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Abstract

The lack of transparency of Deep Neural Networks continues to be a limitation
that severely undermines their reliability and usage in high-stakes applications.
Promising approaches to overcome such limitations are Prototype-Based Self-
Explainable Neural Networks (PSENNs), whose predictions rely on the similarity
between the input at hand and a set of prototypical representations of the output
classes, offering therefore a deep, yet transparent-by-design, architecture. So
far, such models have been designed by considering pointwise estimates for the
prototypes, which remain fixed after the learning phase of the model. In this paper,
we introduce a probabilistic reformulation of PSENNs, called Prob-PSENN, which
replaces point estimates for the prototypes with probability distributions over their
values. This provides not only a more flexible framework for an end-to-end learning
of prototypes, but can also capture the explanatory uncertainty of the model, which
is a missing feature in previous approaches. In addition, since the prototypes
determine both the explanation and the prediction, Prob-PSENNs allow us to detect
when the model is making uninformed or uncertain predictions, and to obtain valid
explanations for them. Our experiments demonstrate that Prob-PSENNs provide
more meaningful and robust explanations than their non-probabilistic counterparts,
thus enhancing the explainability and reliability of the models.

1 Introduction

The complexity in the architectures of state-of-the-art Deep Neural Networks (DNNs) largely ac-
counts for their “black box” nature [34], which is in conflict with one of the basic requirements
for trustworthiness [5]: to be able to explain and understand the decisions of the model. Although
several strategies have been proposed in order to explain black box models [47], they often provide
only partial information about their inner workings, such as which parts of the input at hand most
condition the output [6, 35, 37, 39–41]. However, these approaches do not provide information about
how the model processes that information or why they imply the output [2, 18, 29, 34]. In order to
achieve a more transparent classification process, recent works advocate the use of Prototype-Based
Self-Explainable Neural Networks (PSENNs, for simplicity) [4, 8, 14, 18, 28], which are trained
to jointly maximize their prediction performance and their explainability. These approaches rely
primarily on prototype-based models, in which the prototypes are learned during the training phase,
aiming to capture discriminative and also semantically-meaningful features. In this way, the output
classification is based on the similarity between the input and the learned prototypes, providing an
intuitive and human-understandable classification process.
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On the other hand, current DNNs models, including the PSENNs discussed above, are optimized with
the aim of finding the point estimate values of the parameters that minimize a given loss term, leading
to models with a deterministic inference process. An important drawback of these approaches is that,
generally, it is not possible to measure to what extent the model is confident in its own prediction,
known in the literature as the epistemic uncertainty of the model [13, 20, 25]. Indeed, it has been
shown that DNNs tend to be overconfident in their predictions [17], classifying inputs with high
probability even when random or out-of-distribution inputs are provided. Being unable to detect when
the model is making such unreliable or uninformed decisions dramatically reduces the trustworthiness
and reliability of the model, and is, therefore, of great concern in high-stakes applications. To address
this issue, recent works proposed replacing point estimates for the parameters of the model with
a probability distribution over their values [16]. This leads to a stochastic model, for which it is
possible to measure the aforementioned types of uncertainty, and, thus, identify when the model is
making uncertain predictions that should not be trusted.

In this paper, we aim to address the aforementioned drawbacks and challenges by leveraging recent
tools from uncertainty estimation in DNNs, and combining them with PSENN architectures in order
to develop Probabilistic Self-Explainable Neural Networks (Prob-PSENNs). The key feature of
this model is that the prototypes are defined as random variables, for which suitable probability
distributions over their values are learned during the training phase of the model – jointly with the
rest of the parameters of the network. This probabilistic paradigm allows us not only to improve
the explainability of the classification process, but also to capture different sources of uncertainty
regarding the explanation. Furthermore, since the output of the PSENNs directly depends on the
explanatory component [28], we can establish connections between their corresponding uncertainties,
enabling a more thorough analysis of the prediction process, and allowing the models to self-explain
their own uncertainties.

The main contributions of this work are summarized below:

1. First, we introduce Prob-PSENN, a paradigm shift for PSENNs, which relies on probabilistic
modeling of the explanatory component, thus replacing point estimates for the prototypes
with probability distributions over their values.

2. We demonstrate how the probabilistic reinterpretation of the prototypes substantially en-
hances the explanatory capabilities of the model, enabling more diverse, meaningful and
robust explanations than those achievable with the non-probabilistic counterparts.

3. Furthermore, Prob-PSENNs allow us, for the first time, to model the uncertainty in the
explanations and in the predictions, which is a missing feature in conventional PSENNs.
More specifically, we formalize different explanatory uncertainty notions, and show how
Prob-PSENNs enable not only the quantification of those uncertainties, but also their
explanations, thus increasing reliability and trustworthiness.

4. The effectiveness of Prob-PSENN is evaluated in several classification tasks, demonstrating
that it can effectively learn highly diverse and prototypical representations of the output
classes, capture the model uncertainties and maintain competitive predictive performance.

2 Preliminaries: Prototype-Based Self-Explainable Neural Networks
(PSENNs)

Let us consider a classification problem in which the goal is to classify d-dimensional inputs x ∈ Rd

into one of the c possible classes in Y = {y1, y2, . . . , yc}. Using as baseline the architecture
introduced in [28], illustrated in Figure 1, the main components of the PSENNs are described as
follows. We refer the reader to Appendix A for a justification for the choice of this baseline, as well
as for a discussion on related works.

