 (21.1%) 7,313 (0.9%) 35
ϕ1 324,443 257,453 (79.3%) 34,379 (10.5%) 32,639 (10.0%) 21
ϕ2 323,175 257,724 (79.7%) 36,839 (11.3%) 28,612 (8.8%) 21
ϕ3 178,853 101,346 (53.4%) 64,618 (34.0%) 23,799 (12.5%) 31
ϕ4 189,991 104,546 (55.0%) 70,310 (37.0%) 15,135 (7.9%) 31
Total: 1,812,315 1,341,227 (74.0%) 374,577 (20.6%) 107,498 (5.9%) 40

and τunsafe. Once one has computed bounds on Psafe(T,S),
the proportions of safe and unsafe states (as reported in
Table I) can be computed by checking thresholds. We check
our bounds against strict safety and unsafety thresholds τsafe =
0.98, τunsafe = 0.05.

For the selected threshold values, Table I reports the certified
performance of the BNN system. Such a report can be used
by regulators and practitioners to determine the if the system
is safe for deployment. In this case, we find that across all
properties 74% of the states are certified to be safe while 20%
are certified to be unsafe. The remaining 6% fall somewhere
in between the two safety thresholds. These statistics indicate
that roughly 18% of the decisions issued by the system were
correct but not robust, thus the systems accuracy of 92% does
not paint the complete story of its performance. Moreover, we
break down each of the properties of the system, represented
by each row of Table I, to understand where the most common
failure modes occur. We find that the most unsafe indicators
are the strong left, ϕ3, and for strong right, ϕ4, the system has
the lowest certified safety at 53.4% and 55.0% respectively.
They also have the highest certified unsafety at 34.0% and
37.0%, respectively. We conjecture that these these specifica-
tions are less safe due to the fact that their is less labeled data
representing them in the dataset. Less data has been shown to
be correlated with less robustness for BNNs [10]. If the results
in Table I are deemed to be insufficient for deployment, then
practitioners can collect more data for unsafe properties e.g.,
ϕ3 and ϕ4, or could resort to certified safe training for BNNs
as suggested in [27].

3) Analysis with Dsafe(T,S) Certification: In order to
analyze the decision robustness of the BNNs, we again dis-
cretize the input space. For these results, we use a coarser
discretization, with the input specification being an ℓ∞ ball
radius of 0.125 over each input dimension, and for the sake
of computational efficiency we allow some gaps between the
input specifications. For each specification, we compute upper
and lower bounds on Dsafe(T,S). We plot the result of our
bounds on decision robustness in Figures 3 and 4. In the
right hand portion of Figure 3 we visualize the average lower
bound on decision robustness for two BNNs, one trained
with HMC (yellow) and the other trained with VI (green).
We find that we are able to certify a higher lower bound,
indicating heightened robustness, for the HMC-trained BNN.
This corroborates previous robustness studies that highlight
that HMC is more adversarially robust [10], [11]. In Figure 4
we analyze the tightness of our bounds in this scenario by

comparing the lower and upper bounds provided by our
method. For VI, the gap, plotted in purple in the upper right,
is tightly centered around a mean of 0.08, with maximum gap
observed in these experiments being approximately 0.16 and
a minimum 0.035. For HMC, on the other hand, the mean gap
is 0.11, which is higher than VI, but this mean is affected by a
small proportion of inputs that have a very high gap between
upper and lower bounds, with the highest gap being 0.72. We
further highlight the higher variance bound distribution for
the HMC-trained BNN (plotted as blue and red box plots).
We hypothesize that this arises due to the higher uncertainty
predictive of the HMC in areas of little data [7]

4) Computational Requirements: For VI certification, we
can compute upper and lower bounds in an average of 0.544
seconds. Thus, when run in serial mode, the 3.6 million
probabilistic bound computations needed for Table I takes
an estimated 11.347 computational days. However, our par-
allelized certification procedure produces Table I in under 3
days of computational time (61 hours). These computations
include the 1.8 million lower bound runs and 1.8 million upper
bound runs. For HMC, on the other hand, certification can be
done in a fraction of the time, with bounds being computed in
0.073 seconds. This is due to the fact that weight intervals for
HMC necessarily satisfy the pairwise disjoint precondition of
Proposition 1, thus no Bonferroni correction is needed.

B. Industrial Benchmarks
We now focus our analyses on two safety-critical industrial

regression problems taken from the UCI database [25], and
widely employed for benchmarking of Bayesian inference
methods [53], [56], [57].

1) Problem Setting: The Concrete dataset involves predict-
ing the compressive strength of concrete, based on 8 key
factors including its ingredients and age. The Powerplant
dataset uses six years worth of observations from combined
cycle power plants and poses the problem of predicting energy
output from a plant given a range of environmental and
plant parameters. For each dataset we learn a BNN by using
the architecture (i.e., a single hidden layer with 100 hidden
units) and inference settings proposed in [53]. The BNNs are
inferred using VOGN with a diagnonal covariance prior over
the weights with variance 0.5 for the Concrete dataset and
0.25 for the Powerplant dataset. We use a Gaussian likelihood
corresponding to a mean squarred error loss function. In this
setting we use IBP with 10 samples and a weight margin of
2 standard deviations.

PRE-PRINT. MANUSCRIPT UNDER REVIEW 13

B
ou

nd
s

on
 M

ax
R

R
 a

nd
 M

in
U

R

B
ou

nd
s

on
 M

ax
R

R
 a

nd
 M

in
U

R

B
ou

nd
s

on
 M

ax
R

R
 a

nd
 M

in
U

R

MaxRRMinUR

Fig. 5. Computation of the minimum (MinUR) and maximum (MaxRR) safe radius for Concrete and Powerplant datasets. Left: Boxplots for the empirical
distribution of MinUR and MaxRR computed over all test inputs. Centre: Per-test-instance certified radii for the Concrete dataset. Right: Per-test-instance
certified radii for the Powerplant dataset.

2) Analysis with Psafe(T,S) Certification: In industrial
applications it is useful to understand the maximum amount of
adversarial noise that a learned system can tolerate, as failures
can be costly and unsafe [58]. To this end, we introduce
the maximum and minimum robust radius. Given a threshold
τsafe (as before) the maximum robust radius (MaxRR) is the
largest ℓ∞ radius for which we can certify the BNN satisfies
Psafe(T,S) > τsafe. Similarly, the minimum unrobust radius
(MinUR) is the smallest radius such that we can certify
Psafe(T,S) < τunsafe. The MaxRR gives us a safe lower bound
on the amount of adverarial noise a BNN is robust against,
whereas the MinUR gives us a corresponding upper bound.

In our experiments on these datasets we considered τsafe =
τunsafe = 0.7, meaning that we request that over 70% of the
BNN probability mass is certifiably safe; however, we stress
that similar results can be obtained for different values of τsafe
similarly to what is discussed in our previous analysis of the
HCAS dataset. In order to compute the MaxRR we start with
ϵ = 0, check that Psafe(T,S) > τsafe using our lower bound,
and if the inequality is satisfied we increase epsilon by 0.01
and continue this process until the inequality no longer holds.
Similarly for the MinUR, we start with ϵ = 0.5 and iteratively
decrease the value of ϵ until the upper bound no longer certifies
that Psafe(T,S) < τunsafe; if the property does not hold at 0.5
one can increase the value of ϵ until the bound holds.

