
Analysing Randomized Distributed Algorithms�

Gethin Norman

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom

G.Norman@cs.bham.ac.uk

Abstract. Randomization is of paramount importance in practical ap-
plications and randomized algorithms are used widely, for example in
co-ordinating distributed computer networks, message routing and cache
management. The appeal of randomized algorithms is their simplicity
and elegance. However, this comes at a cost: the analysis of such sys-
tems become very complex, particularly in the context of distributed
computation. This arises through the interplay between probability and
nondeterminism. To prove a randomized distributed algorithm correct
one usually involves two levels: classical, assertion-based reasoning, and
a probabilistic analysis based on a suitable probability space on compu-
tations. In this paper we describe a number of approaches which allows
us to verify the correctness of randomized distributed algorithms.

1 Introduction

Distributed algorithms [66] are designed to run on hardware consisting of many
interconnected processors. The term ‘distributed’ originates from algorithms that
used to run over a geographically large network, but now applies equally well
to shared memory multiprocessors. A randomized algorithm is one which con-
tains an assignment to a variable based on the outcome of tossing a fair coin
or a random number generator. Since the seminal paper by Michael Rabin [85]
randomized algorithms have won universal approval, basically for two reasons:
simplicity and speed. Randomized distributed algorithms include a number of
theoretical algorithmic schemes, for example the dining philosophers protocol
and the consensus of Aspnes and Herlihy [5], as well as the practical real-world
protocols for Byzantine agreement due to Kursawe et al. [11] and IEEE 1394
FireWire root contention protocol [46].

A necessary consequence of using randomization is the fact that the correct-
ness statements must combine probabilistic analysis, typically based on some ap-
propriate probability space on computation paths, with classical, assertion-based
reasoning. Examples include: “termination occurs with probability 1”, “delivery
of a video frame is guaranteed within time t with probability at least 0.98”
and “the expected number of rounds until a leader is elected is at most 2k”. The

� Supported in part by the EPSRC grant GR/N22960.

C. Baier et al. (Eds.): Validation of Stochastic Systems, LNCS 2925, pp. 384–418, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Analysing Randomized Distributed Algorithms 385

analysis of randomized distributed algorithms becomes very complex, sometimes
leading to errors.

In a distributed environment, where each of the concurrent processors must
make decisions in a highly nondeterministic context, it can be shown that there
are no (symmetric) deterministic solutions to certain network co-ordination
problems [63, 33]. Randomization offers a powerful tool for symmetry breaking,
in addition leading to faster solutions. It has been applied to a range of algo-
rithms, for example the dining philosophers protocol [63], Byzantine agreement
[8], self stabilization [41], and shared-memory consensus [5]. It should be em-
phasised that the standard liveness properties, for example termination, become
probabilistic (hold with probability 1) in the context of randomized algorithms.
This applies to the so called Monte Carlo algorithms, which are the focus of this
paper, but not to the Las Vegas algorithms such as the randomized quicksort
[77]. In Las Vegas algorithms termination can only be ensured with some ap-
propriately high probability, and so non-termination simply becomes unlikely,
albeit still possible.

Randomization is of paramount importance in practical applications: ran-
domized algorithms are used widely, for example in co-ordinating distributed
computer networks [66], message routing [1], data structures, cache management,
and graph and geometric algorithms [77]. The appeal of randomized algorithms
is their simplicity and elegance. However, this comes at a cost: the probability
space, and with it the probabilistic analysis, become very complex, particularly
in the context of distributed computation. This is caused by both the complex
interplay between probabilistic and nondeterministic choices and by the intro-
duction of dependencies between random variables that can easily be overlooked.
To prove a randomized distributed algorithm correct one usually involves two
levels: classical, assertion-based reasoning, and a probabilistic analysis based on
a suitable probability space on computations, see e.g. [67, 82, 1]. A correctness
argument often crucially relies on the statement “If the random variables are
independent then the algorithm produces the correct answer with probability
p”. The simplicity of this statement obscures potential dangers, which can arise
if the variables turn out not to be independent, since in such cases estimated
probabilities can differ from the actual probabilities by a wide margin.

For example, an error in a mutual exclusion algorithm due to Rabin [84],
which was pointed out by Saias [90] and later corrected by Rabin [52], can be
explained in terms of an inadvertently introduced dependence of the probability
of a process winning the draw on the total number of processes in the network,
and not only on those taking part in the draw; when exploited by a malicious
adversary, this has the effect of making the actual probability of winning small-
er than it should be. In a different but no less critical situation – probabilistic
modelling of nuclear power stations – an error can be traced to the incorrect as-
sumption of events being independent, which resulted in the actual probabilities
becoming unsatisfactorily large [97]. Thus, satisfactory correctness guarantees
are essential supporting evidence when implementing a new randomized algo-
rithm.

386 G. Norman

2 Background

In this section we give an overview of areas related to analyzing randomized
distributed algorithms, and then outline the remainder of the paper.

2.1 Modelling Randomized Distributed Algorithms

The standard modelling paradigm for systems exhibiting probabilistic behaviour
is based on Markov chains. Such models often provide sufficient information to
assess the probability of events occurring during execution of a sequential sys-
tem, as each such execution can be represented as a sequence of “steps” made
according to the probability distribution. We note that, for such models it is
straightforward to define a probability measure of the set of executions (paths)
of the model. However, this must be extended to take account of the distributed
scenario, in which concurrently active processors handle a great deal of unspeci-
fied nondeterministic behaviour exhibited by their environment, as well as make
probabilistic choices. As argued in [91], randomized distributed algorithms re-
quire models with nondeterministic choice between probability distributions. The
central idea is to allow a set of probability distributions in each state. The choice
between these distributions is made externally and nondeterministically, either
by a scheduler that decides which sequential subprocess takes the next “step”
(as in e.g. the concurrent Markov chains [101]), or by an adversary that has the
power to influence and potentially confuse the system [9, 7], as is the case with
Byzantine failure. A number of essential equivalent models exist following this
paradigm and including probabilistic automata [91], Markov Decision Process-
es [26], probabilistic-nondeterministic systems [9] and concurrent probabilistic
systems [7].

Probabilistic choices are internal to the process and made according to the
selected distribution. It should be emphasised that the complexity introduced
through allowing nondeterminism affects the probabilistic modelling: a proba-
bility space can be associated with the space of computations only if nondeter-
ministic choices have been pre-determined, which is typically achieved through
the choice of an adversary (which chooses at most one distribution in a given
state).

As in the non-probabilistic setting, we may have to impose fairness
constraints in order to ensure that liveness properties can be verified. In a dis-
tributed environment fairness corresponds to a requirement such as each concur-
rent component to progress whenever possible. Without fairness, certain liveness
properties may trivially fail to hold in the presence of simultaneously enabled
transitions of a concurrent component. A number of fairness notions have been
introduced [101, 20, 7] for systems containing probabilistic and nondeterministic
behaviour, for example in [7] an adversary is called fair if any choice of transi-
tions that becomes enabled infinitely often along a computation path is taken
infinitely often, whereas in [22] an adversary is called fair if there exists ε > 0
such that all nondeterministic choices are taken with probability at least ε The
interested reader is referred to [7, 22] for more information on the subject.

Analysing Randomized Distributed Algorithms 387

To allow the construction of complex probabilistic systems it is straight-
forward to extend the definition of parallel composition in standard labelled
transition systems to this probabilistic setting. Alternatively, to specify complex
randomized distributed algorithms one can employ the higher-level modelling
languages developed in the field of concurrency. Much of this work is based on
replacing the (nondeterministic) choice operator with a probabilistic variant, and
hence is not suitable for modelling randomized distributed algorithms where non-
determinism and probabilistic behaviour coexist. Of process calculi developed to
include both a nondeterministic and probabilistic choice operator, we mention
[36, 35, 104] which are based on CSS [73], and [64, 65, 76] where languages based
on CSP [88] are considered.

2.2 Specifying Properties of Randomized Distributed Algorithms

Often the specification of a randomized distributed algorithm can be written in
a simple unambiguous form, for example “eventually the protocol terminates” or
“the algorithm terminates in at most O(n) rounds”, and hence there is no need
to use any specification language. However, one must be careful as without a
formal specification language it is easy to make errors. An example of this, men-
tioned earlier, is in [84] where there is an error in the proof of correctness which
can be attributed to the fact that the properties of the protocol were not stated
correctly. For further details on this error and methods for correctly specifying
properties see [90, 89].

Probabilistic logics are a natural choice of specification formalisms to use for
stating correctness of randomized distributed algorithms. Such a logic can be
obtained from a temporal logic, e.g. CTL [12], in two ways: either by adding
probability operators with thresholds for truth to the syntax [37] (within this
we include ‘with probability 1’ [101, 79]), or by re-interpreting the formulae to
denote (an estimate of) the probability instead of the usual truth values [45, 69].
In the threshold approach, path formulae φ are annotated with thresholds [·]≥p

for p ∈ [0, 1], with the formula [φ]≥p interpreted as “the probability assigned to
the set of paths satisfying the path formula φ in the classical sense is at least
p”. The fact that this semantics is well defined follows from the observation that
in logics such as CTL path formulae determine measurable sets [101]. For
models with nondeterminism quantification over paths A (E) can be added,
meaning “for all (some) schedulers”; this models the worst (best) probabilistic
outcome.

2.3 Verification Techniques for Distributed Algorithms

Model checking [12] has become an established industry standard for use in
ensuring correctness of systems, and has been successful in exposing flaws in
existing designs, to mention e.g. the tools SMV, SPIN and FDR, none of which
can handle probability. The process of model checking involves building a (finite-
state) model of the system under consideration, typically built from components

388 G. Norman

composed in parallel. Then the model checking tool reads the description, builds
a model, and for each specification (in temporal/modal logic) attempts to ex-
haustively check whether it holds in this model; if not, then a diagnostic trace
leading to error is output.

One problem with the model checking approach, which makes model check-
ing complex systems infeasible, is the well know state space explosion problem:
the number of states grows exponentially with the number of components in the
design. Furthermore, often the system under consideration is either infinite state
or parameterized, for example by the number of processes, and we would like to
prove that the system is correct for any value of the parameter. In such cases
we cannot use finite state model checking, however, one approach to overcome
these difficulties and allow for the analysis of both parameterized and infinite
state systems is to develop a verification methodology which reduces the verifi-
cation problem for large/infinite state systems to tractable finite-state subgoals
that can be discharged by a conventional model checker. In the non-probabilis-
tic setting abstraction techniques have been used to reduce the complexity of
the system under study by constructing a simpler abstract system which weakly
preserves temporal properties: if a property holds in the abstract system then
it holds true in the concrete system, while the converse does not hold. Other
techniques developed in the non-probabilistic case include compositional/refine-
ment methods [40, 72], abstract interpretation [15], temporal case splitting [71]
and data independent induction [16].