The first component of this architecture is an encoder module e : Rd → Rl, where l denotes the
dimensionality of the latent space to which the input is encoded. The latent representation computed
by the encoder e(·) for the input x will be denoted as ex = e(x). Oppositely, let g : Rl → Rd denote
a decoding module, capable of reconstructing the original input x from the corresponding encoded
representation ex. The key component of this architecture involves the generation of m prototypes
in the latent space: R = (r1, r2, . . . , rm), with ri ∈ Rl, 1 ≤ i ≤ m. The aim of generating these
prototypes is to capture diverse, discriminative and semantically meaningful features capable of
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Figure 1: Architecture of the Prototype-Based Self-Explainable Neural Network [28] described in
Section 2, illustrated for a handwritten digit classification task [27].

representing the classes of the problem. In this way, the similarity between an encoded input ex and
each of the m prototypes can be employed to determine the output class for x in an easily interpretable
manner, based on the assumption that an input x belonging to the class yi will be closer to those
prototypes representing the class yi than to the prototypes corresponding to the remaining classes.
To formalize the aforementioned similarities, let the column-vector δx = (δx,1, δx,2, . . . , δx,m)⊺

represent the distance between an encoded input ex and the m prototypes in R. More detailedly, the
distance between ex and the i-th prototype ri will be computed as δx,i = ϕ(ex, ri), 1 ≤ i ≤ m,
based on a distance metric ϕ : Rl × Rl → R. The distance vector δx will condition both the output
classification and the corresponding explanation, as it is detailed below.

Classification Taking δx as the input, the output provided by the model will be determined by a
prototype classifier h : Rm → [0, 1]c. As in [28], a classification network h(δx) = s(Wδx) will
be assumed, being W a c × m weight matrix and s(·) the softmax function. For simplicity, the
end-to-end classification process will be denoted as f(x) = h(δx). Notice that f(x) outputs a vector
representing the probability with which the input belongs to each of the possible classes of the
problem, according to the model. The probability assigned to each class yi will be denoted as fi(x),
1 ≤ i ≤ c, and thus we can define the output as: f(x) =

(
f1(x), f2(x), . . . , fc(x)

)
. Generally, the

class with the highest probability is considered the output class of the prediction, what will be denoted
as f∗(x) = argmaxyi∈Y fi(x).

Explanation Since the output class is based on the distance-vector δx, the explanation ξx for the
prediction f(x) can be determined also by the similarity between the prototypes and the input at
hand: ξx =

{
{g(r1), δx,1}, {g(r2), δx,2}, . . . , {g(rm), δx,m}

}
, being g(·) the decoder defined above.

Notice that the interpretability of the model relies, therefore, on to what extent the decoded prototypes
are capable of capturing relevant and semantically-meaningful features representing each class of
the problem, which is enforced during the training phase by means of including interpretability
regularizers in the loss function [28].

3 Probabilistic Self-Explainable Neural Networks (Prob-PSENNs)

As mentioned before, PSENNs treat the prototypes as network parameters, for which point estimate
values are computed and hence are fixed once the training is completed. Furthermore, the number
of prototypes m needs to be finite and defined beforehand, even if, in practice, it might result
cumbersome or infeasible to determine how many prototypes will be required to capture sufficiently
diverse characterizations of the classes.

To address these issues, we introduce Prob-PSENNs, generalizing the prototypes by means of defining
a probability distribution over their values. The main motivation for this choice is twofold. On the
one hand, for each class of the problem, there might exist several sets of prototypes R capable of
representing the data with a comparable effectiveness. For illustration, let us consider a handwritten
digit classification scenario, and the fact that there are several ways of representing each digit. This
implies that there are several representative prototypes for each class. Consequently, instead of relying
on a single set of prototypes, it might be more reasonable to consider all those possible variations

3
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Figure 2: Comparison between the predictive and explanatory uncertainty, illustrated for a binary
classification problem with a two-dimensional input space.

in order to classify an input. This probabilistic reformulation also enables a flexible way to decide
the variety of the prototypes required to represent the classes, which will be determined, assuming
one prototype per class, by the variance of the distribution over the prototypes. On the other hand,
the choice of the prototypes in R conditions not only the output but also the explanation. Therefore,
placing a probability distribution over the prototypes allows us to enable a probabilistic framework
for the generation of the explanation as well, which can be employed to capture the uncertainty in the
explanations of the model, and, thereby, produce more informative and useful explanations.

3.1 Predictive distribution

Instead of considering a point estimate for R, we will consider it a random variable, for which we
will use the notation R. Furthermore, we will assume m = c prototypes, such that ri represents the
class yi, 1 ≤ i ≤ c. Due to the randomness in the network’s prototypes, the inference of the model
will be stochastic, and will be denoted as fR(x). In this way, a predictive distribution for the output
can be defined:

p(y|x) = Ep(R)[p(y|x,R)] =

∫
p(y|x,R) · p(R) dR =

∫
fR(x) · p(R) dR. (1)

In practice, p(y|x) can be approximated by considering a finite number of N samples from p(R):

p̃(y|x) = f̄(x) =
1

N

N∑
n=1

fRn(x), with Rn ∼ p(R), 1 ≤ n ≤ N. (2)

3.2 Capturing the predictive uncertainty

The predictive distribution defined in Equation (1) allows us to better model the predictive uncertainty
in comparison to its deterministic counterpart. First, the total predictive uncertainty can be measured
by means of the entropy [36] of the prediction: H[p(y|x)] = −

∑c
i=1 p(y = yi|x) · log p(y = yi|x)·

However, for a model with fixed (pointwise) values for the parameters, the source of this uncertainty
will be only aleatoric uncertainty, which refers to the possibly unavoidable noise, randomness or
ambiguity inherent in the data. Considering a probability distribution for the parameter values instead
of point estimates allows us to capture also the epistemic uncertainty [20, 22, 25], which accounts
for the model uncertainty about the true parameters modeling the data (e.g., as a consequence of
insufficient training data). This enables a safer use of the model in critical tasks, since it allows us
to identify when the model is making unreliable predictions. An illustrative comparison between
aleatoric and epistemic uncertainty is provided in Figure 2 (left).