The result of computing the MaxRR and MinUR over the
test datasets for the Concrete and Powerplant datasets are
plotted in Figure 5. We highlight that in the overwhelming
majority of the cases our methods is able to return non-
vacuous bounds on MinUR (i.e., strictly less than 1) and on
MaxRR (i.e., strictly greater than 0). As expected we observe
the MaxRR is strictly smaller than MinUR. Encouragingly,
as MinUR grows, MaxRR tends to increase indicating that
our bounds track the true value of Psafe(T,S). We see that
the Concrete dataset is typically guaranteed to be robust for
radius ϵ ≈ 0.03 and is typically guaranteed to be unsafe for
ϵ ≈ 0.06. For the Powerplant posterior we compute a MaxRR
of roughly 0.18 for most inputs and a MinUR lower than 0.32.
Notice how the results for the Concrete datasets systematically
display more robustness than those for Powerplant and the gap
between MaxRR and MinUR is significantly smaller in the

former datasets than in the latter.
3) Computational Requirements: On average, it takes 1.484

seconds to compute a certified upper or lower bound on
Psafe(T,S) for the Powerplant dataset and 1.718 seconds for
the Concrete dataset. We use a linear search in order to
compute the MaxRR and MinUR which require, on average,
5 certifications for both MaxRR and MinUR computations.
We compute these values over the entire test datasets for both
Powerplant and Concrete, which requires tens of thousands of
certifications and each input can be done in parallel.

C. MNIST

We investigate the suitability of our methods in providing
certifications for BNNs on larger input domains, specifically
BNNs learnt for MNIST, a standard benchmark for the verifi-
cation of deterministic neural networks whose inputs are 784-
dimensional. In this setting we use IBP with 5 weight samples
with a weight margin of 2.5 standard deviations.

1) Problem Setting: MNIST poses the problem of hand-
written digit recognition. Given handwritten digits encoded
as a 28 by 28 black and white image, the task is to predict
which digit – 0 through 9 – is depicted in the image (two
images randomly sampled from the dataset are reproduced in
the far left of Figure 6). We learn BNNs using the standard
50,000/10,000 train/test split that is provided in the original
work [55]. For our experimental analysis, we use one-layer
neural network with 128 hidden neurons, each of which uses
rectified linear unit activation functions. The BNN has 10
output neurons that use a softmax activation function. We train
the network using VOGN with a diagonal covariance Gaussian
prior that has variance 2.0. We use a sparse categorical cross-
entropy loss modified with the method presented in [27] to
promote robustness in the BNN posteriors.

2) Analysis using Dsafe(T,S) Certification: We analyze
the trained BNN using decision robustness on 1000 images
taken from the MNIST test dataset. We compute bounds on
Dsafe(T,S) for increasing widths of an ℓ∞ input region ϵ. We
plot the mean and standard deviation obtained for the upper
(DU

safe, in red) and lower bound (DL
safe, in blue) on decision

robustness for the ground truth label of each image in the left
hand portion of Figure 6. As greater ϵ implies a larger input

PRE-PRINT. MANUSCRIPT UNDER REVIEW 14

Fig. 6. Left: Mean and standard deviation of upper and lower bounds obtained on Dsafe on 1000 images taken from the MNIST test set. Right: Mean and
standard deviation on upper and lower bound on decision robustness on out-of-distribution samples taken from the FashionMNIST dataset.

B
ou

nd
s

on
 M

ax
R

R
 a

nd
 M

in
U

R

MaxRR MinUR

B
ou

nd
s

on
 M

ax
R

R
 a

nd
 M

in
U

R

Fig. 7. Left: Boxplots for the empirical distribution of the maximum safe
radius and minimum unsafe radius for a BNN with 128 hidden units and a
single hidden layer. Right: For a range of architectures, we plot the mean
certified safe and unsafe radius.

specification T , increasing values of ϵ leads to a widening of
the gap between the lower and upper bounds, and hence an
increased vulnerability of the network. Notice that even for
ϵ = 0.25, i.e., half of the whole input space, our method still
obtains on average non-vacuous bounds (i.e., strictly within
(0,1)). In order to get a rough estimation of the adversarial
robustness of the network, we observe that, for lower bound
values above 0.5, the BNN is guaranteed to correctly classify
all the inputs in the region T (however, as MNIST has 10
classes, even values of the lower bound lower than 0.5 could
still result in correct classification). Using the 0.5 threshold,
we notice that our method guarantees that the BNN is still
robust on average for ϵ = 0.075. Notice that this is on par
with results obtained for verification of deterministic neural
networks, where ϵ = 0.05 leads to adversarial attack robustness
of around 70% [17].

3) Certification of Uncertainty Behaviour: In this section
we study how to certify the uncertainty behavior of a BNN in
the presence of adversarial noise. We assume we have an out-
of-distribution input, i.e., an input whose ground-truth does not
belong to any of the classes in the range of the learned model.
As with previous specifications, we build the set T around such
an input with an ℓ∞ ball of radius ϵ. Unlike for the previous
specifications, we build S as the set of all softmax vectors
such that no entry in the vector is larger than a specified
value τuncertain. The function of τuncertain is to determine the
confidence at which a classification is ruled to be uncertain.
For example, in Figure 6 we have set τuncertain = 0.4, thus any
classification that is made with confidence < 0.4 will be ruled

uncertain. By certifying that all values of T are mapped into
S, we guarantee that the BNN is uncertain on all points around
the out-of-distribution input.

In the right half of Figure 6, we plot two example images
from the FashionMNIST dataset, which are considered out-
of-distribution for the BNN trained on MNIST. In our exper-
iments we use 1000 test set images from the FashionMNIST
dataset. On the right of the out-of-distribution samples in
Figure 6, we plot the bounds on decision robustness with
various values of ϵ for the ℓ∞ ball. We start by noticing that
the BNN never outputs a confidence of more than ∼ 0.25 on
the clean Fashion-MNIST dataset, which indicates that the
network has good calibrated uncertainty on these samples. We
notice that up to ϵ = 0.06 we certify that no adversary can
perturb the image to force a confident classification; however,
at ϵ = 0.10 no guarantees can be made.

4) Architecture Width and Depth: We now analyse the
behaviour of our method when computing bounds on the
certified radius on MNIST while varying the width and depth
of the BNN architecture. The results of this analysis are
given in Figure 7. Notice that we are able to obtain non-
vacuous bounds in all the cases analysed. However, as could
be expected, we see that the gap between MinUR and MaxRR
widens as we increase the depth and/or the width of the neural
network. This inevitably arises from the fact that the tightness
of bound propagation techniques decreases as we need to
perform more boundings and/or propagations, and because
increasing the number of weights in the network renders the
bounds obtained by Proposition 2 more coarse, particularly as
we increase the number of layers of the BNN, as explained in
Section VII-C. In particular, we observe that MinRR increases
drastically as we increase the number of layers in the BNN
architecture, while, empirically, the bounding for MaxRR is
more stable w.r.t. the architecture parameters.

5) Computational Requirements: On average, it takes
24.765 seconds to verify an MNIST image on a single CPU
core. Each of the images in our experiments is run in parallel
across 96 cores which allows us to compute all of the results
for Figure 6 in less than an hour.

D. German Traffic Sign Recognition

In this section, we investigate the ability of our method to
scale to a full-color image dataset, which represent safety-

PRE-PRINT. MANUSCRIPT UNDER REVIEW 15

Test Images

Nonsense Traffic
Signs

International Traffic
Signs (OOD)

Uniform Random
Noise

Verified Correct Verified Incorrect Verified Uncertain Unable to Verify

Fig. 8. Certification of a Bayesian CNN on a two-class subset of the German
Traffic Recognition (GTSRB) dataset. In the top row, we plot illustrative
examples showing that we can verify correctness of test inputs. In the bottom
three rows we visualize the the uncertainty guarantees on various out-of-
distribution inputs including nonsense traffic signs (second row), international
traffic signs (third row), and random noise (bottom row).

critical tasks with high-dimensional inputs (2,352 dimen-
sions).