For example, data type reduction, a specific instance of abstract interpre-
tation, can be used to reduce large or infinite types to small finite types, and
temporal case splitting breaks the proof into cases based on the value of a given
variable. Combining data type reduction and temporal case splitting can re-
duce a complex proof to checking only a small number of simple subcases, thus
achieving significant space savings.

We should note that the above techniques can no longer be described as fully
automated, it is often up to the user to decide on the abstraction or how the
problem should be decomposed. This may not be any easy task as it often re-
quires a detailed understanding of both how the system being modelled works
and the verification methodology.

2.4 Outline of Paper

In the next two sections we review techniques for verifying randomized distrib-
uted algorithms and give examples applying these methods. In Section 3 we
consider methods for verifying qualitative properties, that is, properties which
require satisfaction with probability 1. Whereas, in Section 4 we consider the
case of the more general quantitative properties such as “the probability that
a leader is elected within t steps is at least 0.75”. In Section 5 we outline the
complete verification methodology for verifying a complex randomized distrib-
uted algorithm. Finally in Section 6 we summarise and consider future research
directions.

Analysing Randomized Distributed Algorithms 389

3 Qualitative Analysis

In this section we outline several techniques used to verify correctness with prob-
ability 1, called P-validity in [51, 105]. Examples of such correctness statements
include “the protocol eventually terminates”, “eventually a leader is elected” and
“eventually the resource gets allocated”.

3.1 Verifying Finite-State Systems

In the case of finite state problems, the verification of probability 1 properties
reduces to graph based analysis, i.e. conventional model checking. This result
was first established in [38] in the case of termination of finite state systems. In
[78] this is extended by introducing deductive proof rules for proving that ter-
mination properties of (finite state) probabilistic systems hold with probability
1. While in [79, 102] a sound and complete methodology for establishing correct-
ness with probability 1 for general temporal logic properties are introduced, as
well as model checking procedures. We also mention approaches based on the
branching time framework [20, 7] where model checking algorithms for probabil-
ity 1 properties under different notions of fairness are introduced. In all of the
above techniques the verification is performed over a non-probabilistic version of
the system, in which the probabilistic choices are replaced with nondeterminism
with fairness constraints.

Applying such techniques has lead to the verification of a number of ran-
domized distributed algorithms. In particular by using symbolic techniques, for
example BDDs, one can verify very large randomized distributed algorithms. For
example, using the probabilistic symbolic model checker PRISM [54, 83] qualita-
tive analysis of randomized algorithms with over 1030 states has been performed.
However, in general randomized distributed protocols are often too complex to
apply these methods. Furthermore, often the protocols include parameters which
are unbounded (for example, the number of rounds), or are genuinely infinite
state. In such cases, we may apply model checking techniques to prove that
certain instances of the protocol are correct, for example when there are 6 pro-
cesses in the ring, but we cannot say that the protocol is correct for all instances,
for example that the protocol is correct for a ring of any size. In the next sec-
tion, we will consider alternative verification techniques which allow us to prove
correctness in such cases.

3.2 Verifying Complex, Parameterized and Infinite-State Systems

As mentioned above, many randomized distributed algorithms are parameterized
by, for example the number of processes or nodes in the network, or are infinite
state, for example real-time protocols, in such cases the verification problem
becomes harder. In this section we will consider methods for establishing quali-
tative (probability 1) properties of such systems (in Section 4.2 we will consider
checking quantitative properties).

390 G. Norman

In certain cases, for example when considering real-time randomized proto-
cols, although the protocol has an infinite state space one can reduce the veri-
fication problem to checking a finite-state quotient of the system, for example
[2] present a method for probabilistic real-time systems, using the region graph
approach [3]. In this work it is demonstrated that, verifying whether (infinite
state) probabilistic real time systems satisfy branching time temporal properties
with probability 1, reduces to analyzing a finite-state nondeterministic system.

In addition, abstraction/refinement methods can be applied to simplify the
verification of probability 1 properties. For example, in [100] a sequence of step-
wise abstractions are used in the verification of the (real-time) IEEE 1394 Fire-
Wire root contention protocol [46]. In each step of the refinement process one
aspect of the protocol is abstracted, for example one step concerns abstract-
ing timing information, where the correctness of each abstraction is validation
through probabilistic simulations [94]. After the final step of the refinement pro-
cesses one is left with a simple system which is straightforward to analyse.

In the non-probabilistic case, as mentioned in Section 2, much progress has
been made in methods for the verification of parameterized and infinite state
systems. For certain protocol and properties, after replacing the probabilistic
behaviour with nondeterminism, one can directly use these techniques for the
verification of randomized distributed algorithms. For example, using Cadence
SMV [72], a proof assistant which allows the verification of large, complex, sys-
tems by reducing the verification problem to small subproblems that can be
solved automatically by model checking, certain properties of the randomized
consensus protocol of Aspnes and Herlihy [5] and the Byzantine agreement pro-
tocol of Cachin, Kursawe and Shoup [11] have been verified in [55] and [53]
respectively. Note that, both these protocols have unboundedly many states and
the proofs are for any number of processes.

In general however, to verify probability 1 properties as in the finite state case
one must add fairness constraints when replacing the probabilistic behaviour
with nondeterminism. The first example of verifying a non-trivial (parameter-
ized) randomized distributed algorithm appeared in [78], where both a simplified
version of Lehmann and Rabin’s dining philosophers protocol [63] and a mutual
exclusion algorithm are proved correct using deductive proof rules. The proofs
presented are complex, require a detailed knowledge of the protocol and are
constructed by hand.

The above technique has since been extended [51, 105] to allow one to em-
ploy “automated” methods when verifying correctness with probability 1 for
parameterized probabilistic systems. This new method is based on the network
invariant approach developed for proving liveness properties of non-probabilistic
systems, see for example [50]. The advance in this work on the network invariant
method, over the previous work in this area, which allows for the extension to
probability 1 statements, is that in [50] fairness constraints of the system are
taken into account. The idea behind the network invariant approach when prov-
ing correctness of a parameterized system with N processes P1, . . . , PN , is to
construct an abstraction of N −1 of the processes and the remaining process P1.

Analysing Randomized Distributed Algorithms 391

Then show that: (a) composing in parallel two copies of the abstraction behave
like the abstraction and (b) the property of interest holds over the abstraction
composed with the single process P1. The technique is not fully automated, al-
though verifying the properties (a) and (b) can be performed mechanically, the
construction of a suitable/correct abstraction must be performed manually and
may require ingenuity and a deep understanding of the protocol under study.
Furthermore, this approach is dependent on using local arguments, that is argu-
ments that do not depend on the global state space since N − 1 of the processes
are abstracted, and therefore is only applicable when correctness can be proved
using such arguments.

An alternative method for proving probability 1 properties of randomized dis-
tributed algorithms is presented in [29]. In this paper the techniques are based
on results in Markov theory and in particular recurrent states and 0-1 laws.
The techniques developed are useful for proving “convergence” type properties
of systems, for example eventually a leader is elected and the protocol reaches a
stable state. The fundamental steps of this approach are finding a non-increasing
measure over the states of the protocol and showing that, with some (non-negli-
gible) probability, from any state this measure strictly decreases within a finite
number of steps. This approach can be seen as a type of abstraction, where
the set of states of the concrete protocol with the same measure are mapped
to a single state in the abstract version. The main effort in using this method
is finding the “correct” measure which depends on the protocol under consider-
ation, however as the measure is defined on the states of the protocol on how
the states are modelled can also influence this process. We will give a simple
example illustrating this method in the next section.

3.3 Example: Verification of a Self-Stabilizing Protocol

In this section we consider the self stabilization algorithm of Israeli and Jalfon
[47]. A self-stabilising protocol for a network of processes is a protocol which,
when started from some possibly illegal start state, returns to a legal/stable state
without any outside intervention within some finite number of steps. When the
network is a ring of identical processes, the stable states are those where there is
exactly one process designated as “privileged” (has a token). A further require-
ment in such cases is that the privilege (token) should be passed around the ring
forever in a fair manner.

In the protocol of Israeli and Jalfon the network is a ring of N identical
processes, P0, P1, . . . , PN−1. Each process Pi has a boolean variable qi which
represents the fact that the process has a token. A process is active if it has
a token and only active processes can be scheduled. When an active process is
scheduled, it makes a (uniform) random choice as to whether to move the token
to its left (to process Pi−1) or right (to process Pi+1), and when a process ends
up with two tokens, these tokens are merged into a single token. The stable
states are those states where there is one token in the ring.

First, in any stable state (where there is only token), the privilege (token) is
passed randomly around the ring, and hence is passed around the ring in a fair

392 G. Norman

manner. Next we consider whether from any unstable state with probability 1
(under any scheduler) a stable state is reached. For simplicity we consider the
case when in the unstable state there are two tokens in the ring, however the
ring is of an arbitrary size. The correctness proof sketched below is based on that
presented in [29] and is an example of a proof based on 0-1 laws and ergodic
theory.

In any unstable state of the protocol (any state where there are two processes
with tokens), the scheduler can only choose between the active processes who
moves next, that is, between the two processes which have tokens. Without loss
of generality, we can suppose that the two processes are i and j and that the
minimum distance between the tokens is d > 0 as shown in Figure 1.

Pj+1

Pj−1

Pj

Pi−1Pi
Pi+1

d

Fig. 1. Ring with two tokens

Now suppose that the scheduler chooses process i to move next, then with
probability 1/2 the minimum distance between the two tokens will decrease by
1 (when Pi chooses to pass the token to Pi+1). On the other hand, if the sched-
uler chooses process Pj to move then again with probability 1/2 the minimum
distance between the tokens will decrease by 1 (when Pj chooses to pass the
token to Pj−1). Therefore, since i and j where arbitrary, in any unstable state,
no matter what the scheduler decides – since it can only choose between the
two processes which have tokens – with probability at least 1/2, the distance
between the two tokens decreases by 1.

Letting m = �N/2�, we have that the minimum distance between the tokens
is less than or equal to m, and hence it follows that from any unstable state
within m steps (and with probability greater than or equal to 1/2m) the dis-
tance between the tokens becomes 0 for any scheduler, that is, a stable state is
reached (since when the minimum distance between the tokens is zero the tokens
are merged into a single token). Using this and the fact that once a stable state
is reached it is never left (since new tokens are never created), we can apply
standard results from Markov theory to show that, for any adversary and from
any unstable state, with probability 1, a stable state is reached.

Analysing Randomized Distributed Algorithms 393

For the complete formal proof for an arbitrary number of tokens see [29]. The
interested reader is also referred to [30], where this method has been applied to
a more complex setting: proving the correctness of a variant of Lehmann and
Rabin’s solution to the dining philosophers problem [63].