Thus, for the predictive distribution defined in Equation (1), H[p(y|x)] encapsulates both aleatoric
and epistemic uncertainty. To measure epistemic uncertainty only, the mutual information between
the output y and the parameters R can be employed [11, 13, 19, 20], which, in our case, can be
formalized as: I(y,R|x) = H(y|x) − Ep(R)[H(y|x,R)], while Ep(R)[H(y|x,R)] represents a
measure of aleatoric uncertainty. Notice that the values of all these metrics can be normalized to
the range [0, 1], where 1 would represents the maximum uncertainty, by dividing the resulting value
by the entropy of the uniform categorical distribution of c categories. In practice, H[p(y|x)] can be
approximated by H[p̃(y|x)] (see Equation 2).
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Figure 3: Illustrative comparison between a conventional PSENN (left column) and the proposed
Probabilistic-PSENN (middle and right columns) regarding the computation of the distance-vector δx.
Whereas a fixed set of prototypes R is used in (a), leading to a point estimate δx, placing a probability
distribution over R, as in (b) and (c), induces a probability distribution over the distance δx,i between
the encoded input and the random prototypes ri representing the class yi, 1 ≤ i ≤ c.

3.3 Capturing the explanation uncertainty

With a PSENN with fixed prototypes, only a point estimate δx can be provided for the input at
hand, that is, a point estimate on how close the input is to the particular prototypes selected to
represent each class, as illustrated in Figure 3-(a). In contrast, the probability distribution over the
prototypes considered in Prob-PSENNs induces a probability distribution over each value of δx,
p(δx,i)=p

(
ϕ(ex, ri)

)
, as exemplified in Figure 3-(b) and Figure 3-(c). This allows us to compute

not only more robust and representative information for each value of δx, but also to compute the
uncertainty in the explanation. Furthermore, this enables a direct and explicit connection between the
explanation uncertainty and the output uncertainty, being therefore a key advantage of Prob-PSENNs.

Types of explanation uncertainty Similarly to the predictive uncertainty, different types of un-
certainty can be attributed to the explanations of Prob-PSENNs. In the context of explanations, we
will denominate aleatoric uncertainty to the uncertainty in determining which class-prototypes best
represent the input at hand, that is, in determining which prototypes are closest to the encoded input,
possibly due to ambiguity in the representation of the input. Therefore, high aleatoric uncertainty will
imply highly overlapped distance-distributions p(δx,i). In contrast, epistemic explanatory uncertainty
will be high for those inputs that lie far from the training distribution, and, consequently, also far from
the distribution over the prototypes, resulting in uninformative and non-representative explanations
for that input. Therefore, high epistemic uncertainty will imply large distances with respect to all the
prototypes. An illustrative representation of these types of explanatory uncertainty is provided in
Figure 2 (right).

Quantifying explanation uncertainty Given that, in the general case, computing p(δx,i) will be
intractable both analytically and numerically, we will rely on sample-based estimators in order to
compute meaningful information about those distributions. To begin with, being δ

(1)
x , . . . , δ

(N)
x the

distance-vectors obtained for N inferences of the model (i.e., for N random sets of prototypes), the
sample mean δ̄x,i =

1
N

∑N
n=1 δ

(n)
x,i can inform us about the average similarity between the input and

the prototypes of the class yi, while the sample variance Var
(
p(δx,i)

)
≈ 1

N−1

∑N
n=1

(
δ
(n)
x,i − δ̄x,i

)2
can be considered a measure of uncertainty about those similarities.

While the aforementioned two metrics describe only each distribution p(δx,i) separately, consid-
ering all these distributions jointly allows us to estimate aleatoric and epistemic uncertainty in the
explanations. As mentioned before, aleatoric uncertainty can be determined based on the overlap
between the probability density functions describing p(δx,i), which will be denoted as fδx,i

(·). For
a binary case, the overlap can be measured by means of (normalized) overlapping indices [32]:∫
R min[fδx,1

(z), fδx,2
(z)] dz. In order to address multi-class problems, we will generalize the metric

as the maximum overlap between the density function fδx,i∗ (·) corresponding to the most-likely class
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yi∗ and the functions corresponding to the remaining classes:

UA(x) = max
j=1,...,c
j ̸=i∗

[∫
R
min[fδx,i∗(z), fδx,j

(z)] dz

]
. (3)

In practice, the density functions can be estimated by means of kernel-density estimation methods,
based on the distances obtained for a finite number of inferences N .

Regarding epistemic explanatory uncertainty, as explained above, a high uncertainty will be achieved
for those inputs for which the distances to all the prototypes are large. On that account, the min-
imum sample mean: δ̄x,i∗ = min1≤j≤c δ̄x,j represents a suitable base metric for evaluating this
uncertainty. Furthermore, in order to determine the severity of the uncertainty in a normalized and
scale-independent manner, a quantile-based metric will be defined, close to the approach proposed in
[33]. This metric will be based on comparing the value at hand with the values obtained for the data
distribution D , which can be estimated, in practice, using a training set D:

UE(x) = P(x′,y)∼D
y=yi∗

(
δ̄x′,i∗ ≤ δ̄x,i∗

)
. (4)

3.4 Creating more meaningful explanations

In practice, we expect to sample N different explanations, and, thereby, N different yet representative
prototypes for each class yi ∈ Y (assuming m = c). Although presenting all these prototypes as part
of the explanation might be impractical, different strategies can be considered to summarize or distill
the results, for the sake of more meaningful and useful explanations. First, among the prototypes
corresponding to the most likely class, the ones closest to the input at hand can be considered the best
candidates to justify the prediction of the model. Furthermore, the closest prototypes corresponding
to the remaining classes can be taken as counterarguments against the most likely class, which can be
used, for instance, to identify and explain why an input can be considered ambiguous or challenging
to classify. On the other hand, the farther prototypes corresponding to the most likely class can be
used to exemplify alternative yet still valid representations for that class, which can provide useful
complementary information, thus being valuable for knowledge-acquisition purposes.

