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Model checking probabilistic and stochastic
extensions of the π-calculus

Gethin Norman, Catuscia Palamidessi, David Parker and Peng Wu

Abstract— We present an implementation of model checking
for probabilistic and stochastic extensions of the π-calculus, a
process algebra which supports modelling of concurrency and
mobility. Formal verification techniques for such extensions have
clear applications in several domains, including mobile ad-hoc
network protocols, probabilistic security protocols and biological
pathways. Despite this, no implementation of automated verifi-
cation exists. Building upon the π-calculus model checker MMC,
we first show an automated procedure for constructing the under-
lying semantic model of a probabilistic or stochastic π-calculus
process. This can then be verified using existing probabilistic
model checkers such as PRISM. Secondly, we demonstrate how
for processes of a specific structure a more efficient, compositional
approach is applicable, which uses our extension of MMC on each
parallel component of the system and then translates the results
into a high-level modular description for the PRISM tool. The
feasibility of our techniques is demonstrated through a number
of case studies from the π-calculus literature.

Index Terms— Verification, Model checking, Markov processes,
Stochastic processes

I. INTRODUCTION

THE π-calculus [1] is a process algebra for modelling
concurrency and mobility. It has been used to model,

for example, communication protocols for dynamic network
topologies, security protocols and biological pathways. For
each class of systems, probabilistic and stochastic behaviour
are often also key ingredients. Mobile ad-hoc network proto-
cols, for example, can exhibit probabilistic behaviour through
either communication failures or random back-off procedures.
Similarly, randomisation is frequently applied in security pro-
tocols, e.g. for anonymity [2] or contract-signing [3]. For
biological systems, the times between reactions are of a
stochastic nature.

Consequently, suitable variants of the π-calculus have been
developed: probabilistic versions, for example [4], which ex-
tend the original calculus with discrete probabilistic choice,
have been proposed as a formalism to model and reason
about randomised security protocols [5], [6]; and stochastic
extensions, for example [7], which augment the calculus with
exponential delays, have been shown to be a suitable formal-
ism for modelling and reasoning about complex biological
pathways [8], [9].

The benefits of automatic formal verification and tool sup-
port in this context are clear: reasoning correctly about the
behaviour of such models, particularly interactions between
probabilistic and nondeterministic behaviour, is known to be
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non-trivial. Furthermore, the state spaces of probabilistic or
stochastic models of realistic systems have a tendency to
grow extremely quickly, making manual verification difficult
or infeasible.

In this paper, we describe an implementation of probabilistic
model checking for models described in two different exten-
sions of the π-calculus. The first, the simple probabilistic
π-calculus, is an extension of the π-calculus obtained by
introducing a discrete probabilistic choice operator in addition
to the existing nondeterministic choice operator. The second,
the stochastic π-calculus, extends the original calculus by
associating rates (parameters of exponential distributions) with
both silent transitions and channels.

Our approach is to adapt and reuse existing tools for veri-
fication of mobile systems and of probabilistic and stochastic
systems. We first developed an extension of the tool MMC
[10], a logic-programming-based model checker for the π-
calculus. This extension, MMCprob, can derive the semantic
model for an arbitrary process in the (finite-control) proba-
bilistic or stochastic π-calculus. The semantic model, which is
given by a Markov decision process (MDP) or continuous-time
Markov chain (CTMC), can then be analysed using standard
tools, such as the probabilistic model checker PRISM [11]. To
improve efficiency, when the process has a specific structure,
we employ a compositional approach, applying MMCprob to
each parallel component of a system, processing the results
to produce a high-level modular description in the modelling
language of PRISM and then performing probabilistic veri-
fication. This avoids a potential blow-up in the size of the
intermediate MDP or CTMC representation and allows us to
exploit the efficient symbolic model construction and analysis
techniques in PRISM. We present experimental results to
illustrate the performance of our implementation on a number
of case studies. To our knowledge, this paper constitutes the
first attempt to implement automated verification in this area.

Related work: Various tools exist for automatic verification
of the (non-probabilistic) π-calculus. The Mobility Workbench
(MWB’99) [12] provides a bisimulation checker and a π-
µ-calculus model checker. MMC (Mobility Model Checker)
[10], a more recently developed tool, also supports the π-µ-
calculus. The latter places particular emphasis on efficiency
and is built using logic programming technology. ProVerif
[13] supports verification of the applied π-calculus, a variant
of the basic calculus. It is aimed primarily at analysis of
cryptographic protocols and is theorem-prover based. Two
alternative approaches are the PIPER system [14], which
verifies π-calculus processes augmented with type signatures
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based on an extraction of sound models using types and CCS
processes, and [15], [16] which translate a subset of the π-
calculus to the language Promela for model checking in the
SPIN tool. Static analysis techniques have also been applied
to the π-calculus, including abstract interpretation [17] and
control flow analysis [18].