4 Quantitative Analysis

In this section we consider approaches and techniques for proving the correctness
of quantitative properties. The verification of such properties is more complex
than the probability 1 properties considered in the previous section. Examples
of such properties include “the probability of electing a leader within time t is at
least 99%” and “the expected time until consensus is O(k)”. In the following sec-
tion we will consider the verification of finite state systems, then in Section 4.2
consider the case for parameterized and infinite state system and finally in Sec-
tion 4.3 we give a simple example demonstrating some of these techniques.

4.1 Verifying Finite-State Protocols

Much has been published on quantitative probabilistic model checking, see for
example algorithms for probabilistic variants of CTL/CTL∗ [35, 9, 7], LTL [14]
and the mu-calculus [45], and real-time probabilistic systems [56]. The funda-
mental method for assessing the probability of a path formula holding is through
a reduction to solving a system of linear equations or linear optimization problem
in the context of models with nondeterminism.

There are two approaches to extending temporal logics to the probabilistic
setting. Using the threshold approach, probabilistic variants based on CTL∗ have
been derived, see for example [9, 7], where minimum/maximum probability es-
timates replace exact probabilities. Furthermore, [20, 21, 23] extends the above
logics to allowing the specification (and verification) of expected time and long
run average properties using results from the field of Markov Decision Processes
[26]. The alternative, quantitative interpretation, where formulae are maps from
the set of states to the [0, 1] interval instead of truth and falsity, has been con-
sidered in, for example [45]. We also mention the qualitative approach, based on
probabilistic predicate transformers [75], presented in [69].

Model checking algorithms for the logic PCTL [9, 7] (an extension of CTL)
have been implemented in the probabilistic model checker PRISM [54, 83] which
has been used to verify a number of randomized distributed algorithms. For ex-
ample, in [95] the probabilistic model checker PRISM has been used to verify
the Crowds protocol [87], a randomized protocol designed to provide users with
a mechanism for anonymous Web browsing. Further case studies can be found
through the PRISM web page [83].

In [74] an alternative logic framework for reasoning about randomized dis-
tributed algorithm based on the program logic of “weakest preconditions” for
Dijkstra’s guarded command language GCL [27] is considered. The authors con-
sider a probabilistic extension of GCL, called pGCL and the logic of “weakest
precondition” is replaced with“greatest pre-expectation”. More formally, in the

394 G. Norman

non-probabilistic case [27], if P is a predicate over final states and prog is a
(non-probabilistic) program, the “weakest precondition” predicate wp.prog.P is
defined over initial states and holds only in the initial states from which the pro-
gram prog is guaranteed to reach P . The authors’ extension to the probabilistic
framework is based on “greatest expectation”: now a predicate returns for any
initial state the maximum probability which the program prog is guaranteed to
reach P from the initial state. In [68] it is shown how to formulate expected time
directly in the logic, and the author demonstrates this by analysing Lehmann
and Rabin’s dining philosophers protocol [63].

As in the qualitative case, in general randomized distributed protocols are
either too complex to apply probabilistic model checking, include parameters
which are unbounded, for example the number of processes or the number of
rounds, or are genuinely infinite state to apply these techniques. In the next
section, we will consider alternative verification techniques capable of verifying
such protocols.

4.2 Verifying Complex, Parameterized and Infinite-State Protocols

Methods for verifying complex randomized distributed algorithms include the
approach developed in [103, 99, 98] which allow certain performance measures of
I/O automata extended with probabilistic and real time behaviour to be com-
puted compositionally. That is, the performance measures are computed compo-
nent-wise and eliminate the need to explicitly construct the global state space,
and hence combat the state explosion problem. We also mention the composi-
tional, trace based, approach developed in [25] to allow for assume-guarantee
type reasoning.

Alternatively, D’Argenio et al. [17, 18] present refinement strategies for check-
ing quantitative reachability properties. The approach is based on constructing
smaller abstract models of the system under study, which preserve reachability
probabilities, in the sense that the probabilities obtained on the abstract sys-
tem are upper and lower bounds on reachability probabilities of the concrete
system. Furthermore, automated techniques are developed for refining the ab-
straction when the results obtained are inconclusive (i.e. when the bounds are
too coarse). The authors have implemented these refinement strategies in the
tool RAPTURE [86].

In [70] data refinement is extended to the probabilistic setting. Data refine-
ment is a generalization of program refinement. Using the probabilistic program-
ming language pGCL [74], the authors study the data refinement method in the
probabilistic setting, and use this method to perform quantitative analysis of a
probabilistic steam boiler.

In general to verify complex randomized distributed algorithms one can use
equivalence relations to reduce the state space, and hence the complexity of the
verification problem. Examples, include probabilistic simulation [48, 94], proba-
bilistic bisimulation [61] and testing based equivalences [13].

As in the qualitative case, when studying infinite state systems, for example
real-time randomized protocols, in certain cases one can reduce the verification

Analysing Randomized Distributed Algorithms 395

problem to analyzing a finite-state quotient of the system. For general infinite
state probabilistic systems methods for calculating maximum reachability proba-
bilities have been developed in [57]. In the case of real-time systems, approaches
have been developed in [56] for verifying properties of a probabilistic variant
of the branching time logic TCTL [39]. The efficient algorithm for calculating
bounds on the maximal reachability probability of probabilistic real-time au-
tomata presented in [56] has subsequently been implemented in [19]. For case
studies concerning the qualitative verification of real-time randomized distribut-
ed algorithms protocols see [19, 59, 58].

An alternative approach is to use a theorem proving framework, such as
the recent HOL support for the verification of probabilistic protocols [43, 44].
However, this technique has yet to be applied to distributed algorithms. We al-
so mention the approximate techniques [62] which use Monte-Carlo algorithms
to approximate the probability that a temporal formula is true. The advantage
of this approach over model checking is that one does not need to construct
the state space of the system, and hence reduce the state space explosion prob-
lem.

The final type of techniques we consider are those that try to separate the
probabilistic and nondeterministic behaviour, in an attempt to isolate the prob-
abilistic arguments required in the proof of correctness. The advantage of this
decomposition of the verification problem is that simpler non-probabilistic meth-
ods can be used in the majority of the analysis, while the more complex probabi-
listic verification techniques need only be applied to some small isolated part of
the protocol. Such approaches applicable to quantitative analysis include: com-
plexity statements [91], coin lemmas [92, 34] and scheduler luck games [28]. We
will now consider each of these methods in turn.

Probabilistic Complexity Statements [91, 67, 81, 93] are used to give time
or complexity bounds for randomized distributed algorithms. A probabilistic
complexity statement has the form:

U
φ≤c−−→p U ′

where U and U ′ are sets of states, φ is a complexity measure, c is a nonnega-
tive real number and p ∈ [0, 1]. Informally the above probabilistic complexity
statement means that:

whenever the protocol is in a state of U , under any adversary, the prob-
ability of reaching a state in U ′ within complexity c is at least p where
the complexity is measured according to φ.

A complexity measure is used to determine the complexity of an execution of
a system and examples of such measures include: the elapsed time, the number
of updates of a variable, number of coin flips, and the number of rounds of a
protocol. The key property of complexity statements is compositionality, that is
complexity statements can be combined in the following way:

if U
φ≤c−−→p U ′ and U ′ φ≤c′−−−→p′ U ′′ then U

φ≤c+c′−−−−−→p·p′ U ′′ .

396 G. Norman

For this compositionality to hold there are certain conditions on the adversary
that can be considered, however it has been shown that this compositionality
property of complexity statements holds for fair adversaries [91]. This composi-
tionality result can then be used to simplify the proof of correctness of random-
ized distributed algorithms into the verification of a number of smaller simpler
problems. Furthermore, in [91] it is shown how using complexity statements one
can derive upper bounds on the worst case performance of randomized distrib-
uted algorithms.

For correctness proofs employing probabilistic complexity statements, which
also demonstrates how complexity statements can be used to verify expected
time properties, see [81, 67, 82]. Additionally we will give an example of applying
complexity statements in Section 5.

Coin Lemmas [92, 34, 93] are a tool for separating the probabilistic and nonde-
terministic arguments in the analysis of distributed probabilistic systems. They
are used for proving upper and lower bounds on the probability of events. Their
advantage lies in the reduction of probabilistic analysis to non-probabilistic steps
and also force the user into a certain well-defined probabilistic scenario, drawing
his or her attention to the possible interference between probability and nonde-
terministic choices, which has the effect of thus reducing the chance for making
errors due to underestimating the complexity of the actual system execution
scenario. We motivate the need for coin lemmas through the following example
taken from [34].

Consider the experiment of rolling a die. We know that the probability of
rolling any number between 1 and 6 is 1/6. Now consider a simple proto-
col which can roll the die and sends a beep signal whenever the outcome
is an even number. We could then say that the probability of the beep
signal being sent is 1/2. However, it may not be the case that in every
execution the protocol does roll the die, therefore the correct statement
would be that in each execution the probability of either not rolling the
die or observing a beep signal is at least 1/2.

The observation in this simple example that one needs to take into the account
whether the die is rolled or not is the basis for formulating coin lemmas. It may
seem trivial in this simple example but as the complexity of the protocol grows
and the number of experiments increases the result is no longer obvious. By
adding the event “die is rolled” to the protocol, a coin lemma for this simple
protocol is: with probability 1/2 either the event “die is rolled” is not observed
or a beep signal is observed.

We now illustrate the use of coin lemmas through the following strategy for
proving the correctness of probabilistic complexity statements. Suppose that we
want to prove the correctness of the probabilistic complexity statement:

U
φ≤c−−→p U ′

where the probability p arises through the probability that some designated ran-
dom choices have a certain outcome. By fixing the outcome of these random

Analysing Randomized Distributed Algorithms 397

choices and replacing all remaining random choices to nondeterministic choices
we are left with a non-probabilistic system and given certain coin lemmas, by
proving that all paths of this non-probabilistic system starting from any state
in U reach a state in U ′ while φ increases by at most c, it follows that with
probability p it holds in the original probabilistic system.

Scheduler Luck Games are introduced in [28], which can be seen as an in-
stance of coin lemmas that can, in certain cases, provide a simpler and more
concise correctness proof. For a given randomized distributed algorithm a game
is set up between two players: scheduler and luck. The player scheduler decides
how the nondeterminism is resolved in an attempt to disprove the correctness of
the protocol, while the player luck chooses the outcome of some of the probabilis-
tic choices in an attempt to verify the protocol as correct. The player luck is said
to have a k winning strategy if by fixing at most k coin flips it is ensured that
the protocol is correct. Intuitively, when the player has a k winning strategy, it
follows that the protocol is correct with probability at least 1/2k.

In the cases of protocols with rounds, the authors show how such games
can be used to infer expected time properties of randomized distributed algo-
rithms. In particular, if luck has a winning strategy for the game in an expected
number of at most r rounds with at most k interventions, (i.e. fixing at most k
coin flips), then the protocol terminates within r ·2k expected number of rounds.