4 Training procedure

Let pλ(R) represent a parametric probability distribution over the prototypes. The goal of the training
procedure will be to optimize the parameters λ, jointly with the rest of parameters of the model, in
order to maximize both the predictive performance and interpretability of the model. For simplicity,
the prototypes r1 . . . , rc will be assumed to be independent random variables, with each ri distributed
according to a distribution pλi

(ri), 1 ≤ i ≤ c, and, hence, pλ(R) = pλ(r1, . . . , rc) =
∏c

i=1 pλi
(ri).

The following generalized loss function will be employed to train the entire architecture:

L = τ1 · LNLL + τ2 · LREC + τ3 · LINT

where,

LNLL=− 1

N

N∑
n=1

∑
(x,y)∈D

c∑
i=1

1(y=yi) · log
(
fRn
i (x)

)
, Rn=[ri]

c
i=1 s.t. ri∼pλi

(ri), 1≤n≤N,

LREC =
∑

(x,·)∈D

||x− g
(
e(x)

)
||22, LINT = −

∑
(x,y)∈D

c∑
i=1

1(y = yi) · log pλi

(
e(x)

)
,

and τ1, τ2, τ3 ∈ R+ weight the contribution of each term. Notice that LNLL represents the classifica-
tion (cross-entropy) loss, averaged for N samples of prototypes, and LREC the reconstruction loss.
Finally, LINT can be seen as an interpretability loss, as it will encourage the distribution over the
prototypes to be similar to the distribution of the encoded data, which is a crucial requirement for
interpretability [28]. Based on this methodology, the entire architecture can be jointly optimized by
means of conventional gradient descent approaches.
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5 Experiments

For illustration purposes, the effectiveness and capabilities of the proposed model will be assessed on
the MNIST dataset [27], while additional experiments on the Fashion-MNIST [45] and K-MNIST
[9] datasets are reported in Appendix D and Appendix E, respectively. In all the experiments, the
Euclidean distance will be used as the distance metric ϕ, and a Gaussian distribution will be assumed
for each pλi

(ri), 1 ≤ i ≤ c. The full implementation details are reported in Appendix B.

Learned latent spaces and distributions over the prototypes For illustration, the results obtained
for the case in which l = 2 (i.e., a two-dimensional latent space is considered), are shown in Figure 4.
The left figure shows the learned latent space, visualizing the latent representations assigned to
a random set of test data (dots), as well as the learned distribution over the prototypes pλi

(ri),
1 ≤ i ≤ c (contour lines). The right figure represents 15 random sets of prototypes R sampled from
the learned distributions, and decoded by the decoder g. As can be seen, even for a very constrained
(low-dimensional) latent space, the model is capable of capturing and decoding prototypical and
varied representations for each class. The model achieves a top-1 accuracy of 0.98 and 0.96 in the
train and test set, respectively, computed for N = 30 inferences. Further results for l = 5 and l = 10
are shown in Appendix C, where it can be observed that the increase in the dimensionality of the
latent space makes it possible to capture prototype distributions with a higher degree of complexity in
their structure, as well as to obtain more detailed decodings. Further results for the Fashion-MNIST
and K-MNIST datasets are provided in Appendix D and Appendix E, respectively. In addition, to
show that our approach can scale to a larger number of classes, Appendix F includes results on
the E-MNIST dataset [10], an extension of MNIST which contains handwritten representations of
numbers and letters and is composed of 47 classes.

(a) Latent space.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9

(b) Randomly sampled sets of prototypes.

Figure 4: Results obtained with a Prob-PSENN with l = 2 for the MNIST dataset. (a) Learned latent
space, where the contours represent the prototype distributions pλi

(ri) and the dots represent encoded
input samples. (b) 15 random sets of prototypes Rn = (r1, . . . , rc) s.t. ri ∼ pλj

(rj), 1 ≤ i ≤ c,
1≤n≤15.

Comparison between conventional PSENN and Prob-PSENN First, to thoroughly compare the
predictive performance of both approaches, the accuracies obtained for the three datasets considered
are compared in Table 1. For the sake of completeness, the performance of PSENNs is computed
for different number of prototypes, while preserving its original architecture, consisting of a Con-
volutional Autoencoder, a latent space of l = 40 dimensions, and using elastic deformation as data
augmentation. The performance of Prob-PSENNs has been evaluated for the following configurations,
fully described in Appendix B: using a Multi-Layer Perceptron Autoencoder (MLP), a Convolutional
Autoencoder (CNN), and including elastic deformation [38] as data augmentation (AUG). As can
be seen, Prob-PSENNs achieve a very competitive performance in all the datasets, with an accuracy
gain of 2% on the K-MNIST dataset and a loss of less than 1% on MNIST and F-MNIST, while
having as benefits a greater robustness, trustworthiness and enhanced explanatory capabilities, as
we showcase in Figure 5. In particular, this figure compares, for the MNIST task, the explanation
computed by a conventional PSENN (m = 15) with the one computed by Prob-PSENN (l = 5, MLP).
More comparisons will be provided in the supplementary material. As can be seen, the prototypes
sampled by Prob-PSENN exhibit considerably more diversity than the fixed prototypes learned by a
conventional PSENN, which enables to find more tailored prototypes for the input at hand, as well

7



as to provide alternative forms that the class might take. In addition, while PSENNs only return
point distances to the prototypes, Prob-PSENNs provide a distribution over those distances, enabling
to assess the uncertainty of the prediction, and, hence, representing a more robust and trustworthy
approach.
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Figure 5: Comparison between the explanation provided by a PSENN with fixed prototypes (left) and
a Prob-PSENN (right). For simplicity, the four most likely classes are visualized for Prob-PSENN,
considering, for each class, the four closest prototypes and the most distant ones.