1) Problem Setting: We study BNNs on a two-class subset
of the German Traffic Sign Recognition Benchmark (GTSRB),
consisting of the images that represent the ‘construction ahead’
and ‘50 Km/H speed limit’ [26]. Though this dataset is
only comprised of two classes, full-colour images stretch
the capabilities of BNN training methods, especially robust
Bayesian inference. The dataset is comprised of 5000 training
images and 1000 test set images. We employ VOGN to train
a Bayesian convolutional architecture, with 2 convolutional
layers and one fully-connected layer first proposed in [18]. We
employ the method of [27] in order to encourage robustness
in the posterior. We find that this dataset poses a challenge
to robust inference methods, with the BNN achieving 72%
accuracy over the test set after 200 epochs. We found that,
without robust training, we are able to achieve 98% accuracy
over the test set, but were unable to certify robustness or
uncertainty for any tested image (see discussion of limitations
below). We verify these networks with 3 weight samples with
a weight margin of 3.0 standard deviations.

2) Analysis with Dsafe(T,S): For our analysis for GTSRB,
we take T to be a ℓ∞ ball with radius 2/255. As in our previous
analysis, for test set images we take S to be the set of all
vectors such that the true class is the argmax. We study 250
images and find that 53.8% of the images are certified to be
correct. We plot a visual sample of these images in the top row
of Figure 8. We also study the out-of-distribution performance
of various kinds of images with τuncertain = 0.55. Of 400 images
of random noise, visualized in the bottom row of Figure 8, we
certified that the BNN was uncertain on 398 images, indicating
that on that set the BNN has correctly calibrated uncertainty
as it does not issue confident predictions on random noise.
We then turned our attention to two more realistic sets of out-
of-distribution images: nonsense traffic signs and international
traffic signs. We were limited to a small set of free-use images
for these tests but found that for eight out of ten nonsense

traffic signs we were able to certify the BNN’s uncertainty,
and for nine out of ten international traffic signs we were able
to certify the uncertainty. On average these certifications took
34.2 seconds.

3) Limitations: While this analysis represents an encour-
aging proof of concept for certification of BNNs, we find
that datasets whose inputs are of this scale and complexity
are not yet fully accessible to robust inference for BNNs, as
74% test set accuracy is not strong enough performance to
warrant deployment. However, with approaches such as [59],
[60] investigating more powerful methods for scaling Bayesian
inference for neural networks, we are optimistic that future
works will be able to apply our method to more advanced
Bayesian approximate posteriors.

IX. CONCLUSION

In this work, we introduced a computational framework
for evaluating robustness properties of BNNs operating under
adversarial settings. In particular, we have discussed how prob-
abilistic robustness and decision robustness – both employed
in the adversarial robustness literature for Bayesian machine
learning [42], [43] – can be upper- and lower-bounded via a
combination of posterior sampling, integral computation over
boxes and bound propagation techniques. We have detailed
how to compute these properties for the case of HMC and
VI posterior approximation, and how to instantiate the bounds
for interval and linear propagation techniques, although the
framework presented is general and can be adapted to different
inference techniques and to most of the verification techniques
employed for deterministic neural networks.

In an experimental analysis comprising 5 datasets (airborne
collision avoidance, concrete, powerplant, MNIST, and GT-
SRB), we have showcased the suitability of our approach
for computing effective robustness bounds in practice, and
for various additional measures that can be computed using
our technique including certified robust radius and analysis of
uncertainty.

With verification of deterministic neural networks already
being NP-hard, inevitably certification of Bayesian neural
networks poses several practical challenges. The main lim-
itation of the approach presented here arises directly from
the Bayesian nature of the model analysed, i.e., the need to
bound and partition at the weight space level (which is not
needed for deterministic neural networks, with the weight
fixed to a specific value). Unfortunately, this means that
the computational complexity, and also the tightness of the
bounds provided, scale quadratically with the number of neu-
rons across successive layer connections. We have discussed
methods for mitigating the resulting gap between the bounds,
including adaptive partitioning based on weight variance and
implementing a branch-and-bound refinement approach for the
bound, which would, however, results in a sharp increase
in computational time. Nevertheless, the methods presented
here provide the first formal technique for the verification
of robustness in Bayesian neural network systematically and
across various robustness notions, and as such can provide
a sound basis for for future practical applications in safety-
critical scenarios.

PRE-PRINT. MANUSCRIPT UNDER REVIEW 16

REFERENCES

[1] R. Aggarwal, V. Sounderajah, G. Martin, D. S. Ting, A. Karthike-
salingam, D. King, H. Ashrafian, and A. Darzi, “Diagnostic accuracy
of deep learning in medical imaging: A systematic review and meta-
analysis,” NPJ digital medicine, vol. 4, no. 1, pp. 1–23, 2021.

[2] L. Chen, S. Lin, X. Lu, D. Cao, H. Wu, C. Guo, C. Liu, and F.-Y.
Wang, “Deep neural network based vehicle and pedestrian detection
for autonomous driving: a survey,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 6, pp. 3234–3246, 2021.

[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” ICLR, 2014.

[4] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, vol. 84, pp. 317–
331, 2018.

[5] S. Adams, M. Lahijanian, and L. Laurenti, “Formal control synthesis
for stochastic neural network dynamic models,” IEEE Control Systems
Letters, vol. 6, pp. 2858–2863, 2022.

[6] T. Wei and C. Liu, “Safe control with neural network dynamic models,”
in Learning for Dynamics and Control Conference. PMLR, 2022, pp.
739–750.

[7] R. M. Neal, Bayesian learning for neural networks. Springer Science
& Business Media, 2012.

[8] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian
deep learning for computer vision?” in NeurIPS, 2017.

[9] R. Michelmore, M. Wicker, L. Laurenti, L. Cardelli, Y. Gal, and
M. Kwiatkowska, “Uncertainty quantification with statistical guarantees
in end-to-end autonomous driving control,” ICRA, 2019.

[10] A. Bekasov and I. Murray, “Bayesian adversarial spheres: Bayesian
inference and adversarial examples in a noiseless setting,” arXiv preprint
arXiv:1811.12335, 2018.

[11] G. Carbone, M. Wicker, L. Laurenti, A. Patane, L. Bortolussi, and
G. Sanguinetti, “Robustness of bayesian neural networks to gradient-
based attacks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 15 602–15 613, 2020.

[12] M. Yuan, M. Wicker, and L. Laurenti, “Gradient-free adversarial attacks
for bayesian neural networks,” arXiv preprint arXiv:2012.12640, 2020.

[13] X. Liu, Y. Li, C. Wu, and C.-J. Hsieh, “Adv-bnn: Improved adversarial
defense through robust Bayesian neural network,” ICLR, 2019.

[14] L. Cardelli, M. Kwiatkowska, L. Laurenti, N. Paoletti, A. Patane, and
M. Wicker, “Statistical guarantees for the robustness of Bayesian neural
networks,” IJCAI, 2019.

[15] L. Smith and Y. Gal, “Understanding measures of uncertainty for
adversarial example detection,” in UAI, 2018.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
Deep Learning Models Resistant to Adversarial Attacks,” arXiv e-prints,
Jun. 2017.

[18] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. Mann, and P. Kohli, “On the effectiveness of interval
bound propagation for training verifiably robust models,” SecML 2018,
2018.

[19] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli, “A
dual approach to scalable verification of deep networks.” in UAI, vol. 1,
no. 2, 2018, p. 3.

[20] E. Benussi, A. Patane, M. Wicker, L. Laurenti, and M. Kwiatkowska,
“Individual fairness guarantees for neural networks,” arXiv preprint
arXiv:2205.05763, 2022.