4.3 Example: Verification of a Self Stabilizing Protocol

In this section we return to the self stabilizing protocol of Israeli and Jalfon [47]
given in Section 3.3 and establish an upper bound on the expected time until a
stable state is reached for an arbitrary sized ring. Again for simplicity restricting
attention to when there are two tokens in the ring. The method is based on that
given in [29].

We again consider the minimum distance between the two tokens in a ring.
Now supposing the ring is of size N we have that the minimum distance between
the two tokens can range from 0 to m, where m = N/2 if N is even and (N−1)/2
if N is odd. If we consider the behaviour of the adversary when the distance be-
tween the tokens is 0 < d < m, then no matter which of the active processes (the
two processes with tokens) the adversary chooses to scheduler, with probability
1/2 in the next state the distance is d− 1 and with probability 1/2 the distance
is d + 1. If d = 0, then there is only one token (since the tokens are merged),
and hence we have reached a stable state. On the other hand, if d = m, then
when N is even with probability 1 in the next state the distance is d − 1, on
the other hand if N is odd with probability 1/2 in the next state the distance is
d− 1 and with probability 1/2 the distance is d. Intuitively, we can consider the
protocol as a random walk with barriers [0, m] (where 0 is absorbing) as shown
in Figure 2.

More formally, we can show that there exists a probabilistic simulation [94]
between the random walk and the protocol (by relating any unstable state of
the protocol whose minimum distance between the tokens is d to the state of

398 G. Norman

mm−1

1
2

1
2

1 d+1d−1 d0

Fig. 2. Random walk with barriers 0 and m where 0 is absorbing

random walk which corresponds to being at d and any stable state of the pro-
tocol to being at 0). Then, using the fact that probabilistic simulation is sound
with respect to trace inclusion [91], it follows that the expected time to reach
a stable state is less than or equal to the maximum expected time to reach the
barrier 0 from any state of the random walk. Hence, using random walk theory
[32] it follows that the expected time to reach a stable state is bounded above
by O(m2) = O(N2).

5 Case Study: Byzantine Agreement

In this section we describe an approach to the formal verification of Cachin,
Kursawe and Shoup’s randomized Asynchronous Binary Byzantine Agreement
protocol (ABBA) [11], which uses techniques for the verification of non-proba-
bilistic parameterized protocols, (finite-state) probabilistic model checking and
probabilistic complexity statements. Further details concerning the models we
have constructed and the proof of correctness can be found at the PRISM web
page [83]. The results presented in this section first appeared in [53].

Agreement problems arise in many distributed domains, for example, when
it is necessary to agree whether to commit or abort a transaction in a distribut-
ed database. A distributed agreement protocol is an algorithm for ensuring that
a collection of distributed parties, which start with some initial value (0 or 1)
supplied by an environment, eventually terminate agreeing on the same value.
The requirements for a randomized agreement protocol are:

Validity: If all parties have the same initial value, then any party that decides
must decide on this value.

Agreement: Any two parties that decide must decide on the same value.
Probabilistic Termination: Under the assumption that all messages between

non-corrupted parties eventually get delivered, with probability 1, all initial-
ized and non-corrupted parties eventually decide.

5.1 The Protocol

The ABBA protocol is set in a completely asynchronous environment, allows
the maximum number of corrupted parties and makes use of cryptography and
randomization. There are n parties, an adversary which is allowed to corrupt
at most t of them (where t < n/3), and a trusted dealer. The parties proceed

Analysing Randomized Distributed Algorithms 399

through possibly unboundedly many rounds: in each round, they attempt to
agree by casting votes based on the votes of other parties. In addition to Valid-
ity and Agreement , the protocol guarantees Probabilistic Termination in
a constant expected number of rounds which is validated through the following
property:

Fast Convergence: The probability that an honest party advances by more than
2r + 1 rounds is bounded above by 2−r + ε where ε is a negligible function
in the security parameter.

The Model and Cryptographic Primitives. The ABBA protocol is set in
the static corruption model: the adversary must decide whom to corrupt at the
very beginning of the execution of the protocol. Once the adversary has decided
on the corrupted parties these are then simply absorbed into the adversary. The
adversary also has complete control over the network: it can schedule and deliver
the messages that it desires. The honest parties can therefore be considered as
passive: they just respond to requests made by the adversary and do not change
state in between such requests. Thus, the adversary can delay messages for an
arbitrary length of time, except that it must eventually deliver each message.

The protocol uses two classes of cryptographic primitives. The first are thresh-
old random-access coin-tossing schemes. Such a scheme models an unpredictable
function F , of which each party holds a share, that maps the name of a coin for
each round r to its value F (r) ∈ {0, 1}. Each party can generate a share of each
coin, where n− t shares are both necessary and sufficient to construct the value
of a particular coin. The second class of cryptographic primitives the protocol
uses are non-interactive threshold signature schemes. These schemes are used to
prevent the adversary from forging or modifying messages. In [11, 96] it has been
shown that the cryptographic primitives have efficient implementations and are
proved secure in the random oracle model. We therefore consider a version of
the protocol which assumes the correctness of the cryptographic elements.

The Protocol. The protocol is given in Figure 3. Each party’s initial value is
sent to it by a trusted dealer. The parties proceed in rounds, casting pre-votes
and main-votes. A party constructs both the signature share and justification
for each pre-vote and main-vote it casts using threshold signature schemes. The
justification for each vote is the signature obtained by combining the signature
shares of the messages that the party used as the basis for this vote. For example,
if a party casts a main-vote for 1 in round r, then the corresponding justification
is the signature obtained through combining the signature shares present in the
n− t messages which contain pre-votes for 1 in round r that the party must have
received. For further details on these justifications see [11].

Observe that the power of the adversary is limited by the requirement that
all votes carry a signature share and a justification, and the assumption that the
threshold signature scheme is secure (the adversary cannot forge either signature
shares or signatures). The presence of the signature shares and this assumption
implies that the adversary cannot forge any messages of the honest parties, that
is, cannot send a message in which it pretends to be one of the honest parties.

400 G. Norman

Protocol ABBA for party i with initial value vi.

0. Pre-Processing. Generate a signature share on the message

(pre-process, vi)

and send all parties a message of the form

(pre-process, vi, signature share).

Collect 2t + 1 pre-processing messages.

Repeat the following steps 1-4 for rounds r = 1, 2, . . .

1. Pre-Vote. If r = 1, let v be the majority of the received pre-processing votes.
Else, select n − t justified main-votes from round r − 1 and let:

v =

0 if there is a main-vote for 0
1 if there is a main-vote for 1

F (r − 1) if all main-votes are abstain.

Produce a signature share on the message (pre-vote, r, v) and the correspond-
ing justification, then send all parties a message of the form

(pre-vote, r, v, justification, signature share).

2. Main-Vote. Collect n− t properly justified round r pre-vote messages, and let

v =

0 if there are n − t pre-votes for 0
1 if there are n − t pre-votes for 1

abstain if there are pre-votes for 0 and 1.

Produce a signature share on the message (main-vote, r, v)
and the corresponding justification, then send all parties a message of the form

(main-vote, r, v, justification, signature share).

3. Check for Decision. Collect n − t justified main-votes of round r. If all
these are main-votes for v ∈ {0, 1}, then decide on v, and continue for one
more round.Otherwise simply proceed.

4. Coin. Generate a coin share of the coin for round r and send all parties a
message of the form

(r, coin share).

Collect n − t shares of the coin for round r and combine to get the value of
F (r) ∈ {0, 1}.

Fig. 3. Asynchronous binary Byzantine agreement protocol ABBA [11]

Analysing Randomized Distributed Algorithms 401

The adversary can make one honest party believe that the initial vote of a cor-
rupted party is 0, while another honest party believes it is 1, since these messages
do not require justification. However, since all the remaining votes need justifi-
cation, the adversary cannot just make up the pre-votes and main-votes of the
corrupted parties. For example, if in round r there are at least n − t pre-votes
for 0 and between 1 and n − t − 1 pre-votes for 1 (all of which carry proper
justification), then there is justification in round r for both a main-vote for 0
and for abstain, but not for 1. Thus, the adversary can make one honest party
believe a corrupted party has a main-vote for 0 in round r, while another honest
party believes that the same corrupted party has a main-vote for abstain.

Assumptions. Recall that, to verify the ABBA protocol correct, we need to
establish the properties of Validity , Agreement and Fast Convergence . A
number of assumptions were needed in order to perform the verification. These
include the correctness of the cryptographic primitives; for example, we assume
the following properties of the threshold coin-tossing scheme:

Robustness For any round r it is computationally infeasible for an adversary
to produce n− t valid shares of the coin for round r such that the output of
the share combining algorithm is not F (r).

Unpredictability An adversary’s advantage in the following game is negligible.
The adversary interacts with the honest parties and receives less than n−2t
shares of the coin for round r from honest parties, then at the end of the
interaction outputs a bit v ∈ {0, 1}. The adversaries advantage is defined as
the distance from 1/2 of the probability that F (r) = v.

These assumptions are implicit in the models we construct, in that they restrict
the power of the adversary. For example, the adversary cannot forge messages
or make up any of the votes of the corrupted parties which require justification.

The remaining assumptions concern fairness statements which correspond to
the fact that the adversary must eventually send all messages (which ensure that
parties eventually cast votes). For example, we assume that

Proposition 1. For any party that enters round r + 1:

(a) if the party does not decide by round r, then the coin for round r is tossed;
(b) if the party does not decide by round r + 1, then the coin in round r + 1 is

tossed.

5.2 Agreement and Validity

Both these arguments are independent of the actual probability values, and hence
can be verified by conventional model checking methods. Below we give a brief
outline of the arguments based on two lemmas.

Lemma 1. If in round r there are main-votes for v, then there are none for ¬v.

Lemma 2. If party i decides on v in round r, then there are less than n − 2t
main-votes for abstain in round r from honest parties.

402 G. Norman

Validity : We prove that if all honest parties have the same initial preference,
then all honest parties decide on this value in the initial round. Suppose all
honest parties have the same initial value v, then in round 1 the pre-votes of
all parties will be v, since all will see a majority of pre-processing votes for v (a
majority of pre-processing votes requires at least t+1 votes, that is, at least one
vote from an honest party). It then follows that all parties will have a main-vote
for v in round 1, and hence all decide on v in the first round.

Agreement : We prove that if the first honest party to decide decides on v
in round r, then all honest parties decide on v either in round r or round r + 1.
Therefore, suppose party i is the first honest party to decide and it decides on
v in round r. Then i must have received an honest main-vote for v, and hence,
by Lemma 1, there are no main-votes for ¬v in round r. Therefore, any party
that decides in round r must decide on v. Now, by Lemma 2, there are less
than n − 2t honest main-votes for abstain, and since a party reads at least
n − 2t honest main-votes, a party must receive an honest main-vote for some-
thing other than abstain in round r and Lemma 1 implies this must be for v.
Putting this together, all honest parties receive a main-vote for v and none for
¬v in round r, thus all have a pre-vote for v in round r+1. It follows that all will
have a main-vote for v in round r+1, and hence all will decide on v in round r+1.