Table 1: Predictive accuracies (mean and standard deviation for 10 runs) obtained by Prob-PSENN
and PSENN for the MNIST, Fashion-MNIST and K-MNIST datasets. The results are shown in
percentages.

Configuration MNIST F-MNIST K-MNIST

PSENN (l = 40, m = 10) 98.97 ± 0.16 90.15 ± 0.33 91.11 ± 0.47
PSENN (l = 40, m = 15) 98.99 ± 0.11 90.10 ± 0.61 90.93 ± 0.41
PSENN (l = 40, m = 20) 99.01 ± 0.12 90.22 ± 0.50 91.15 ± 0.53
PSENN (l = 40, m = 30) 99.05 ± 0.15 89.90 ± 0.33 91.04 ± 0.96
PSENN (l = 40, m = 40) 98.93 ± 0.17 90.17 ± 0.39 90.81 ± 0.96
PSENN (l = 40, m = 50) 99.02 ± 0.11 89.76 ± 0.44 91.17 ± 0.74

Prob-PSENN (l = 5, MLP) 97.55 ± 0.29 88.83 ± 0.25 88.69 ± 1.23
Prob-PSENN (l = 10, MLP) 97.59 ± 0.48 88.77 ± 0.50 88.92 ± 1.00
Prob-PSENN (l = 10, CNN) 98.28 ± 0.17 89.47 ± 0.34 89.06 ± 0.34
Prob-PSENN (l = 10, MLP + AUG) 98.53 ± 0.08 87.78 ± 0.50 93.17 ± 0.33
Prob-PSENN (l = 10, CNN + AUG) 98.75 ± 0.17 87.98 ± 0.46 89.40 ± 1.14

Evaluating the explanatory uncertainties Figure 6 compares, for a Prob-PSENN with l =
2, the areas of the latent space with high explanatory uncertainty. The aleatoric and epistemic
explanatory uncertainties (second and third columns) have been evaluated using the metrics UA(x)
and UE(x) defined in Equations (3) and (4), respectively. The fourth column shows the areas with
high epistemic uncertainty exclusively (i.e., with no aleatoric uncertainty), which has been computed
as UE(x)− UA(x). As can be seen from the results, the regions with high aleatoric uncertainty are
those that are at a similar distance from the two regions that the model associates to each class. On
the other hand, the areas with high epistemic uncertainty are those far from the regions to which
the prototype distributions assign a high density, and, therefore, the explanations are no longer
representative of those regions.

Figure 6: Evaluating the explanatory uncertainty in different regions of the learned latent space.
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Epistemic uncertainty Figure 7 compares the epistemic uncertainty achieved by a Prob-PSENN,
trained for the MNIST dataset, when classifying 1000 test samples of the MNIST and Fashion-MNIST
datasets. As can be seen, when inputs from the Fashion-MNIST dataset are presented to the model, a
very high explanatory epistemic is captured for almost all the inputs, while for the MNIST test data
the uncertainty is uniformly distributed. For reference, Figure 7 also shows, for each dataset, the
samples that achieve the lowest and highest uncertainty. As can be seen, even for the MNIST dataset,
highly unusual inputs that could be considered out-of-distribution instances can be found, which are
effectively detected by the uncertainty estimation capabilities of Prob-PSENN.
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Figure 7: Histograms showing the explanatory epistemic uncertainty obtained by a Prob-PSENN for
1000 test samples from MNIST (1st figure) and Fashion-MNIST (2nd figure). Notice that the scales
of the Y-axis differ in the two plots. The following four images display those inputs that achieve, for
each dataset, the lowest and highest epistemic uncertainty.

Aleatoric uncertainty Finally, the prediction and explanation for a particular input with high
aleatoric uncertainty is shown in Figure 8. The results are shown for a Prob-PSENN with l = 5 and
N = 50 inferences. The top row includes the density function over the distances corresponding to the
two most likely classes, δx,4 and δx,9, estimated by Gaussian-kernel density estimation, as well as a
box plot showing the variability in the output probabilities assigned to each class, considering all the
inferences. As it can be assessed, the distributions of both the distances and the output probabilities
are highly overlapped, evidencing a high explanatory and predictive aleatoric uncertainty. The second
row of the figure includes the input and a subset of the sampled prototypes, sorted by distance to
the input in increasing order. As can be seen, both distributions over the prototypes capture and
sample prototypical representations that could be taken as equally descriptive of the input at hand,
thus explaining its ambiguity.
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Figure 8: Prediction and explanation results obtained for a test input with high aleatoric uncertainty.
The prototypes are sorted by distance to the input, in increasing order.

Harnessing uncertainty to improve predictive accuracy and reliability We experimentally
validated that taking model uncertainty into consideration can provide substantial improvements in
accuracy. Specifically, by discarding inputs with high explanatory epistemic uncertainty (e.g., greater
than 95% or 99%), the accuracy of Prob-PSENN increases in all the datasets and configurations, as
we show in Table 2 (Appendix G). To complement these results, Table 3 shows the percentage of
inputs that are discarded in each case. At the same time, a large number of the discarded inputs are
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anomalous or challenging to classify, which would justify discarding them for the sake of higher
reliability and robustness. As evidence, we show in Table 4 that the error rate of the deterministic
baseline model is also higher in the inputs which receive high uncertainty than in the rest. Thus, this
evaluation shows how capturing model uncertainty provides greater accuracy, robustness and safety.
We justify the choice of the mentioned uncertainty metric, based on the fact that it is reasonable
to consider a prediction unreliable if all the prototypes have low similarity to the input, given the
distance-based classification pipeline of the model.