[21] M. Wicker, L. Laurenti, A. Patane, and M. Kwiatkowska, “Probabilistic
safety for bayesian neural networks,” in Conference on uncertainty in
artificial intelligence. PMLR, 2020, pp. 1198–1207.

[22] L. Berrada, S. Dathathri, K. Dvijotham, R. Stanforth, R. R. Bunel,
J. Uesato, S. Gowal, and M. P. Kumar, “Make sure you’re unsure:
A framework for verifying probabilistic specifications,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[23] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, “Ai2: Safety and robustness certification of neural networks
with abstract interpretation,” in 2018 IEEE S&P. IEEE, 2018, pp. 3–18.

[24] K. D. Julian and M. J. Kochenderfer, “Guaranteeing safety for neural
network-based aircraft collision avoidance systems,” DASC, 2019.

[25] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[26] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural networks, vol. 32, pp. 323–332, 2012.

[27] M. Wicker, L. Laurenti, A. Patane, Z. Chen, Z. Zhang, and
M. Kwiatkowska, “Bayesian inference with certifiable adversarial ro-
bustness,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2021, pp. 2431–2439.

[28] A. Rawat, M. Wistuba, and M.-I. Nicolae, “Adversarial phenomenon in
the eyes of Bayesian deep learning,” arXiv preprint arXiv:1711.08244,
2017.

[29] N. Carlini and D. Wagner, “Towards Evaluating the Robustness of Neural
Networks,” arXiv e-prints, p. arXiv:1608.04644, Aug 2016.

[30] L. Berrada, S. Dathathri, K. Dvijotham, R. Stanforth, R. R. Bunel,
J. Uesato, S. Gowal, and M. P. Kumar, “Make sure you’re unsure:
A framework for verifying probabilistic specifications,” Advances in
Neural Information Processing Systems, vol. 34, pp. 11 136–11 147,
2021.

[31] M. Wicker, L. Laurenti, A. Patane, N. Paoletti, A. Abate, and
M. Kwiatkowska, “Certification of iterative predictions in bayesian
neural networks,” in Uncertainty in Artificial Intelligence. PMLR, 2021,
pp. 1713–1723.

[32] M. Lechner, D. Žikelić, K. Chatterjee, and T. Henzinger, “Infinite
time horizon safety of bayesian neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 10 171–10 185, 2021.

[33] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” arXiv preprint
arXiv:1711.07356, 2017.

[34] A. Raghunathan, J. Steinhardt, and P. S. Liang, “Semidefinite relaxations
for certifying robustness to adversarial examples,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[35] K. Dvijotham, M. Garnelo, A. Fawzi, and P. Kohli, “Verification of deep
probabilistic models,” arXiv preprint arXiv:1812.02795, 2018.

[36] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in International Conference
on Machine Learning. PMLR, 2018, pp. 5286–5295.

[37] M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-guided black-box
safety testing of deep neural networks,” in TACAS. Springer, 2018, pp.
408–426.

[38] M. Wu, M. Wicker, W. Ruan, X. Huang, and M. Kwiatkowska, “A game-
based approximate verification of deep neural networks with provable
guarantees,” Theoretical Computer Science, vol. 807, pp. 298–329, 2020.

[39] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in CAV, 2017.

[40] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S.
Dhillon, and L. Daniel, “Towards fast computation of certified robustness
for relu networks,” ICML, 2018.

[41] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Ef-
ficient neural network robustness certification with general activation
functions,” in NeurIPS, 2018, pp. 4939–4948.

[42] L. Cardelli, M. Kwiatkowska, L. Laurenti, and A. Patane, “Robustness
guarantees for Bayesian inference with Gaussian processes,” in AAAI,
2018.

[43] M. T. Smith, K. Grosse, M. Backes, and M. A. Alvarez, “Adversarial
vulnerability bounds for Gaussian process classification,” arXiv preprint
arXiv:1909.08864, 2019.

[44] A. Patane, A. Blaas, L. Laurenti, L. Cardelli, S. Roberts, and
M. Kwiatkowska, “Adversarial robustness guarantees for gaussian pro-
cesses,” Journal of Machine Learning Research, vol. 23, 2022.

[45] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” ICML, 2015.

[46] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[47] C. Bishop, Neural networks for pattern recognition. Oxford University
Press, USA, 1995.

[48] J. O. Berger, Statistical decision theory and Bayesian analysis. Springer
Science & Business Media, 2013.

[49] R. Stanforth, S. Gowal, T. Mann, P. Kohli et al., “A dual ap-
proach to scalable verification of deep networks,” arXiv preprint
arXiv:1803.06567, 2018.

[50] G. De Palma, B. Kiani, and S. Lloyd, “Adversarial robustness guarantees
for random deep neural networks,” in International Conference on
Machine Learning. PMLR, 2021, pp. 2522–2534.

[51] E. T. Nalisnick, On priors for Bayesian neural networks. University
of California, Irvine, 2018.

[52] S.-H. Chang, P. C. Cosman, and L. B. Milstein, “Chernoff-type bounds
for the gaussian error function,” IEEE Transactions on Communications,
vol. 59, no. 11, pp. 2939–2944, 2011.

http://archive.ics.uci.edu/ml
http://www.deeplearningbook.org

PRE-PRINT. MANUSCRIPT UNDER REVIEW 17

[53] M. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava,
“Fast and scalable bayesian deep learning by weight-perturbation in
adam,” in International Conference on Machine Learning. PMLR,
2018, pp. 2611–2620.

[54] G. P. McCormick, “Computability of global solutions to factorable
nonconvex programs: Part I convex underestimating problems,” Mathe-
matical programming, pp. 147–175, 1976.

[55] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[56] J. M. Hernández-Lobato and R. Adams, “Probabilistic backpropagation
for scalable learning of Bayesian neural networks,” in International
Conference on Machine Learning, 2015, pp. 1861–1869.

[57] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in ICML, 2016, pp.
1050–1059.

[58] F. M. Shakiba, M. Shojaee, S. M. Azizi, and M. Zhou, “Robustness
analysis of generalized regression neural network-based fault diagnosis
for transmission lines,” in 2022 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE, 2022, pp. 131–136.

[59] K. Osawa, S. Swaroop, M. E. E. Khan, A. Jain, R. Eschenhagen,
R. E. Turner, and R. Yokota, “Practical deep learning with bayesian
principles,” Advances in neural information processing systems, vol. 32,
2019.

[60] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. G. Wilson, “What
are bayesian neural network posteriors really like?” in International
conference on machine learning. PMLR, 2021, pp. 4629–4640.

[61] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, University of
Cambridge, 2016.

[62] D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the
target probability distribution,” in Proceedings of 1994 ieee international
conference on neural networks (ICNN’94), vol. 1. IEEE, 1994, pp. 55–
60.

[63] C. Bonferroni, “Teoria statistica delle classi e calcolo delle probabilita,”
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Com-
mericiali di Firenze, vol. 8, pp. 3–62, 1936.

PRE-PRINT. MANUSCRIPT UNDER REVIEW 18

TABLE II
USE CASES FOR EACH BOUND PRESENTED IN THIS PAPER.

Property: App: Bound for Certification:
Correctness Cls. Lower & Upper on Dsafe(T,S)
Aleatoric Uncert. Cls. Upper on Dsafe(T,S)
Epistemic Uncert. (OOD) Cls. Lower & Upper on Psafe(T,S)
Correctness Reg. Lower & Upper on Dsafe(T,S)
Aleatoric Uncert. Reg. Lower & Upper on Psafe(T,S)
Epistemic Uncert. (OOD) Reg. Lower & Upper on Psafe(T,S)

In this Appendix, we provide further discussion, proofs,
and hyper-parameters for reproducing our experiments. We
begin with a discussion on the use cases for the bounds. We
then move on to discuss other decision criteria that we can
certify. Following this, we provide proofs for the theoretical
results stated in the main paper, algorithms for lower bound-
ing Dsafe(T,S) and upper bounding both Psafe(T,S) and
Dsafe(T,S), as well as computing the cumulative probability
of a hyper-rectangle using Bonferroni bounds. Finally, we
summarise the training details, including all hyper-parameters
needed to reproduce our results.