In [83, 53] fully automated proofs of these properties, for all values of n, have
been given using the Cadence SMV [72] a proof assistant.

5.3 Fast Convergence: High Level Proof

Before we give an outline of the proof of Fast Convergence we need to intro-
duce the following notation. Let ρr ∈ {0, 1} be the value (when it exists) which
at least n−2t honest parties cast pre-votes for in round r. Since 2(n−2t) > n−t
(see Lemma 1), in any round, there cannot be n− 2t honest pre-votes for v and
for ¬v. Using this notation we introduce the following lemma.

Lemma 3. If an honest party receives a justified main-vote for abstain in
round r + 1, then ρr = 1 − F (r).

Proof. Suppose an honest party receives a justified main-vote for abstain in
round r + 1. Then the justification must include both a pre-vote for 0 and for 1
in round r +1. However, as in any round there cannot be main-votes for 0 and 1
(see Lemma 1), one of these pre-votes must be justified by the value of the coin
(F (r)) and the other by a main-vote (which must be for 1 − F (r)) in round r.
We also have that if there is a main-vote in round r for v, then there are at least
n− t pre-votes for v in round r, and hence at least n− 2t honest pre-votes for v
in round r. That is, we have v = ρr. Putting this together we have ρr = 1−F (r)
as required. ��

Lemma 3 implies that if ρr can be calculated before the coin F (r) “is tossed”,
then all parties will accept only main-votes for ρr in round r+1 with probability

Analysing Randomized Distributed Algorithms 403

1/2 (the probability that ρr = F (r)). However, if ρr is not determined until after
the coin is tossed, then the adversary may be able to set ρr = 1 − F (r), and
hence stop parties from agreeing. Note that, if ρr is undefined, then all parties
will vote for the value of the coin in round r + 1 and agreement is reached.

Consider the state where the (n − 2t)th honest party is about to reveal its
share of the coin F (r) and suppose that S is the set of parties which have fin-
ished round r. All the parties in S have already collected main-votes for round
r, and hence their pre-votes for round r + 1 are already determined. We have
two cases to consider:

– There exists a party in S which is going to vote for a determined v ∈ {0, 1}
(not for the coin). Then this party has received at least one main-vote for v
in round r. This means that ρr is determined and equals v, and hence the
value of ρr is determined before the coin F (r) is revealed.

– All parties in S will base their pre-vote in round r + 1 on the value of the
coin F (r). Now, since there are at least n− 2t honest parties in S, there will
be at least n − 2t pre-votes for F (r) in round r + 1. In this case, the only
possible value for ρr+1 is F (r), and therefore ρr+1 is determined before the
coin F (r + 1) is revealed.

Therefore, the probability of agreement within two rounds from any r > 1 is
at least 1/2, and hence the probability that an honest party advances by more
than 2r + 1 rounds is bounded above by 2−r.

The proof of Fast Convergence clearly depends on the probability values,
and hence cannot be verified using conventional model checking methods. How-
ever, from the proof we see that establishing this property reduces to analysing
the probabilistic aspects of the protocol over two arbitrary rounds. That is, the
complexity of having possibly unboundedly many rounds is removed from the
verification. In Section 5.4 we describe how we formulate an abstraction by con-
sidering only two arbitrary rounds, verify the correctness of the abstraction, and
prove Fast Convergence for finite configurations using the probabilistic mod-
el checker PRISM [54, 83]. In Section 5.5 we give an alternative proof of Fast
Convergence for an arbitrary number of parties, which is automated except
for one high-level inductive argument involving probabilistic reasoning.

5.4 Fast Convergence: Automated Verification

In this section we use PRISM, to verify Fast Convergence for finite configu-
rations (n = 4, . . . , 20). Based on the high level proof of Fast Convergence ,
for a fixed round r > 1 we construct an abstract protocol considering only the
main-votes for r − 1, all votes for round r and the pre-votes for r + 1. To ini-
tialise the abstract protocol we consider any possible combination of main-votes
for round r − 1 which satisfies the condition: there cannot be a main-vote for 0
and a main-vote for 1. This restriction holds for the full protocol (see Lemma 1).
Furthermore, we suppose that no party has decided in round r, that is, all par-
ties take part in round r and round r + 1 (if a party has decided in an earlier
round r′ < r, then by Agreement it follows that all honest parties will decide

404 G. Norman

by round r′ + 1 ≤ r). We only explicitly define the main-votes and pre-votes of
the honest parties, and express the votes of the corrupted parties in terms of the
honest parties votes using the assumptions we have made.

The times at which the coins of rounds r− 1 and r are flipped, that is, when
the (n − t)th share of the coin for rounds r − 1 and r are released, are also ab-
stracted. We suppose that this can happen any time after at least n− 2t honest
parties have collected the main-votes for round r − 1 that they require to cast
their pre-vote in round r. The fact that this condition is sufficient for the coin in
round r − 1 follows from the fact that n − t parties must give their share of the
coin to work out the value of the coin, and honest parties do not work out their
share until they have collected these main-votes from round r − 1. Since clearly
the coin in round r cannot be tossed before the coin in round r−1, requiring the
same condition for the coin in round r is also sufficient. Note that, although this
means that the coins for round r − 1 and r may be tossed earlier than would be
possible in the actual protocol, and hence give the adversary more power, these
requirements are sufficient for proving Fast Convergence .

Abstract Protocol. We now introduce the abstract protocol using the PRISM
description language which is a variant of reactive modules [4]. The basic com-
ponents of the language are modules and variables. A system is constructed as
a number of modules which can interact with each other. A module contains a
number of variables which express the state of the module, and its behaviour is
given by a set of guarded commands of the form:

[] <guard> → <command>;

The guard is a predicate over the variables of the system and the command de-
scribes a transition which the module can make if the guard is true (using primed
variables to denote the next values of variables). If a transition is probabilistic,
then the command is specified as:

<prob> : <command> + · · · + <prob> : <command>

To construct the abstract protocol, we define a module for the adversary which
decides on the main-votes in round r − 1, modules for the coins in rounds r − 1
and r, and modules for each honest party. The abstract protocol is then defined
as the asynchronous parallel composition of these modules:

adversary ||| coinr−1 ||| coinr ||| party1 ||| · · · ||| partyn−t.

We let N = n− t, the number of honest parties, and M = n− 2t, the minimum
number of main-votes (pre-votes) from honest parties required before a pre-vote
(main-vote) can be made. Also, in the construction of the protocol, we define
certain variables which can be updated by any module, which for example count
the number of parties that have made a certain pre-vote. We achieve this by
using global variables.

Module for the Adversary. The adversary decides on the main-votes in round
r − 1 and the only restriction we impose is that there cannot be votes for both

Analysing Randomized Distributed Algorithms 405

0 and 1. We suppose that there are always main-votes for abstain, and honest
parties can decide on pre-votes after reading any. Instead boolean variables are
used to denote whether there are main-votes for 0 and 1. The adversary has the
following structure:

module adversary

mr−1
0 : [0..1]; // main-vote for 0 in round r − 1

mr−1
1 : [0..1]; // main-vote for 1 in round r − 1

[] (mr−1
0 =0) ∧ (mr−1

1 =0) → (mr−1′

0 =1); // choose 0
[] (mr−1

0 =0) ∧ (mr−1
1 =0) → (mr−1′

1 =1); // choose 1

endmodule

Note that, before the adversary makes this choice, we suppose there are only
abstain votes in round r − 1.

Modules for the Coins. The coin for round r − 1 can be be tossed once n − 2t
honest parties have decided on their pre-vote for round r and use the (global)
variable nr with range [0..M] to count the number of parties who have decided
on their pre-vote in round r (nr is updated by honest parties when they have
decided on their pre-vote for round r).

module coinr−1

cr−1 : [0..1]; // local state of the coin (0 not tossed and 1 tossed)
vr−1 : [0..1]; // value of the coin

// wait until nr ≥ M before tossing the coin
[] (cr−1=0) ∧ (nr≥M)→0.5 : (v′

r−1=0) ∧ (c′r−1=1)+0.5 : (v′
r−1=1) ∧ (c′r−1=1);

endmodule

The coin for round r is similar and is constructed by renaming coinr−1 as follows:

module coinr = coinr−1[cr−1 = cr, vr−1 = vr] endmodule

Modules for the Parties. The local state of this party i is represented by the
variable si ∈ {0, . . . , 9} with following interpretation:

0 - read main-votes in round r − 1 and decide on a pre-vote for round r;
1 - cast pre-vote for 0 in round r;
2 - cast pre-vote for 1 in round r;
3 - cast pre-vote for coin in round r;
4 - read pre-votes and cast main-vote in round r;
5 - read main-votes in round r and decide on a pre-vote for round r + 1;
6 - cast pre-vote for coin in round r + 1;
7 - cast pre-vote for 0 in round r + 1;

406 G. Norman

8 - cast pre-vote for 1 in round r + 1;
9 - finished.

The module of party i has the form:
module party i

si : [0..9]; // local state of party i

[] . . .
...

...

endmodule

where the transitions are dependent upon the local state of the party, what votes
have been cast and the values of the coins. We now consider each state of the
party in turn.

Read main-votes in round r–1 and decide on a pre-vote for round
r: Recall that, before the adversary has chosen which of 0 and 1 is a possible
main-vote for round r − 1, there are only main votes for abstain, and hence the
only pre-vote the party can have is for the coin. However, once the adversary
has chosen between 0 and 1 there can be pre-votes for either this value or the
coin (since we suppose there are always main-votes for abstain). Since we do
not restrict the number of main-votes the party must read before choosing its
pre-vote in round r, the transition rules for reading main-votes in round r − 1
are given by:

[] (si=0) ∧ (mr−1
0 =1) → (s′i=1) ∧ (n′

r= min(M, nr+1)) // pre-vote for 0
[] (si=0) ∧ (mr−1

1 =1) → (s′i=2) ∧ (n′
r= min(M, nr+1)) // pre-vote for 1

[] (si=0) → (s′i=3) ∧ (n′
r= min(M, nr+1)) // pre-vote for coin

Note that, the party increments the variable nr once it has finished reading
main-votes in round r − 1 and decided on a pre-vote for round r.

Cast pre-votes in round r: In this state a party has either already decided
on its pre-vote, or it will be based on the value of the coin, and hence it must
wait for the coin to be tossed. We introduce the variables (which will be needed
for parties to decide on their main-votes in round r) pr

v, for v = 0, 1, which count
the number of pre-vote for v in round r. The transition rules of the party in this
state are given by:

[] (si=1) → (s′i=5) → (pr′

0 =pr
0+1); // cast pre-vote for 0

[] (si=2) → (s′i=5) → (pr′

1 =pr
1+1); // cast pre-vote for 1

// cast pre-vote for the coin
[] (si=3) ∧ (cr−1=1) ∧ (vr−1=0) → (s′i=5) ∧ (pr′

0 =pr
0+1);

[] (si=3) ∧ (cr−1=1) ∧ (vr−1=1) → (s′i=5) ∧ (pr′

1 =pr
1+1);

Note that the global variables pr
0 and pr

1 are incremented when the party casts
its vote.