6 Conclusions

In this paper we introduced Prob-PSENN, a novel Prototype-Based Self-Explainable Neural Network
paradigm relying on a probabilistic generalization of the prototypes, which enhances the capabilities
of the model in two key aspects. First, unlike previous approaches, our model is not restricted
to a fixed number or set of prototypes. This enables Prob-PSENN to learn much more diverse
prototypes, and to consider all of them when classifying an input, which represents a more flexible
and robust approach. Second, our probabilistic approach equips Prob-PSENNs with tools to capture
and harness the uncertainty in both the prediction and the explanation of the network. This novel
feature makes it possible to detect when the model is providing uncertain outcomes, substantially
increasing the reliability of the model. We experimentally demonstrate how Prob-PSENNs achieve
more informative, robust and trustworthy explanations than their non-probabilistic counterparts, while
keeping a competitive predictive accuracy.

7 Limitations and future work

As future work, inspired by recent advances in Bayesian Neural Networks [13, 16, 31], we plan to
develop a Bayesian formulation for the distribution over the prototypes, which might enable a more
theoretically-grounded approach for uncertainty quantification. Furthermore, we also believe that a
fully-probabilistic model (i.e., placing a probability distribution for the rest of the network parameters
as well) could enhance the quantification of the uncertainty in Prob-PSENNs, or even induce new
notions of uncertainty, such as the encoding or class-representation uncertainty. Apart from that,
while Prob-PSENNs have demonstrated high predictive and explanatory performance, we found it
challenging to model probability distributions over the prototypes in high-dimensional spaces, and,
therefore, resort to relatively low dimensional latent spaces in our experiments. We plan to address
this limitation in the future, in order to scale the proposed approach to higher-dimensional datasets.
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Appendix A Discussion on previous PSENN approaches

As introduced in Section 1, the development of PSENNs arises as an alternative to black-box DNNs
and posthoc explanations, with the goal of ensuring a human-understandable decision process by
construction, while keeping a competitive predictive performance. This is achieved by integrating a
transparent case-based reasoning as the core element, so that the prediction of the model is determined
based on the similarity between the input and a set of prototypical representations of the output
classes (see Section 2 for further details).

The way in which such prototypes are defined has led to different types of PSENNs in the literature.
In the seminal work of Li et al. [28], mirrored by recent follow-up works [14, 21], the prototypes
represent complete characterizations of each class or concept (e.g., full representations of the digits in
handwritten digit recognition). In contrast, other follow-up works aim to capture more abstract [4] or
specific features (e.g., prototypical parts or patches) [8, 18, 30] as prototypes. However, an important
drawback of these approaches is that the prototypes are restricted to being samples or sample parts
of (encoded) training inputs [4, 8, 18, 30]. This implies a flexibility loss regarding the end-to-end
optimization of the prototypes, as well as a transparency loss when surrogate prototypes (e.g., nearest
training images) are selected to visualize the explanations [4, 14]. For these reasons, we followed
the same spirit as in [28], and thus employed the corresponding architecture as a baseline, in order
to guarantee a fully transparent and end-to-end trainable architecture. We also remark that, while
[14, 21] also focus on learning a fixed set of complete, unconstrained, and decodable prototypes,
the proposed architecture relies on a Variational Autoencoder [24] as the autoencoding module. In
contrast, as in [28], our approach does not require enforcing such a regularized latent space, hence
representing a more general approach.

Closer to our approach, concurrent works [21, 44] leverage the use of distributions over the prototypes
to improve the consistency between image similarity and latent space location [21] and to increase
the representation power of the model [44]. Contrary to our work, both approaches employ only the
means of the learned distributions as prototypes, whereas our sampling-based inference process allows
us to sample multiple sets of prototypes, avoiding the constraint of committing to a fixed set, and
harnessing all of them for both the explanation and classification. Furthermore, the approach in [44]
follows the strategy of [4, 8, 18] and rely on surrogate prototypes, replacing the distribution means
with nearest training instances, with the corresponding flexibility and transparency loss discussed
above. Another key difference between our approach and that in [21] is that, in their work, the
similarities between the input’s distributional embedding and the prototype distributions, which fed
the final classification layer, is measured by considering the entire distributions, using distributional
similarity metrics. However, as stated in [21], such similarities do not form nor rely on observable
prototypes, which is contrary to the purpose of explaining and justifying the classification. Instead,
we advocate for a more transparent approach, in which the model predictions are solely derived from
the distances to the sampled sets of prototypes, ensuring a complete and transparent justification of
model outputs.

Appendix B Implementation details

Our models have been implemented in Python, using TensorFlow [1] and TensorFlow Probability
[12] packages. The experiments have been conducted on a cluster with Nvidia RTX A5000 GPUs
and AMD EPYC 7252 8-Core CPUs. However, we point out that our models are amenable to being
trained on commodity hardware. The architecture of the MLP Autoencoder module is composed
of two dense layers with 1000 hidden units and ReLU activation, followed by a dense layer with l
output neurons. A linear activation is used for the last layer of the encoder. The architecture of the
CNN Autoencoder is composed of four convolutional layers, followed by a dense layer with l output
neurons and linear activation for the last layer of the encoder, in order to control the dimensionality
of the latent space. The convolutional layers employ a 3× 3 kernel size, a stride value of 2, same
zero padding. We use 32 channels for the first three layers and 10 channels for the fourth layer.

The experiments have been run for τ1 = 1.0, τ2 = 10.0, τ3 = 0.05, a batch size of 128 and 30 epochs.
The Adam optimization method [23] has been used to train the networks, using a learning rate of
0.001. The final classification layer W was set as W = −I , where I represents the identity matrix of
dimension c, thus ensuring that the association between the prototype ri and the class yi, 1 ≤ i ≤ c,
is explicit and unequivocal. For all the datasets, the standard train and test splits have been used, with
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sizes 60000 and 10000, respectively, and a subset of 6000 training samples has been extracted as a
validation set. The results on the baseline model [28] have been reproduced using the implementation
released by the authors.