APPENDIX A
BOUND USE CASE DISCUSSION

We use this section to present the use cases for each bound
we derive in this paper and highlight their importance. A
summary of the use cases we suggest is given in Table II. We
discuss various kinds of uncertainty quantities (full definitions
and discussion in [61]) as well as how one can gain relevant
certification on these quantities.

a) Correctness: One of the most widely studied prop-
erties in NN robustness is that of “correctness” [39], which
requires prediction of the NN to match the ground truth even
in the face of adversarial perturbations. For classification,
as discussed in the main text, correctness boils down to
checking that, for all adversarial perturbations, the argmax of
the softmax output remains the same. For regression, due to the
continuous nature of outputs correctness involves establishing
a range of outputs that correspond to the tolerable error. Given
that correctness relies on the ultimate decision of the BNN in
either the classification or regression, we use upper and lower
bounds on the posterior predictive expectation (i.e., DL

safe and
DU

safe). To prove that classification is correct, one must prove
that the lower bound of the true class softmax probability
is higher than the upper bound of all other classes softmax
probability, which implies:

∀x ∈ T, argmaxE[σ(fw(x))] = c

For regression one must use upper and lower bounds in order
to show that output prediction lies within tolerable error. For
this, one needs to check that the end points of the decision,
[DL

safe,D
L
safe], are contained within the tolerable noise.

b) Aleatoric Uncertainty: Measures of aleatoric un-
certainty are input-dependent and come from the noise
within the data observation process [61]. For classifi-
cation the aleatoric uncertainty is usually measured as
maxi∈[n]Ep(w∣D)σ(fw(x))i. This is also termed the ‘confi-
dence.’ For regression, one can predict both the mean and

variance of a Gaussian likelihood, where the variance repre-
sents the aleatoric uncertainty [62]. Computing bounds on the
posterior predictive mean allows us to ensure that a point has
sufficiently high or low aleatoric uncertainty. For classifica-
tion, DL

safe represents a lower bound on Ep(w∣D)σ(fw(x))i,
thus DL

safe allows for a bound on aleatoric uncertainty. For
regression, the same holds save it is only the bound DL

safe in
the dimension corresponding to the predicted variance.

c) Epistemic Uncertainty: Model or epistemic uncer-
tainty measures the uncertainty from the lack of data at training
time. We expect that epistemic uncertainty is high for out-of-
distribution samples. Epistemic uncertainty is measured as the
spread of prediction from various models under the posterior
distribution. To measure this, it is natural to consider the
variance of the posterior predictive distribution. Given an input
x that is out-of-distribution one can certify that Psafe is not
sufficiently high for any class. This guarantees that there is
not one class that the BNN maps all of its predictions into and
thus guarantees that the BNN is uncertain. By checking Psafe
across in- and out-of-distribution points, modellers can certify
that their BNN is well calibrated with respect to epistemic
uncertainty.

APPENDIX B
CERTIFYING FURTHER DECISION RULES

As discussed in the main paper, decision robustness is
clearly dependent on the function used for Bayesian decisions
on top of the learning model. In the main paper we have
given explicit results for the two standard losses, ℓ0−1 for
classification and ℓ2 for regression. However, with some minor
adjustments, our method can be employed for different losses
too. In this section we give the example of the ℓ1 loss for
regression and the weighted loss for classification.

A. Bounding Decisions for the ℓ1 Loss

For the ℓ1 decision loss, it is known that the median of the
posterior predictive distribution is the value that minimizes the
loss. Thus we must bound the median, defined as usual to be
m(Z) ∶= x ⇐⇒ ∫

x
−∞ pZ(v)dv = 0.5. Assuming ∑N

i=1 P (Ji) =
1.0, we can arrive at a lower bound by picking yLm to be
our median lower bound such that ∑m

i=1 P (Ji) ≤ 0.5 but
∑m+1

i=1 P (Ji) ≥ 0.5. One can similarly find an upper-bound via
this routine by first computing upper bounds for each weight
rectangle and then picking yUm such that ∑m

i=1 P (Ji) ≥ 0.5 but
∑m−1

i=0 P (Ji) ≤ 0.5. When the condition ∑N
i=1 P (Ji) = 1.0 does

not hold, we can modify the procedure to get valid bounds on
the median. We assume that ∑N

i=1 P (Ji) = 1.0 − η for any
η such that 0.5 > η > 0. Then we pick the lower bound
to the median to be yLm such that η + ∑m

i=1 P (Ji) ≤ 0.5 but
η+∑m+1

i=1 P (Ji) ≥ 0.5. This yields a valid bound on the median.
Similar formulas can be computed for the upper bound, by
relying on the laws of complementary probabilities.

B. Bounding Decisions for the K − 0 Loss

In some safety-critical decision-making problems, particu-
larly in medical diagnosis, predicting one class comes with

PRE-PRINT. MANUSCRIPT UNDER REVIEW 19

more risk (formally, loss) than predicting another. In this case,
the 0-1 loss is made more general and is defined as the 0-K
loss, which assigns a penalty of 0 to the correct prediction,
and Ki otherwise, where i indexes the classes. Thus, the
posterior expected losses in a binary classification case are
K0p(y0∣x,D) and K1p(y1∣x,D). In this scenario the decision
rule is not to take the argmax as before, but to predict class i if

the p(yi∣x,D) >
Ki

∑nc

i=0Ki
. Thankfully, this is straightforward

in our framework. To certify this decision rule it is enough to

check that DL
safe,i ≥

Ki

∑nc

i=0Ki
. We refer interested readers to

Section 4.4.3 of [48] for more in-depth discussion.

APPENDIX C
PROOFS

In this section of the Appendix, we provide proofs for the
main theoretical results stated in the paper.

A. Lemma 1

Proof. By the definition of the maximal safe weight set we
have w ∈ H ⇐⇒ ∀x ∈ T, fw(x) ∈ S. Moreover, we
have that the probability of a weight being in such a set
is given as Probw∼p(w∣D)(w ∈ H) = ∫H p(w∣D)dw. By
making explicit the definition of H , together these two give
us Probw∼p(w∣D)(∀x ∈ T, fw(x) ∈ S) = ∫H p(w∣D)dw. The
second equality stated in the lemma formulation follows di-
rectly from the latter result and the property of complementary
probabilities, with w ∈H and w ∈K being two complementary
events.

B. Proposition 2

Proof. We prove the results explicitly for the lower bound;
the derivation of the upper bound is analogous. Consider
the minimisation over T of the expected value computed
over the posterior distribution of Problem 2 for output index
c ∈ {1, . . . ,m}:

min
x∈T

Ep(w∣D)[σc(fw(x))] =min
x∈T ∫ σc(fw(x))p(w∣D)dw.

Let I = Rnw ∖ ⋃nJ

i=1 Ji Since the weight intervals in J are
disjointed we can rely on the linearity of integrals to obtain:

min
x∈T ∫ σc(fw(x))p(w∣D)dw =min

x∈T
⎛
⎝

nJ

∑
i=1
∫
Ji

σc(fw(x))p(w∣D)

+ ∫
I
σc(fw(x))p(w∣D)

⎞
⎠
.