Analysing Randomized Distributed Algorithms 407

Read pre-votes and cast main-vote in round r: A party must wait until
sufficiently many (n − t) pre-votes in round r have been cast, and hence until
n−2t honest parties have cast their pre-vote, that is, pr

0 +pr
1 ≥ M . For the party

to cast a main-vote for abstain, it must receive a pre-vote for 0 and for 1 which
can be from either an honest or corrupted party. To receive an honest vote for
v ∈ {0, 1}, an honest party must have voted for this value, that is, pr

v > 0. On the
other hand, to receive a corrupted vote for v, either this is the value of the coin,
or the corrupted party received a main-vote in the previous round for v, that is,
vv = 0 or mr−1

v = 1. To cast a main-vote for v ∈ {0, 1}, the party must at least
have received at least n−2t honest pre-votes for v. Before we give the transition
rules we need the following boolean global variables: mr

v for v ∈ {0, 1, abstain}
to indicate what main-votes have been made. Note that, again, we only record
if there is a main-vote for a value as opposed to the total number of votes. The
transition rules are then given by:

// main-vote for abstain
[] (si=4) ∧ (pr

0+pr
1 ≥ M) ∧ ((pr

0 > 0) ∨ (v1=0) ∨ (mr−1
0 =1))∧

((pr
1 > 0) ∨ (v1=1) ∨ (mr−1

1 =1)) → (s′i=5) ∧ (mr′

abs=1)
// main-vote for 0
[] (si=4) ∧ (pr

0+pr
1 ≥ M) ∧ (pr

0 ≥ M) → (s′i=5) ∧ (mr′

0 =1)
// main-vote for 1
[] (si=4) ∧ (pr

0+pr
1 ≥ M) ∧ (pr

1 ≥ M) → (s′i=5) ∧ (mr′

1 =1)

The global variables mr
0, mr

1 and mr
abs are updated when the party decides.

Read main-votes in round r and decide on a pre-vote for round r +1:
To vote for the coin, the party must have received abstain votes from an honest
party (again this is a requirement but is not sufficient in the actual protocol). To
vote for v ∈ {0, 1} the party needs at least one vote for v from either an honest
or corrupted party. To get such a vote from a corrupted party there needs to
be at least n − 2t honest main-votes for v in round r. The transition rules for
reading the main-votes are therefore given by:

[] (si=5) ∧ (mr
abs=1) ∧ (mr

0=0) ∧ (mr
1=0) → (s′i=6) // pre-vote for coin

[] (si=5) ∧ ((mr
0=1) ∨ (pr

0 ≥ M)) → (s′i=7) // pre-vote for 0
[] (si=5) ∧ ((mr

1=1) ∨ (pr
1 ≥ M)) → (s′i=8) // pre-vote for 1

Cast pre-votes in round r + 1: Since we are only concerned with finding
whether all pre-votes are the same or not, we introduce just (global) boolean
variables indicating that a pre-vote for this value has been cast or not, that
is pr+1

v for v = 0, 1. The transition rules then follow similarly the cases for
si = 1, 2, 3 above:

[] (si=7) ∧ (cr=1) → (s′i=9) ∧ (pr+1′

0 =1); // cast pre-vote for 0
[] (si=8) ∧ (cr=1) → (s′i=9) ∧ (pr+1′

1 =1); // cast pre-vote for 1
// cast pre-vote for the coin
[] (si=6) ∧ (cr=1) ∧ (vr=0) → (s′i=9) ∧ (pr+1′

0 =1);
[] (si=6) ∧ (cr=1) ∧ (vr=1) → (s′i=9) ∧ (pr+1′

1 =1);

408 G. Norman

This completes the possible transitions of party i. To construct further parties
we use renaming, for example:

module partyj = party i[si = sj] endmodule

Correctness of the Abstract Protocol. To prove the correctness of the ab-
stract model constructed in PRISM, we follow the method presented in [58] for
timed probabilistic systems. This method reduces the verification of the correct-
ness of the abstraction to constructing non-probabilistic variants of the abstract
and concrete models and checking trace refinement between these systems. The
method is reliant on encoding the probabilistic information and choices of the
adversary in actions during model construction. Since the Cadence SMV lan-
guage does not support actions, we use the process algebra CSP [88] and the
model checker FDR [31].

More formally, we hand-translate both the abstract protocol and the full
protocol (restricted to two arbitrary rounds) into CSP, encoding both the prob-
abilistic choices and the possible non-deterministic choices of the adversary into
the actions of the CSP processes. Using the tool FDR we were then able to show
that the concrete protocol is a trace refinement of the abstract protocol, and
hence the correctness of our abstraction. Note that we were only able to do this
for finite configurations. For further details and the FDR code see the PRISM
web page [83].

Model Checking Results. The property we wish to verify is that from the
initial state, with probability at least 0.5, all honest parties have the same pre-
vote in round r + 1, and hence decide by round r + 1. This property can be
expressed by the PCTL formula:

P≥0.5

[

true U
(

N∧

i=1

si=9

)

∧
(
(pr+1

0 =1 ∧ pr+1
1 =0) ∨ (pr+1

0 =0 ∧ pr+1
1 =1)

)
]

.

On all models constructed this property does indeed hold. A summary of the
model checking results obtained for the abstract protocol in PRISM is included
in Figure 4, where all experiments were run on a 440 MHz SUN Ultra 10 work-
station with 512 Mb memory under the Solaris 2.7 operating system. Further
details of the experiments can be found at the PRISM web page [83].

5.5 Fast Convergence: Parametric Verification

In this section we give a proof of Fast Convergence for any number of par-
ties. The proof is fully automated except for one high-level inductive argument
involving probabilistic reasoning. The proof demonstrates how to separate the
probabilistic and nondeterministic behaviour and isolate the probabilistic argu-
ments in the proof of correctness.

The high-level probabilistic argument is based on a number of properties (P1
– P6) that can be proved by non-probabilistic reasoning, and have been proved

Analysing Randomized Distributed Algorithms 409

n t number of construction model checking minimum
states time (sec) time (sec) probability

4 1 16,468 3.00 1.49 0.5

5 1 99,772 5.41 4.86 0.5

6 1 567,632 8.53 7.81 0.5

7 2 1,303,136 10.9 16.0 0.5

8 2 8,197,138 20.0 24.4 0.5

9 2 5.002e+7 27.0 36.5 0.5

10 3 9.820e+7 33.8 58.9 0.5

11 3 6.403e+8 62.4 85.1 0.5

12 3 4.089e+9 75.4 114 0.5

13 4 7.247e+9 98.3 167 0.5

14 4 4.856e+10 157 282 0.5

15 4 3.199e+11 194 470 0.5

16 5 5.273e+11 241 651 0.5

17 5 3.605e+12 363 987 0.5

18 5 2.429e+13 610 1,318 0.5

19 6 3.792e+13 694 1,805 0.5

20 6 2.632e+14 1,079 2,726 0.5

Fig. 4. Model checking results for PRISM

in the Cadence SMV proof assistant for an arbitrary number of parties. Here
we state them in English; for the corresponding formal statements and Cadence
SMV proofs see [83]. First we proved that, for any party that enters round r +1
and does not decide in round r:

P1 If before the coin in round r is tossed there is a concrete pre-vote (i.e. a vote
not based on the value of the coin) for v in round r + 1 and after the coin
in round r is tossed it equals v, then the party decides in round r + 1.

P2 If before the coin in round r is tossed there are no concrete pre-votes in
round r+1, then either the party decides in round r+1, or if after the coins
in round r and round r +1 are tossed they are equal, then the party decides
in round r + 2.

In addition, we proved that the following properties hold.

P3 If the coin in round r has not been tossed, then neither has the coin in round
r + 1.

P4 In any round r there cannot be concrete pre-votes for 0 and 1.
P5 In any round r, if there is a concrete pre-vote for v ∈ {0, 1}, then in all

future states there is a concrete pre-vote for v.
P6 Each coin is only tossed once.

We complete the proof of Fast Convergence with a simple manual proof based
on the following classification of protocol states:

– let Undec(r) be the set of states in which the coin in round r−1 is not tossed
and there are no concrete pre-votes in round r;

410 G. Norman

– for v ∈ {0, 1}, let Pre-vote(r, v) be the set of states where the coin in round
r − 1 is not tossed and there is a concrete pre-vote for v in round r.

It follows from P4 that these sets are pairwise disjoint and any state where the
coin in round r − 1 is not tossed is a member of one of these sets. The following
proposition is crucial to establishing the efficiency of the protocol.

Proposition 2. In an idealised system, where the values of the coins in rounds
1, 2, . . . , 2r − 1 are truly random, the probability of a party advancing by more
than 2r + 1 rounds is bounded above by 2−r.

Proof. We prove the proposition by induction on r ∈ N. The case when r = 0 is
trivial since the probability bound is 1. Now suppose that the proposition holds
for some r ∈ N and suppose a party enters round 2r + 1. If a party decides in
round 2r, then by Agreement all parties will decide by round 2r+1, and hence
the probability that a party enters round 2r+3 given a party enters round 2r+1
is bounded above by 0. On the other hand, if no party decides in round 2r, then
by Proposition 1(a) the coin for round 2r is tossed. For any state s reached just
before the coin is tossed we have two cases to consider:

– s ∈ Pre-vote(2r + 1, v) for some v ∈ {0, 1}: by P1, if the coin in round 2r
equals v, any party which enters round 2r + 1 decides in round 2r + 1, and
hence using P6 it follows that the probability of a party advancing more
than 2r + 3 rounds given that a party advances more than 2r + 1 rounds is
bounded above by 1/2.

– s ∈ Undec(2r +1): using P5, there are no concrete pre-votes in round 2r +1
before the coin in round 2r + 1 is tossed, and hence by P2 any party either
decides in round 2r + 1, or, if the coins in round 2r and 2r + 1 are equal,
it decides in round 2r + 2. Now, since in s the coin for round 2r has not
been tossed, by P3 neither has the coin for round 2r + 1. Therefore, using
Proposition 1 and P6 it follows that the probability of a party advancing
more than 2r+3 rounds given that a party advances more than 2r+1 rounds
is bounded above by 1/2.