Appendix C Complementary results on the MNIST dataset

In order to complement the results reported in Section 5, Figure 9 shows, for the MNIST dataset, 15
randomly sampled sets of prototypes from a Prob-PSENN with l = 5 (left) and l = 10 (right). As it
can be observed, the increase in the dimensionality of the latent space makes it possible to capture
prototype distributions with a higher degree of complexity in their structure, as well as to obtain more
detailed decodings.
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Figure 9: 15 random sets of prototypes, obtained with a Prob-PSENN with l = 5 (left) and l = 10
(right).

Appendix D Results on the Fashion-MNIST dataset

This section includes complementary results on the Fashion-MNIST dataset. First, Figure 10 shows
randomly sampled prototypes for a Prob-PSENN with l = 5 (left) and l = 10 (right). These figures
demonstrate that the probabilistic redefinition of the prototypes introduced in Prob-PSENNs enables
the model to learn, even for relatively low-dimensional latent spaces, diverse but still prototypical
representations of each class.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
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Figure 10: Learned prototypes for the Fashion-MNIST dataset, with l = 5 (left) and l = 10 (right).

Furthermore, a visual comparison between the explanations provided by a non-probabilistic PSENN
and a Prob-PSENN is provided in Figures 11 and 12. For the sake of completeness, the former
figure includes the explanations provided by a PSENN with m = 15 (left) and m = 50 (right)
prototypes. In both cases, the original input is shown in the top-left corner, and the prototypes are
colored according to the classes returned by the model when the prototypes are classified, in order
to make it clearer which class each prototype is most associated with. Notice that this connection
is explicit and unequivocal by construction in our Prob-PSENNs, being the class yi represented by
the prototype ri, 1 ≤ i ≤ c, resulting in more transparent decision processes and easier-to-interpret
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explanations. As can be observed in Figures 11 and 12, the prototypes learned by the PSENNs are,
even for m = 50 prototypes, considerably less meaningful and varied than the ones captured by
Prob-PSENN. Furthermore, the uncertainty metrics introduced in Section 3.3 enable us to quantify
a low aleatoric and epistemic explanatory uncertainty for this input (0.004 and 0.16, respectively),
which increases the trustworthiness and reliability of the outcomes of Prob-PSENN.

T-shirt/top
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot

Input 0.178 0.407 0.613

0.729 0.844 0.847 0.89

1.035 1.092 1.094 1.229

1.689 1.698 2.008 2.234

Input 0.1 0.24 0.25 0.28 0.33 0.43 0.46

0.56 0.56 0.63 0.64 0.83 0.88 0.89 0.89

0.92 0.93 0.94 0.99 0.99 1.0 1.0 1.05

1.05 1.05 1.07 1.07 1.11 1.12 1.16 1.17

1.18 1.23 1.25 1.27 1.3 1.31 1.38 1.4

1.4 1.41 1.51 1.59 1.6 1.6 1.62 1.63

1.82 2.28 2.29

Figure 11: Explanations provided by a PSENN with m = 15 (left) and m = 50 (right) for the
Fashion-MNIST dataset. Both models classify the input (shown in the top-left corner of each grid)
as the class pullover with a probability of 0.99. Note that the prototypes are sorted based on their
distances to the input (displayed on top of each figure), in increasing order.
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Figure 12: Explanation provided by a Prob-PSENN, for the Fashion-MNIST dataset. The top row
shows the distance distribution to the four closest classes (left), and the variability in the output
probabilities (right). The bottom part shows the prototypes corresponding to the four closest classes,
and the corresponding distances to the input. Note that the prototypes are ordered based on their
distance, in increasing order.
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Appendix E Results on the K-MNIST dataset

This section contains additional results on the 10-class K-MNIST dataset [9], which includes hand-
written representations of Japanese letters. Random images from this dataset are shown in Figure 13,
from which it can be noticed a high variance in the representation of each letter. Randomly sampled
prototypes from Prob-PSENNs with l = 5 and l = 10 are displayed in Figure 14. As can be assessed
in the figure, despite the complexity and high variability of this dataset, Prob-PSENNs are capable
of capturing the most frequent representations of each class, ensuring a sufficiently diverse and
meaningful characterization of the classes.

As for the previous datasets, a comparison between the explanations of PSENNs and Prob-PSENN
for the K-MNIST dataset is provided in Figures 15 and 16. Notice how, also due to the higher
variability in the representations of each class, the prototypes learned by a PSENN with m = 15
prototypes (Figure 15-left) are not sufficiently representative of the classes, and, consequently, we
need to resort to a large number of prototypes (m = 50, Figure 15-right). However, even for m = 50,
the prototypes learned by PSENN are considerably less varied and informative than the ones sampled
by Prob-PSENN, which evidences the higher flexibility of our approach, as well as its increased
transparency and explanatory capabilities.

Figure 13: Examples of the K-MNIST dataset [9], as reported in the original repository https:
//github.com/rois-codh/kmnist (CC BY-SA 4.0 license). Each row corresponds to one class.
The first column of the figure shows the modern representation of each letter, as a reference.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

Figure 14: Sampled prototypes for the K-MNIST dataset, using a Prob-PSENN with l = 5 (left) and
l = 10 (right).
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Figure 15: Explanations provided by a PSENN with m = 15 (left) and m = 50 (right) for the
K-MNIST dataset. Both models classify the input (shown in the top-left corner of each grid) as the
class 8 with a probability of 0.99. Note that the prototypes are sorted based on their distances to the
input (displayed on top of each figure), in increasing order.
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Figure 16: Explanation provided by a Prob-PSENN, for the K-MNIST dataset. The top row shows
the distance distribution to the four closest classes (left), and the variability in the output probabilities
(right). The bottom part shows the prototypes corresponding to the four closest classes, and the
corresponding distances to the input. Note that the prototypes are ordered based on their distance, in
increasing order.