We notice that, for every x, ∫Ji
σc(fw(x))p(w∣D) ≥

minw∈Ji σc(fw(x)) ∫Ji
p(w∣D). By combining this result with

the above chain of equalities, and further relying on the
property of minimum, we obtain that:

min
x∈T
⎛
⎝

nJ

∑
i=1
∫
Ji

σc(fw(x))p(w∣D) + ∫
I
σc(fw(x))p(w∣D)

⎞
⎠
≥

nJ

∑
i=1
∫
Ji

p(w∣D)dwmin
x∈T
w∈Ji

σc(fw(x))+

σL (1 −
nJ

∑
i=1
∫
Ji

p(w∣D)dw) =DL
safe,c,

which proves the theorem statement.

C. Proposition 3

The bounding box can be computed iteratively in the
number of hidden layers of the network, K. We show how
to compute the lower bound of the bounding box; the compu-
tation for the maximum is analogous.

Consider the k-th network layer, for k = 0, . . . ,K, we want
to find for i = 1, . . . nk+1:

min
W
(k)
i∶ ∈[W (k),L

i∶ ,W
(k),U
i∶]

z(k)∈[z(k),L,z(k),U]
b
(k)
i ∈[b(k),Li ,b

(k),U
i]

z
(k+1)
i = σ

⎛
⎝

nk

∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i

⎞
⎠
.

As the activation function σ is monotonic, it suffices to find
the minimum of: ∑nk

j=1W
(k)
ij z

(k)
j + b

(k)
i . Since W

(k)
ij z

(k)
j is a

bi-linear form defined on an hyper-rectangle, it follows that it
obtains its minimum in one of the four corners of the rectangle
[W (k),L

ij ,W
(k),U
ij] × [z(k),Lj , z

(k),U
j].

Let t(k),Lij =min{W (k),L
ij z

(k),L
j ,W

(k),U
ij z

(k),L
j ,

W
(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j } we hence have:

nk

∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i ≥

nk

∑
j=1

t
(k),L
ij + b

(k),L
i =∶ ζ(k+1),Li .

Thus for every W
(k)
i∶ ∈ [W (k),L

i∶ ,W
(k),U
i∶], z(k) ∈

[z(k),L, z(k),U] and b
(k)
i ∈ [b(k),Li , b

(k),U
i] we have:

σ
⎛
⎝

nk

∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i

⎞
⎠
≥ σ (ζ(k+1),Li)

that is z(k+1),Li = σ (ζ(k+1),Li) is a lower bound to the solution
of the minimisation problem posed above.

D. Proposition 4

We first state the following lemma that follows directly from
the definition of linear functions:

Lemma 3. Let fL(t) = ∑j a
L
j tj+bL and fU(t) = ∑j a

U
j tj+bU

be lower and upper LBFs to a function g(t) ∀t ∈ T , i.e.,
fL(t) ≤ g(t) ≤ fU(t) ∀t ∈ T . Consider two real coefficients
α ∈ R and β ∈ R. Define

āLj =
⎧⎪⎪⎨⎪⎪⎩

αaLj ifα ≥ 0
αaUj ifα < 0

b̄L =
⎧⎪⎪⎨⎪⎪⎩

αbL + β ifα ≥ 0
αbU + β ifα < 0

(20)

āUj =
⎧⎪⎪⎨⎪⎪⎩

αaUj ifα ≥ 0
αaLj ifα < 0

b̄U =
⎧⎪⎪⎨⎪⎪⎩

αbU + β ifα ≥ 0
αbL + β ifα < 0

(21)

PRE-PRINT. MANUSCRIPT UNDER REVIEW 20

Then:

f̄L(t) ∶= ∑
j

āLj tj + b̄L ≤ αg(t) + β ≤ ∑
j

āUj tj + b̄U

=∶ f̄U(t)

That is, LBFs can be propagated through linear transformation
by redefining the coefficients through Equations (20)–(21).

We now proof Proposition 4 iteratively on k = 1, . . . ,K

that is that for i = 1, . . . , nk there exist f
(k),L
i (x,W) and

f
(k),U
i (x,W) lower and upper LBFs such that:

ζ
(k)
i ≥ f (k),Li (x,W) ∶= µ(k),Li ⋅ x+ (22)
k−2
∑
l=0
⟨ν(l,k),Li ,W (l)⟩ + ν

(k−1,k),L
i ⋅W (k−1)

i∶ + λ
(k),L
i

ζ
(k)
i ≤ f (k),Ui (x,W) ∶= µ(k),Ui ⋅ x+ (23)
k−2
∑
l=0
⟨ν(l,k),Ui ,W (l)⟩ + ν

(k−1,k),U
i ⋅W (k−1)

i∶ + λ
(k),U
i

and iteratively find valid values for the LBFs coefficients, i.e.,
µ
(k),L
i , ν(l,k),Li , λ(k),Li , µ(k),Ui , ν(l,k),Ui and λ

(k),U
i .

For the first hidden-layer we have that ζ(1)i = ∑j W
(0)
ij xj +

b
(0)
i . By inequality (18) and using the lower bound for b

(0)
i

we have:

ζ
(1)
i ≥ ∑

j

(W (0),L
ij xj +W

(0)
ij xL

j −W
(0),L
ij xL

j) + b
(0),L
i

=W (0),L
i∶ ⋅ x +W

(0)
i∶ ⋅ xL −W

(0),L
i∶ ⋅ xL + b

(0),L
i

which is a lower LBF on ζ(1). Similarly, using Equation (19)
we obtain:

ζ
(1)
i ≤W (0),U

i∶ ⋅ x +W
(0)
i∶ ⋅ xL −W

(0),U
i∶ ⋅ xL + b

(0),U
i

which is an upper LBF on ζ(1). By setting:

µ
(1),L
i =W (0),L

i∶ , µ
(1),U
i =W (0),U

i∶
ν
(0,1),L
i = z(0),L , ν

(0,1),U
i = xL

λ
(1),L
i = −W (0),L

i∶ ⋅ xL + b
(0),L
i

λ
(1),U
i = −W (0),U

i∶ ⋅ xL + b
(0),U
i

we obtain LBFs f
(1),L
i (x,W) and f

(1),U
i (x,W) of the form

(22)–(23).
Given the validity of Equations (22)–(23) up to a cer-

tain k, we now show how to compute the LBF for layer
k + 1, that is, given f

(k),L
i (x,W) and f

(k),U
i (x,W) we

explicitly compute f
(k+1),L
i (x,W) and f

(k+1),U
i (x,W). Let

ζ
(k),L
i = min f

(k),L
i (x,W) and ζ

(k),U
i = max f

(k),U
i (x,W)

be the minimum and maximum of the two LBFs (which
can be computed analytically as the functions are linear).
For Lemma 2 there exists a set of coefficients such that
z
(k)
i = σ(ζ(k)i) ≥ α

(k),L
i ζ

(k)
i + β

(k),L
i . By Lemma 3 we

know that there exists f̄
(k),L
i (x,W) with coefficients µ̄

(k),L
i ,

ν̄
(l,k),L
i , λ̄(k),Li obtained through Equations 20–21 such that:

z
(k)
i ≥ α(k),Li f

(k),L
i (x,W) + β

(k),L
i ≥ f̄ (k),Li (x,W)

that is f̄
(k),L
i (x,W) is a lower LBF on z

(k)
i with coefficients

µ̄
(k),L
i , ν̄(l,k),Li , λ̄(k),Li . Analogously, let f̄ (k),Ui (x,W) be the

upper LBF on z
(k)
i computed in a similar way.