Putting this together and since P(A ∩ B) = P(A|B) · P(B), we have

P(a party advances >2r+3 rounds)
= P(a party advances >2r+3 rounds and a party advances >2r+1 rounds)
= P(a party advances >2r+3 rounds | a party advances >2r+1 rounds) ·

P(a party advances >2r+1 rounds)
≤ 1/2 · 2−r = 2−(r+1)

as required. ��

It can be argued that in a real system the probability of a party advancing by
more than 2r+1 rounds is bounded above by 2−r +ε, where ε is negligible. This
follows from the Unpredictability property of the coin tossing scheme and P6;
for more details see [10].

Analysing Randomized Distributed Algorithms 411

In addition to Fast Convergence we can directly prove that the proto-
col guarantees Probabilistic Termination in a constant expected number of
rounds by using probabilistic complexity statements. As in [82], the complexity
measure of interest corresponds to the increase in the maximum round number
among all the parties. We now sketch the argument for proving that the pro-
tocol guarantees Probabilistic Termination in a constant expected number
of rounds using the probabilistic complexity statements. First, let φMaxRound be
the complexity measure that corresponds to the increase in the maximum round
number among all the parties, and define the following sets of states:

– R, the set of reachable states of the protocol;
– D, the set of reachable states of the protocol in which all parties have decided;
– Undec, the set of states in which the coin in round rmax − 1 is not tossed

and there are no concrete pre-votes in round rmax, where rmax is the current
maximum round number among all parties;

– Pre-vote(v), the set of states where the coin in round rmax − 1 is not tossed
and there is a concrete pre-vote for v in round rmax, where rmax is the current
maximum round number among all parties.

Next we require the following property (which is straightforward to prove in Ca-
dence SMV): from any state (under any fair scheduling of the non-determinism)
the maximum round increases by at most one before we reach a state where either
all parties have decided or the coin in the maximum round has not been tossed,
which can be expressed as the following probabilistic complexity statement:

R φMaxRound≤1−−−−−−−−→1 D ∪ Undec ∪ Pre-vote(0) ∪ Pre-vote(1) .

Applying similar arguments to those given in Proposition 2 we can show that
the following probabilistic complexity statements hold:

Undec
φMaxRound≤2−−−−−−−−→ 1

2
D and Pre-vote(v)

φMaxRound≤2−−−−−−−−→ 1
2
D for v ∈ {0, 1}.

Alternatively, one could use coin lemmas [92, 34] to validate these probabilistic
complexity statements. Then, using the compositionality result of complexity
statements [91] and the fact that the sets Undec, Pre-vote(0) and Pre-vote(1)
are disjoint, the above complexity statements can be combined to give:

R φMaxRound≤2+1−−−−−−−−−→1· 12 D ,

that is, from any state of the protocol the probability of reaching a state where
all parties have decided while the maximum round increases by at most 3 is at
least 1/2. Finally, again using results presented in [91], it follows that from any
state of the protocol all parties decide within at most O(1) rounds.

6 Discussion and Conclusions

We have presented a number of techniques that can be applied to the analy-
sis of randomized distributed algorithms. The main problem in verifying such

412 G. Norman

algorithms is correctly dealing with the interplay between probability and non-
determinism. A number of approaches exist however, the lesson to be learnt
when dealing with complex randomized distributed algorithms is to first try
and separate the probabilistic reasoning to a small isolated part of the protocol.
This then simplifies the probabilistic arguments and allows one to use standard
non-probabilistic techniques in the majority of the verification.

The differing techniques have been used to verify a number of different ran-
domized distributed algorithms and it can be seen that both the structure of the
protocol under study and the type of property being verified has influence over
the applicability of each approaches and how easy it is to apply.

It may be beneficial to consider new methods for verification for example
based on the techniques developed in the areas of performance analysis and the
extensive literature concerning dynamic programming and Markov Decision Pro-
cesses. In particular, it would be useful to examine how methods using rewards
can be incorporated in these approaches, for example to compute the expected
number of rounds.

With regards to computer-aided verification, state-of-the-art probabilistic
model checking tools are applicable to only complete, finite state models. On
the other hand, there exist non-probabilistic model checkers which can deal with
parametric and infinite state programs, however they do not support probabilis-
tic reasoning. A fully automated proof of correctness of randomized distributed
algorithms could feasibly be derived using a theorem prover e.g. [43]. An alter-
native goal is to develop proof techniques for probabilistic systems in the style
of for example Cadence SMV, incorporating both those used in Cadence SMV
and the proof rules for probabilistic complexity statements following [91]. Given
an implementation of such rules as a layer on top of, for example, the PRISM
model checking tool, one may be able to fully automate the proof of correctness
of complex randomized distributed algorithms.

References

1. S. Aggarwal and S. Kutten. Time-optimal self stabilizing spanning tree algo-
rithms. In R. Shyamasundar, editor, Proc. Foundations of Software Technology
and Theoretical Computer Science, volume 761 of LNCS, pages 15–17. Springer,
1993.

2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time
systems. In J. Albert, B. Monien, and M. Rodŕf8guez-Artalejo, editors, Proc. Int.
Col. Automata, Languages and Programming (ICALP’91), volume 510 of LNCS,
pages 115–136. Springer, 1991.

3. R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense real-time. In-
formation and Computation, 104(1):2–34, 1993.

4. R. Alur and T. Henzinger. Reactive modules. Formal Methods in System Design,
15:7–48, 1999.

5. J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory.
Journal of Algorithms, 11(3):441–460, 1990.

Analysing Randomized Distributed Algorithms 413

6. C. Baier, M. Huth, M. Kwiatkowska, and M. Ryan, editors. Proc. Int. Work-
shop Probabilistic Methods in Verification (PROBMIV’98), volume 22 of ENTCS.
Elsevier Science, 1998.

7. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11:125–155, 1998.

8. M. Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols. In Proc. Symp. Principles of Distributed Computing (PODC’83),
pages 27–30. ACM Press, 1983.

9. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In P. Thiagarajan, editor, Proc. Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’95), volume 1026 of LNCS, pages
499–513. Springer, 1995.

10. C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchro-
nous broadcast protocols (extended abstract). In J. Kilian, editor, Proc. Advances
in Cryptology - CRYPTO 2001, volume 2139 of LNCS, pages 524–541. Springer,
2001.

11. C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople: prac-
tical asynchronous Byzantine agreement using cryptography (extended abstract).
In Proc. Symp. Principles of Distributed Computing (PODC’00), pages 123–132.
ACM Press, 2000.

12. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

13. R. Cleaveland, S. Smolka, and A. Zwarico. Testing preorders for probabilistic
processes. In W. Kuich, editor, Proc. Int. Col. Automata, Languages and Pro-
gramming (ICALP’92), volume 623 of LNCS, pages 708–719. Springer, 1992.

14. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

15. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for stat-
ic analysis of programs by construction or approximation of fixpoints. In Proc.
Symp. Principles of Programming Languages (POPL’77), pages 238–252. ACM
Press, 1977.

16. S. Creese and A. Roscoe. Data independent induction over structured networks.
In H. Arabnia, editor, Proc. Int. Conf. Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’00), volume II. CSREA Press, 2000.

17. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In de Alfaro and Gilmore [24],
pages 39–56.

18. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reduction and refinement
strategies for probabilistic anylsis. In Hermanns and Segala [42], pages 57–76.

19. C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of the IEEE
1394 root contention protocol with KRONOS and PRISM. In Proc. Int. Work-
shop Formal Methods for Industrial Critical Systems (FMICS’02), volume 66(2)
of ENTCS. Elsevier Science, 2002.

20. L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997.

21. L. de Alfaro. Temporal logics for the specification of performance and reliabili-
ty. In R. Reischuk and M. Morvan, editors, Proc. Symp. Theoretical Aspects of
Computer Science (STACS’97), volume 1200 of LNCS, pages 165–176. Springer,
1997.

22. L. de Alfaro. From fairness to chance. In Baier et al. [6].

414 G. Norman

23. L. de Alfaro. How to specify and verify the long-run average behaviour of prob-
abilistic systems. In Proc. Symp. Logic in Computer Science (LICS’98), pages
454–465. IEEE Computer Society Press, 1998.

24. L. de Alfaro and S. Gilmore, editors. Proc. Int. Workshop Process Algebra and
Probabilistic Methods, Performance Modeling and Verification (PAPM/PROB-
MIV’01), volume 2165 of LNCS. Springer, 2001.

25. L. de Alfaro, T. Henzinger, and R. Jhala. Compositional methods for probabilistic
systems. In Larsen and Nielsen [60], pages 351–365.

26. C. Derman. Finite-State Markovian Decision Processes. New York: Academic
Press, 1970.

27. E. Dijkstra. A Discipine of Programming. Prenticec Hall International, 1976.
28. S. Dolev, A. Israeli, and S. Moran. Analyzing expected time by scheduler-luck

games. IEEE Transactions on Software Engineering, 21(5):429–439, 1995.
29. M. Duflot, L. Fribourg, and C. Picaronny. Randomized finite-state distributed

algorithms as Markov chains. In J. Welch, editor, Proc. Distributed Computing
(DISC’2001), volume 2180 of LNCS, pages 240–254. Springer, 2001.

30. M. Duflot, L. Fribourg, and C. Picaronny. Randomized dining philosophers with-
out fairness assumption. In Proc. IFIP Int. Conf. Theoretical Computer Science
(TCS’02), volume 223 of IFIP Conference Proceedings, pages 169–180. Kluwer
Academic, 2002.

31. Failures divergence refinement (FDR2). Formal Systems (Europe) Limited,
http://www.formal.demon.co.uk/FDR2.html.

32. W. Feller. An Introduction to Probability Theory and its Applications, volume 1.
John Wiley & Sons, 1950.

33. M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(5):374–382, 1985.

34. K. Folegati and R. Segala. Coin lemmas with random variables. In de Alfaro and
Gilmore [24], pages 71–86.

35. H. Hansson. Time and Probability in Formal Design of Distributed Systems. El-
sevier, 1994.

36. H. Hansson and B. Jonsson. A calculus for communicating systems with time
and probabilities. In Proc. Real-Time Systems Symposium, pages 278–287. IEEE
Computer Society Press, 1990.

37. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(4):512–535, 1994.

38. S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent pro-
grams. ACM Transactions on Programming Languages and Systems, 5(3):356–
380, 1983. A preliminary version appeared in Proc. ACM Symp. Principles of
Programming Languages, pages 1–6, 1982.

39. T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. In Proc. Symp. Logic in Computer Science (LICS’98), pages
394–406. IEEE Computer Society Press, 1992.

40. T. Henzinger, S. Qadeer, and S. Rajamani. You assume, we guarantee: Method-
ology and case studies. In A. Hu and M. Vardi, editors, Proc. Computer-aided
Verification (CAV’98), volume 1427 of LNCS, pages 440–451. Springer, 1998.

41. T. Herman. Probabilistic self stabilisation. Information Processing Letters,
35(2):63–67, 1990.

42. H. Hermanns and R. Segala, editors. Proc. Int. Workshop Process Algebra and
Probabilistic Methods, Performance Modeling and Verification (PAPM/PROB-
MIV’02), volume 2399 of LNCS. Springer, 2002.