Appendix F Results on the E-MNIST dataset

In order to analyze the scalability of ProbSENN in tasks consisting of larger number of classes, we
evaluated its performance in the E-MNIST dataset [10] (47 classes), an extension of MNIST which
includes both numeric and alphabetic characters. As it can be seen in Figure 17, ProbSENN is still
capable of learning suitable distribution over the prototypes for the 47 classes, yielding realistic and
diverse prototypes, while achieving a test accuracy of 0.85.
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Figure 17: Prototypes sampled for the E-MNIST dataset (47 classes), consisting of handwritten
representations of numbers and letters.

Appendix G Harnessing uncertainty to improve predictive accuracy and
reliability: Results

Table 2: Predictive accuracy percentages (mean and standard deviation for 10 runs) obtained
by Prob-PSENN for the following configurations: using the MLP-Autoencoder, using the CNN-
Autoencoder, including elastic deformation as data augmentation (AUG), and discarding the inputs
with an uncertainty rate UE(x) (see Equation 4 in the paper) higher than a threshold α (UNC).

Configuration MNIST F-MNIST K-MNIST

Prob-PSENN (l = 10, MLP) 97.59 ± 0.48 88.77 ± 0.50 88.92 ± 1.00
+ UNC (α = 0.99) 98.99 ± 0.42 89.16 ± 0.52 96.19 ± 1.42
+ UNC (α = 0.95) 99.68 ± 0.13 90.52 ± 0.67 98.77 ± 0.39

Prob-PSENN (l = 10, CNN) 98.28 ± 0.17 89.47 ± 0.34 89.06 ± 0.34
+ UNC (α = 0.99) 98.83 ± 0.25 89.52 ± 0.41 89.58 ± 0.50
+ UNC (α = 0.95) 99.68 ± 0.09 90.22 ± 0.59 94.58 ± 0.74

Prob-PSENN (l = 10, MLP + AUG) 98.53 ± 0.08 87.78 ± 0.50 93.17 ± 0.33
+ UNC (α = 0.99) 98.97 ± 0.14 87.81 ± 0.49 95.29 ± 0.65
+ UNC (α = 0.95) 99.67 ± 0.05 88.29 ± 0.57 98.44 ± 0.33

Prob-PSENN (l = 10, CNN + AUG) 98.75 ± 0.17 87.98 ± 0.46 89.40 ± 1.14
+ UNC (α = 0.99) 99.00 ± 0.18 88.00 ± 0.46 89.56 ± 1.09
+ UNC (α = 0.95) 99.74 ± 0.09 88.45 ± 0.52 93.53 ± 1.28
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Table 3: Percentage of discarded inputs when filtering by uncertainty (mean and standard deviation
for 10 runs).

Threshold Configuration MNIST F-MNIST K-MNIST

α = 0.99 Prob-PSENN (l = 10, MLP) 2.77 ± 0.53 0.79 ± 0.26 11.49 ± 2.31
Prob-PSENN (l = 10, CNN) 1.01 ± 0.26 0.13 ± 0.10 0.70 ± 0.40
Prob-PSENN (l = 10, MLP + AUG) 0.90 ± 0.14 0.05 ± 0.03 4.25 ± 0.97
Prob-PSENN (l = 10, CNN + AUG) 0.52 ± 0.11 0.04 ± 0.04 0.17 ± 0.11

α = 0.95 Prob-PSENN (l = 10, MLP) 7.69 ± 0.50 5.16 ± 0.86 24.89 ± 1.33
Prob-PSENN (l = 10, CNN) 5.27 ± 0.21 2.57 ± 0.45 12.38 ± 1.10
Prob-PSENN (l = 10, MLP + AUG) 5.58 ± 0.23 1.84 ± 0.29 17.02 ± 1.01
Prob-PSENN (l = 10, CNN + AUG) 4.67 ± 0.21 1.75 ± 0.30 9.59 ± 1.17

Table 4: Error rate (%) of the deterministic baseline model on the inputs receiving high/low
uncertainty by Prob-PSENNs (with l = 10 and an MLP-Autoencoders).

Threshold Configuration MNIST F-MNIST K-MNIST

α = 0.99 High uncert. (UE(x) > α) 13.10 ± 1.87 25.56 ± 6.72 37.12 ± 2.69
Low uncert. (UE(x) ≤ α) 0.73 ± 0.13 9.73 ± 0.32 5.36 ± 0.51

α = 0.95 High uncert. (UE(x) > α) 8.75 ± 1.24 25.55 ± 3.29 27.12 ± 1.38
Low uncert. (UE(x) ≤ α) 0.41 ± 0.09 8.99 ± 0.35 2.92 ± 0.33

Appendix H Broader Impact

As specified above, the goal of Prob-PSENNs is to promote a transparent-by-design DNN architecture
while maintaining competitive predictive performance. In addition to transparency, Prob-PSENNs
provide tools to quantify the uncertainty in the model’s predictions and explanations, which further
enhances its safety and reliability. Therefore, our work is aligned with three important needs of deep
learning models: interpretability, transparency, and reliability. However, a current concern in deep
learning models is their lack of robustness to adversarial attacks [7, 42, 46], a vulnerability that also
threatens explanation methods and self-explainable models [3, 15, 26, 43]. Therefore, in order to
ensure a safe and responsible deployment of Prob-PSENNs in practice, it remains crucial to carefully
assess the implications of adversarial attacks, and, consequently, to evaluate the robustness of the
model against them.
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