Consider now the bi-linear layer ζ
(k+1)
i = ∑j W

(k)
ij z

(k)
j +

b
(k)
i . From Equation (18) we know that: W

(k)
ij z

(k)
j ≥

W
(k),L
ij z

(k)
j +W (k)

ij z
(k),L
j −W (k),L

ij z
(k),L
j . By applying Lemma

3 with α =W (k),L
ij and β = 0 we know that there exists a lower

LBF f̂
(k),L
ij (x,W) with a set of coefficients a

(k),L
ij , b(l,k),Lij

and c
(k),L
ij computed applying Equations (20)–(21) to µ̄

(k),L
i ,

ν̄
(l,k),L
i , λ̄(k),Li such that: W (k),L

ij z
(k)
j ≥ f̂ (k),Lij (x,W). Hence

we have:

ζ
(k+1)
i = ∑

j

W
(k)
ij z

(k)
j + b

(k)
i ≥ ∑

j

(W (k),L
ij z

(k)
j +

W
(k)
ij z

(k),L
j −W

(k),L
ij z

(k),L
j) + b

(k),L
i ≥

∑
j

f̂
(k),L
ij (x,W) +∑

j

W
(k)
ij z

(k),L
j −

∑
j

W
(k),L
ij z

(k),L
j + b

(k),L
i =

∑
j

(a(k),Lij ⋅ x +
k−2
∑
l=0
⟨b(l,k),Lij ,W (l)⟩

+ b
kl−1,k),L
ij ⋅W (k−1)

j∶ + c
(k),L
ij)+

W
(k)
i∶ ⋅ z(k),L −W

(k),L
i∶ z(k),L.

By setting

µ
(k+1),L
i = ∑

j

a
(k),L
ij

ν
(l,k+1),L
i = ∑

j

b
(l,k),L
ij k = 0, . . . , l − 2

ν
(k−1,k+1),L
i = b(k−1,k),Li

ν
(k,k+1),L
i = z(k),L

λ
(k+1),L
i = ∑

j

c
(k),L
ij −W

(k),L
i∶ ⋅ z(k),L + b

(k),L
i

and re-arranging the elements in the above inequality, we
finally obtain:

ζ
(k+1)
i ≥ µ(k+1),Li ⋅ x +

k−1
∑
l=0
⟨ν(l,k+1),Li ,W (l)⟩+

ν
(k,k+1),L
i ⋅W (k)

i∶ + λ
k+1),L
i =∶ f (k+1),Li (x,W)

which is of the form of Equation (22) for the lower LBF for
the k + 1-th layer. Similarly, an upper LBF of the form of
Equation (23) can be obtained by using Equation (19) in the
chain of inequalities above.

APPENDIX D
ALGORITHMS AND DISCUSSION

A. Lower Bound on Dsafe(T,S)
In Algorithm 2, we provide step-by-step pseudocode for

lower bounding Dsafe(T,S). One can notice that the algorithm
follows a similar computational flow to Algorithm 1 in the
main text. Namely, on lines 2 and 4 we establish the sets

PRE-PRINT. MANUSCRIPT UNDER REVIEW 21

Algorithm 2 Lower Bounds for Dsafe(T,S)
Input: T – Compact Input Region, fw – Bayesian Neural
Network, p(w∣D) – Posterior Distribution, N – Number of
Samples, γ – Weight margin.
Output: A sound lower bound on Dsafe(T,S).

1: # J is an arbitrary set of weight intervals
2: J ← ∅
3: # Ψ̂ is a set of worst-case predicted outputs
4: Ψ̂← ∅
5: # Element-wise products to get width of weight margin.
6: v ← γ ⋅ I ⋅Σ
7: for i← 0 to N do
8: w(i) ∼ p(w∣D)
9: # Assume weight intervals are built to be disjoint

10: [w(i),L,w(i),U] ← [wi − v,wi + v]
11: # Interval/Linear Bound Propagation, Section VI-B
12: yL, yU ← Propagate(f, T, [w(i),L,w(i),U])
13: # Output worst-case see Section VI-F
14: yworst ← Output-Worst([yL, yU])
15: J ← J ⋃{[w(i),L,w(i),U]}, Ψ̂← Ψ̂⋃{yworst}
16: end for
17: ymean ← 0.0; ptotal ← 0.0
18: for i← 0 to ∣Ji∣ do
19: # Mult. weight probs and output bounds.
20: ymean = ymean + Ψ̂iP (Ji)
21: ptotal = ptotal + P (Ji)
22: end for
23: # Complete the bound according to Proposition 2.
24: DL

safe = ymean + (1 − ptotal)σL

25: return DL
safe

that we will keep track of (weight intervals and worst-case
outputs, respectively). Then in lines 7–16 we iteratively sample
pairwise disjoint weight intervals and compute their worst case
outputs. On line 14, a key modification is added compared to
the lower bound on Psafe(T,S), which is the computation of
the worst-case output. In the case of softmax classification we
have that Output-Worst takes the form:

Output-Worst([yL, yU]) = exp(yLc)
exp(yLc) +∑nc

l≠c exp(yUl)
(24)

That is, the lower bound for the true class and the upper bound
for all other classes. For regression Output-Worst = yL.
Both of these represent the worst-case output and satisfy the
conditions needed for Proposition 2 in the main text. Finally,
in lines 17-22 we compute the necessary components for our
bound in Proposition 2 and complete the bound on line 24.
Overall, the computational complexity of this algorithm is
exactly the same as the lower bound on probabilistic safety
and in practice the computational times are only fractionally
different.

B. Upper Bound on Psafe(T,S)
We provide a pseudocode for the computation of the upper

bound on Psafe(T,S) in Algorithm 3. To do this we compute

unsafe weight sets. We wish to determine that a weight interval
is unsafe i.e., the logical inverse of our safety property:
¬(fw(x) ∈ S ∀x ∈ T) = (∃x s.t. fw(x) ∉ S). Notice
that, unlike the procedure for computing safety, here we do
not need to jointly propagate a weight-space interval together
with the full input specification T as we only need to find a
single x which causes the entire weight interval to be mapped
outside of S, and note that every x ∈ T returns a valid bound.
Finding an x that violates the property is identical to the
formulation for adversarial examples. Thus, in order to test
if there exists a single input that causes the weight interval to
be unsafe, we leverage the developments in adversarial attacks
in order to attack each sampled weight wi (done on line 4 of
Algorithm 3).

Algorithm 3 Upper Bounding Psafe(T,S)
Input: T – Input Set, S – Safe Set, fw – Bayesian Neural
Network, w – Posterior Distribution, N – Number of Samples,
γ – Weight Margin.
Output: Safe upper bound on Psafe(T,S).

1: # K is a set of known unsafe weight intervals
2: K ← ∅
3: # Element-wise products to get width of weight margin.
4: v ← γ ⋅ I ⋅Σ
5: for i← 0 to N do
6: w(i) ∼ p(w∣D)
7: # Assume weight intervals are built to be disjoint
8: [w(i),L,w(i),U] ← [wi − v,wi + v]
9: # FGSM/PGD

10: xadv ← Attack(f,wi, T)
11: # Interval/Linear Bound Propagation
12: yL, yU ← Propagate(f, xadv, [w(i),L,w(i),U])
13: if ∀y ∈ [yL, yU]y ∉ S) then
14: K ← K⋃{[w(i),L,w(i),U]}
15: end if
16: end for
17: Punsafe ← 0.0
18: for i = 0..∣K∣ do
19: Punsafe = Punsafe + P (Ki)
20: end for
21: PU

safe = 1 − Punsafe
22: return PU

safe

C. Upper Bound on Dsafe(T,S)
We provide a pseudocode for the computation of the upper

bound on Dsafe(T,S) in Algorithm 4. The main change to
this algorithm is a change from computing the worst-case
output to computing the best-case output. This is done with the
Output-Best function. In the case of softmax classification
Output-Best takes the form:

Output-Best(yL, yU) = exp(yUc)
exp(yUc) +∑nc

l≠c exp(yLl)
(25)

and for regression, Output-Best = yU .