A number of existing papers have proposed probabilistic
extensions of the π-calculus. The first, [4], extended the
asynchronous version of the calculus, which removes the
output prefix construct, meaning processes must terminate
immediately after sending output. A version was then proposed
in [5], considering only silent probabilistic transitions. This
variant, which is essentially the same as the one used in this
paper, was introduced to specify and reason about randomised
security protocols. In [6], the probabilistic π-calculus was used
to formalise definitions of anonymity.

A stochastic extension of the π-calculus was first considered
in [7] in which the action prefix construct was replaced with
an action-rate prefix construct. A number of different variants
have since been proposed differing in how rates are added
to the prefix construct. In this paper, we follow [19] and
parameterise silent (τ ) actions with rates and associate a
(fixed) rate with each channel. A number of discrete-event
simulators for the stochastic π-calculus are available, e.g.
BioSpi [9] and SPiM [19], but to our knowledge no model
checking tools.

Structure: The remainder of this paper is structured as
follows. Section II introduces the syntax and semantics for
probabilistic and stochastic extensions of the π-calculus. Sec-
tions III and IV describe our extension of MMC for evaluating
these semantics and show how the result of this extension can
be processed into input for the PRISM tool. Section V presents
experimental results and Section VI concludes the paper.

A preliminary version of this paper (with only the discrete
probabilistic case) appeared as [20].

II. THE π-CALCULUS

The π-calculus is a process algebra for modelling con-
currency and mobility. Based on value-passing CCS [21], a
key distinguishing feature of the calculus is that it uses a
single datatype, names, for both channels and values, with
the consequence that it is possible to communicate channel
names between processes.

In this section we present the probabilistic and stochastic
extensions of the π-calculus for which we have developed
automated model checking procedures. In order to facilitate
model checking, we make two simple assumptions. Firstly, we
restrict our attention to finite-control π-calculus processes, i.e.
where recursion is not permitted within parallel composition.
This is necessary to ensure that the resulting models are finite-
state and is in fact also imposed by the MMC π-calculus model
checker, on which our work relies.

Secondly, we require that the systems to which we apply
model checking are closed, intuitively meaning that they
receive no inputs from their environment and send no outputs
to it. This is due to the nature of the properties that are

analysed by probabilistic model checkers such as PRISM. We
will discuss this issue further in Section IV-F.

Preliminaries: Before describing the probabilistic variants
of the π-calculus, we present some preliminary notation and
definitions. Throughout the paper we will assume a countable
set N of names, ranged over by x, xi, y, etc.

A match is an equality test on names from N and a
condition M is a finite conjunction of matches, i.e. M is of
the form [x1=y1] ∧ · · · ∧ [xn=yn]. We denote by n(M) the
set of names that appear in M (ignoring any trivial equality
tests of the form [x=x]).

A substitution σ is a partial mapping from N to N . The
simplest substitutions are of the form {y/x} which maps x
to y. We let n(σ) denote the set of names that the sub-
stitution affects, i.e. n(σ) = {x | ∃y(6=x) ∈ N . σ(x)=y} ∪
{x | ∃y(6=x) ∈ N . σ(y)=x}. A substitution σ satisfies the
match [x=y], denoted σ |= [x=y] if σ(x)=σ(y). Satisfaction
extends to conjunctions of matches in the obvious way, e.g.
σ |= [x1=y1] ∧ [x2=y2] if σ |= [x1=y1] and σ |= [x2=y2].

We will use five different action types for the two extensions
of the π-calculus: τ (silent action), r(∈ R) (rate action),
x(y) (input), x̄y (output) and x̄(y) (bound output). The bound
names for an action α, denoted bn(α), are defined as follows:
bn(τ) = bn(r) = bn(x̄y) = ∅ and bn(x(y)) = bn(x̄(y)) =
{y}. A substitution σ can also be applied to an action α,
denoted ασ. The definition of this is: τσ = τ , rσ = r,
(x(y))σ = σ(x)(y) if y 6∈ n(σ), (x̄y)σ = σ(x̄) σ(y) and
(x̄(y))σ = σ(x̄)(y) if y 6∈ n(σ). Note that in the case of input
and bound output actions (i.e. those with bound variables),
the substitution is only defined when the substitution does not
change the bound names.

A. The simple probabilistic π-calculus

We use a probabilistic extension of the π-calculus called the
simple probabilistic π-calculus or πprob, which adds a discrete
probabilistic choice operator to the basic calculus. This choice
operator is blind, meaning that probabilities are associated
only with silent τ actions, and not input or output actions.