Analysing Randomized Distributed Algorithms 415

43. Joe Hurd. Verification of the Miller-Rabin probabilistic primality test. In R. Boul-
ton and P. Jackson, editors, TPHOLs 2001: Supplemental Proceedings, number
EDI-INF-RR-0046 in Informatics Report Series, pages 223–238. Division of Infor-
matics, University of Edinburgh, 2001.

44. Joe Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University
of Cambridge, 2002.

45. Michael Huth and Marta Kwiatkowska. Quantitative analysis and model check-
ing. In Proc. Symp. Logic in Computer Science (LICS’97), pages 111–122. IEEE
Computer Society Press, 1997.

46. IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std
1394–1995. August 1996.

47. A. Israeli and M. Jalfon. Token management schemes and random walks yield self-
stabilizing mutual exclusion. In Proc. Symp. Principles of Distributed Computing
(PODC’90), pages 119–131. ACM Press, 1990.

48. B. Jonnsson and K.G. Larsen. Specification and refinement of probabilistic pro-
cesses. In Proc. Symp. Logic in Computer Science (LICS’91), pages 266–277.
IEEE Computer Society Press, 1991.

49. B. Jonsson and J. Parrow, editors. Proc. Int. Conf. Concurrency Theory (CON-
CUR’94), volume 836 of LNCS. Springer, 1994.

50. Y. Kesten and A. Pnueli. Control and data abstraction: the cornerstone of prac-
tical formal verification. Software Tools for Technology Transfer, 4(2):328–342,
2000.

51. Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in action. In
L. Brim, P. Jancar, M. Kretinsky, and A. Kucera, editors, Proc. CONCUR’02 –
Concurrency Theory, volume 2421 of LNCS, pages 101–115. Springer, 2002.

52. E. Kushilevitz and M. Rabin. Randomized mutual exclusion algorithm revisited.
In PODC92 [80], pages 275–284.

53. M. Kwiatkowska and G. Norman. Verifying randomized Byzantine agreement. In
D. Peled and M. Vardi, editors, Proc. Formal Techniques for Networked and Dis-
tributed Systems (FORTE’02), volume 2529 of LNCS, pages 194–209. Springer,
2002.

54. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbol-
ic model checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, edi-
tors, Proc. Modelling Techniques and Tools for Computer Performance Evaluation
(TOOLS’02), volume 2324 of LNCS, pages 200–204. Springer, April 2002.

55. M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a random-
ized distributed consensus protocol using Cadence SMV and PRISM. In G. Berry,
H. Comon, and A. Finkel, editors, Proc. Int. Conf. Computer Aided Verification
(CAV’01), volume 2102 of LNCS, pages 194–206. Springer, 2001.

56. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282:101–150, 2002.

57. M. Kwiatkowska, G. Norman, and J. Sproston. Symbolic computation of maximal
probabilistic reachability. In Larsen and Nielsen [60], pages 169–183.

58. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of
deadline properties in the IEEE 1394 FireWire root contention protocol. Special
Issue of Formal Aspects of Computing, 2002. To appear.

59. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of
the IEEE 802.11 wireless local area network protocol. In Hermanns and Segala
[42], pages 169–187.

416 G. Norman

60. K. Larsen and M. Nielsen, editors. Proc. CONCUR’01: Concurrency Theory,
volume 2154 of LNCS. Springer, 2001.

61. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991. Preliminary version of this paper appeared in
Proc. 16th Annual ACM Symposium on Principles of Programming Languages,
pages 134-352, 1989.

62. R. Lassaigne and S. Peyronnet. Approximate verification of probabilistic systems.
In Hermanns and Segala [42], pages 213–214.

63. D. Lehmann and M. Rabin. On the advantage of free choice: A symmetric and
fully distributed solution to the dining philosophers problem (extended abstract).
In Proc. Symp. on Principles of Programming Languages (POPL’81), pages 133–
138. ACM Press, 1981.

64. G. Lowe. Probabilities and Priorities in Timed CSP. PhD thesis, Oxford Univer-
sity Computing Laboratory, 1993.

65. G. Lowe. Representing nondeterministic and probabilistic behaviour in reactive
processes. Technical Report PRG-TR-11-93, Oxford University Computing Lab-
oratory, 1993.

66. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
67. N. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distribut-

ed algorithms. In Proc. Symp. Principles of Distributed Computing (PODC’94),
pages 314–323. ACM Press, 1994.

68. A. McIver. Quantitative program logic and expected time bounds in probabilistic
distributed algorithms. Theoretical Computer Science, 282:191–219, 2002.

69. A. McIver and C. Morgan. An expectation-based model for probabilistic temporal
logic. Logic Journal of the IGPL, 7(6):779–804, 1999.

70. A. McIver, C. Morgan, and E. Troubitsyna. The probabilistic steam boiler: a
case study in probabilistic data refinement. In J. Grundy, M. Schwenke, and
T. Vickers, editors, Proc. Int. Refinement Workshop and Formal Methods Pacific
1998, Discrete Mathematics and Theoretical Computer Science, pages 250–265.
Springer, 1998.

71. K. McMillan. Verification of infinite state systems by compositional model check-
ing. In L. Pierre and T. Kropf, editors, Proc. Advanced Research Working Con-
ference on Correct Hardware Design and Verification Methods (CHARME’99),
volume 1703 of LNCS, pages 219–233. Springer, 1999.

72. K. McMillan. A methodology for hardware verification using compositional model
checking. Science of Computer Programming, 37(1–3):279–309, 2000.

73. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
74. C. Morgan and A. McIver. pGL: Formal reasoning for randomized distributed

algorithms. South African Computer Journal, pages 14–27, 1999.
75. C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM

Transactions on Programming Languages and Systems, 18(3):325–353, 1996.
76. C. Morgan, A. McIver, K. Seidel, and J. Sanders. Refinement-oriented probability

for CSP. Formal Aspects of Computing, 8(6):617–647, 1996.
77. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
78. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-

tributed Computing, 1(1):53–72, 1986.
79. A. Pnueli and L. Zuck. Probabilistic verification. Information and Computation,

103:1–29, 1993.
80. Proc. Symp. Principles of Distributed Computing (PODC’92). ACM Press, 1992.

Analysing Randomized Distributed Algorithms 417

81. A. Pogosyants and R. Segala. Formal verification of timed properties of random-
ized distributed algorithms. In Proc. Symp. Principles of Distributed Computing
(PODC’95), pages 174–183. ACM Press, 1995.

82. A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized con-
sensus algorithm of Aspnes and Herlihy: a case study. Distributed Computing,
13(3):155–186, 2000.

83. PRISM web page. http://www.cs.bham.ac.uk/˜dxp/prism/.
84. M. Rabin. N -process mutual exclusion with bounded waiting by 4 log2 N -valued

shared variable. Journal of Computer and System Sciences, 25(1):66–75, 1982.
85. M. O. Rabin. Probabilistic algorithms. In J. Traub, editor, Algorithms and Com-

plexity: New Directions and Recent Results, pages 21–39. Academic Press, New
York, 1976.

86. RAPTURE web page. http://www.irisa.fr/prive/bjeannet/prob/prob.html.
87. M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM Trans-

actions on Information and System Security (TISSEC), 1(1):66–92, 1998.
88. A. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
89. A. Saias. Randomness versus Non-Determinism in Distributed Computing. PhD

thesis, Massachusetts Institute of Technology, 1994.
90. I. Saias. Proving probabilistic correctness statements: the case of Rabin’s algo-

rithm for mutual exclusion. In PODC92 [80], pages 263–274.
91. R. Segala. Modelling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, Massachusetts Institute of Technology, 1995.
92. R. Segala. The essence of coin lemmas. In Baier et al. [6].
93. R. Segala. Verification of randomized distributed algorithms. In E. Brinksma,

H. Hermanns, and J.-P. Katoen, editors, Lectures on Formal Methods and Per-
formance Analysis (First EEF/Euro Summer School on Trends in Computer Sci-
ence), volume 2090 of LNCS, pages 232–260. Springer, 2001.

94. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
Jonsson and Parrow [49], pages 481–496.

95. V. Shmatikov. Probabilistic analysis of anonymity. In Proc. Computer Securi-
ty Foundations Workshop (CSFW’02), pages 119–128. IEEE Computer Society
Press, 2002.

96. V. Shoup. Practical threshold signatures. In B. Preneel, editor, Proc. Advanc-
es in Cryptology - EUROCRYPT 2000, volume 1807 of LNCS, pages 207–220.
Springer, 2000.

97. T. Speed. Probabilistic risk assessment in the nuclear industry : WASH-1400
and beyond. In L. LeCam and R. Olshen, editors, Proc. Berkeley Conference in
honour of Jerzy Neyman and Jack Kiefer. Wadsworth Inc., 1985.

98. E. Stark and G. Pemmasani. Implementation of a compositional performance
analysis algorithm for probabilistic I/O automata. In J. Hillston and M. Sil-
va, editors, Proc. Int. Workshop Process Algebra and Performance Modelling
(PAPM’99), pages 3–24. Prensas Universitarias de Zaragoza, 1999.

99. E. Stark and S. Smolka. Compositional analysis of expected delays in networks of
probabilistic I/O automata. In Proc. Symp. Logic in Computer Science (LICS’98),
pages 466–477. IEEE Computer Society Press, 1988.

100. M. Stoelinga and F. Vaandrager. Root contention in IEEE 1394. In J.-P. Ka-
toen, editor, Proc. AMAST Workshop on Real-Time and Probabilistic Systems
(ARTS’99), volume 1601 of LNCS, pages 53–74. Springer, 1999.

101. M. Vardi. Automatic verification of probabilistic concurrent finite state programs.
In Proc. Symp. Foundations of Computer Science (FOCS’85), pages 327–338.
IEEE Computer Society Press, 1985.

418 G. Norman

102. M. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. Symp. Logic in Computer Science (LICS’86), pages 332–344.
IEEE Computer Society Press, 1986.

103. S-H. Wu, S.A. Smolka, and E.W. Stark. Composition and behaviour of probabi-
listic I/O automata. In Jonsson and Parrow [49], pages 513–528.

104. Wang Yi and K.G. Larsen. Testing probabilistic and non-deterministic process-
es. In R. Linn Jr. and M. Ümit Uyar, editors, Protocol Specification, Testing and
Verification, volume C-8 of IFIP Transactions, pages 47–61. North-Holland, 1992.

105. L. Zuck, A. Pnueli, and Y. Kesten. Automatic verification of probabilistic free
choice. In A. Cortesi, editor, Proc. Verification, Model Checking, and Abstract
Interpretation, Third International Workshop (VMCAI 2002), volume 2294 of
LNCS, pages 208–224. Springer, 2002.