PRE-PRINT. MANUSCRIPT UNDER REVIEW 22

Algorithm 4 Upper Bounding Dsafe(T,S)
Input: T – Input Set, fw – Bayesian Neural Network, p(w∣D)
– Posterior Distribution, N – Number of Samples, γ – Weight
margin.
Output: A sound lower bound on Dsafe(T,S).

1: # H is a set of known safe weight intervals
2: J ← ∅
3: # Ψ̂ is a set of best-case predicted outputs
4: Ψ̂← ∅
5: # Element-wise products to get width of weight margin.
6: v ← γ ⋅ I ⋅Σ
7: for i← 0 to N do
8: w(i) ∼ p(w∣D)
9: [w(i),L,w(i),U] ← [wi − v,wi + v]

10: # Interval/Linear Bound Propagation, Section VI-B
11: yL, yU ← Propagate(f, T, [w(i),L,w(i),U])
12: # Output upperbound see Eq (25)
13: yupper ← Output-Best([yL, yU])
14: J ← J ⋃{[w(i),L,w(i),U]}, Ψ̂← Ψ̂⋃{yupper}
15: end for
16: ymean ← 0.0; ptotal ← 0.0
17: for i← 0 to N do
18: # Mult. weight probs and output bounds
19: ymean = ymean + Ψ̂iP (Hi)
20: ptotal = ptotal + P (Hi)
21: end for
22: # Complete the bound according to Proposition 2.
23: DU

safe = ymean + (1 − ptotal)σU

24: return DU
safe

D. Bonferroni Bounds for Overlapping Weight Intervals

A key challenge of Proposition 1 in the variational inference
case is ensuring that the hyper-rectangles are pairwise disjoint
(i.e., Ĥi ∩ Ĥj = ∅). If this is not the case, then enforcing
independence can be computationally tricky, as the relative
complement of two or more hyper-rectangles is not necessarily
a hyper-rectangle. While one could modify the sampling
procedure so to reject overlapping intervals, or could devise a
scheme for sampling pairwise disjoint hyper-rectangles, for a
high values of N and for a large number of parameters this
becomes computationally intensive. To solve this, we high-
light that the disjoint union of two or more hyper-rectangles
is necessarily a hyper-rectangle. Therefore, we can employ
Bonferroni inequalities [63] to get upper and lower bound on
the posterior probability of non-disjoint hyper-rectangles:

Corollary 1. Assume that Σ, the covariance matrix of the
posterior distribution of the weights, is diagonal with diagonal
elements Σ1, ...,Σnw . Let Ĥ1, ..., ĤM be M safe sets of
weights not necessary satisfying Ĥi ∩ Ĥj = ∅ and let the
probability of any k of these safe sets simultaneously occurring
be defined as:

Sk ∶= ⊔
i1<...<ik

Hi1 ⊔ ... ⊔Hik

We then have that for any even integer v and odd integer u that

Fig. 9. Comparing numerical bounds with adversarial examples to our
certifications. Left: Example upper and lower bounds on a MNIST image.
Center: Bounds on softmax output of a BNN, thus Dsafe(T,S). Right:
Bounds on Psafe(T,S) maximum safe radius MinUR in red and MaxRR
in blue.

the probability of the weights under the posterior is bounded:
v

∑
j=1
(−1)jProb(Sj) ≤ Prob(Ĥ1, ..., ĤM) ≤

u

∑
j=1
(−1)jProb(Sj)

where Prob(Sj) is computed according to Corollary 2 as Sj

is a single hyper-rectangle.

Now that we can compute if a weight interval is guaranteed
to be safe and we can compute a lower bound to the posterior
probability covered by many weight intervals, we can combine
these subroutines into algorithms for computing the required
probability bounds. For bounds on decision robustness we
need to consider the upper or lower bound output in conjunc-
tion with this probability. Recall that the upper or lower bound
output determined by Output-Worst or Output-Best
described in Appendix D and the upper and lower bounds
are stored such that the output bound of Ji is stored in Ψ̂i.
To get a lower bound we modify the above corollary to be:

v

∑
j=1
(−1)jProb(Sj)max{Ψ̂i}ji=1 ≤

M

∑
i=1

Ψ̂iProb(Ĵi). (26)

To get an upper bound we use:

M

∑
i=1

Ψ̂iProb(Ĵi) ≤
u

∑
j=1
(−1)jProb(Sj)min{Ψ̂i}ji=1

Here we can use the max operator for our lower bound and
min for our upper bound as every value in the set {Ψ̂i}Mi=1 is a
valid output bound for the disjoint union of hyper-rectangles.

APPENDIX E
EMPIRICAL BOUND VALIDATION

A. Numerical Result

In Figure 9, we study how our bounds compare against
empirical estimates of robustness achieved with adversarial
attacks. In the centre panel of Figure 9 ,we plot the upper-
and lower-bounds on E[σ(fw(x))] computed according to
Dsafe(T,S). We also use 25 iterations of PGD to attempt to
minimize E[σ(fw(x))] for the true class, i.e., an adversarial
attack on the BNN. We run the attack 100 different times
and plot the distribution of the results as the purple box plot

PRE-PRINT. MANUSCRIPT UNDER REVIEW 23

in Figure 9. We see that our lower bound is strictly less than
what any of the adversaries were able to achieve, and the upper
bound is strictly greater than any of the points. This is due to
the conservative nature of certification compared with attacks.
Following the same procedure i.e., first using our bounds and
then using PGD attacks for the same optimization, we study
the MaxRR and MinUR. In the right-hand plot of Figure 9,
we plot bounds on the MaxRR and MinUR with respect to
probabilistic robustness. Similarly, we plot the empirical robust
radius, which is the radius at which an adversarial attack was
able to reduce a statistical estimate of Psafe(T,S) below 0.5.
As we expect, the adversarial attacks all fall between our
upper and lower bounds due to the conservative nature of
certification.

	Introduction
	Related Work
	Background
	Bayesian Deep Learning
	Hamiltonian Monte Carlo (HMC)
	Variational Inference (VI)

	Problem Statements
	Probabilistic Robustness
	Decision Robustness
	Outline of our Approach:

	Formulating BNN Adversarial Robustness via Weight Sets
	Bounding Probabilistic Robustness
	Bounding Decision Robustness
	Computation of the Bounds

	Explicit Bound Computation
	Integral Computation over Weight Intervals
	Bounding Bayesian Neural Networks' Output

	Complete Bounding Algorithm
	Lower Bounding Algorithm
	Upper Bounding Algorithm
	Computational Complexity

	Experiments
	Airborne Collision Avoidance
	Problem Setting
	Analysis with Psafe(T,S) Certification
	Analysis with Dsafe(T,S) Certification
	Computational Requirements

	Industrial Benchmarks
	Problem Setting
	Analysis with Psafe(T,S) Certification
	Computational Requirements

	MNIST
	Problem Setting
	Analysis using Dsafe(T,S) Certification
	Certification of Uncertainty Behaviour
	Architecture Width and Depth
	Computational Requirements

	German Traffic Sign Recognition
	Problem Setting
	Analysis with Dsafe(T,S)
	Limitations

	Conclusion
	References
	Appendix A: Bound Use Case Discussion
	Appendix B: Certifying Further Decision Rules
	Bounding Decisions for the 1 Loss
	Bounding Decisions for the K-0 Loss

	Appendix C: Proofs
	Lemma 1
	Proposition 2
	Proposition 3
	Proposition 4

	Appendix D: Algorithms and Discussion
	Lower Bound on Dsafe(T,S)
	Upper Bound on Psafe(T,S)
	Upper Bound on Dsafe(T,S)
	Bonferroni Bounds for Overlapping Weight Intervals

	Appendix E: Empirical Bound Validation
	Numerical Result