Syntax: We will let P , Pi range over terms and α range
over actions. Using, as above, x, y, yi to range over names,
the syntax of the simple probabilistic π-calculus is:

α ::= τ
∣∣ x(y)

∣∣ x̄y

P ::= 0
∣∣ α.P

∣∣ ∑
i∈IPi

∣∣ ◦
∑

i∈I piτ.Pi

∣∣ P |P
∣∣

νxP
∣∣ [x=y]P

∣∣ A(y1, . . . , yn)

where I is an index set, pi ∈ (0, 1] with
∑

i∈I pi = 1 and A is
a process identifier. In the following paragraphs, we provide an
informal description of the calculus. The next section presents
the formal semantics.

The inactive process, denoted 0, can perform no actions.
The action-prefixed process α.P can perform action α and
then evolve into P , where α is one of three types: x(y) inputs
a name on x and stores it in y, x̄y outputs the name y on x;
and τ is the silent action representing internal communication.
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There are two types of choice: nondeterministic
∑

i∈I Pi

and probabilistic ◦
∑

i∈I piτ.Pi. The former is standard in the π-
calculus (and indeed CCS). The latter is the only new operator
in this probabilistic extension of the π-calculus. As mentioned
above, branches of the probabilistic choice operator are always
prefixed with τ actions. The process ◦

∑
i∈I piτ.Pi randomly

selects an index i ∈ I with probability pi, performs a τ action
and then evolves to process Pi. We use p1τ.P1 ⊕ p2τ.P2 to
denote the binary form of probabilistic choice.

The parallel composition P1 |P2 can either proceed asyn-
chronously or interact through matching input/output actions.
The restriction νxP localises the scope of x in process P , i.e.
x can be considered a new and unique name within P . The
match construction [x=y]P can evolve as process P only if
the match [x=y] is satisfied, i.e. names x and y are identical.
Finally, A(y1, . . . , yn) is a recursive call with a corresponding
process definition clause of the form A(x1, . . . , xn) , P .

An occurrence of name y in process P is bound if it is in a
subexpression of P of the form x(y) (input-bound) or νy (ν-
bound); otherwise, it is free. The sets of free and bound names
of P are denoted by fn(P ) and bn(P ), respectively, and the
set of all names is n(P ). Without loss of generality, we also
make the assumption that bound names are all distinct from
each other and from free names. This can always be achieved
through alpha conversion. A process which contains no free
names is said to be closed.

Symbolic semantics: The operational semantics for proba-
bilistic extensions of the π-calculus are typically expressed in
terms of Markov decision processes (MDPs) or, equivalently,
probabilistic automata [22], which allow both probabilistic and
nondeterministic behaviour. Existing presentations of the se-
mantics (for example [5], which describe a calculus essentially
identical to πprob) are concrete in the sense that the semantic
rules directly define the MDP that corresponds to a process
term. In this paper, we use a symbolic presentation of the
operational semantics [23]. This approach is in fact quite
common for the π-calculus and is particularly beneficial in
the context of automatic tool support, as is the case here, or
for development of bisimulation theories [23], [24].

The main features of the symbolic semantics, which allow
one to obtain compact models, are that:
• As in the late semantics of the π-calculus, the input

variable of input transitions is kept as a name variable
(in contrast to the early semantics, where a different
transition is generated for every possible name instance)

• Analogously to the match rule, in the communication rule
the match between the input and the output channel is
represented by a constraint (condition).

In principle it is possible to define an early version of the
symbolic semantics, but such a version would differ from a
concrete semantics only because it would contain the free
variables of the initial process (and conditions on them).
Therefore, such a version would lack the “raison d’être” of
the symbolic semantics: efficiently representing the effects of
the run-time communications.

Consider the simple process a(x) . x̄b .0 which inputs a
name x on channel a and then uses x as a channel on which

to output the name b. A concrete approach to the semantics
can establish that this process can accept an input on channel
a, but its subsequent behaviour (which is dependent on the
input x) can only be captured once it is known which other
processes it will be composed with. A symbolic approach
allows the semantics of a process to include variables (e.g.
x) that can be used in actions (e.g. x̄b). This allows us to
adopt a compositional approach: given a parallel composition
of several processes, the semantics of each of them can be
computed separately in full, and then composed afterwards.

The symbolic semantics of the πprob calculus is expressed
in terms of probabilistic symbolic transition graphs (PSTGs).
These are a simple probabilistic extension of the symbolic
transition graphs of [23], previously used for the (non-
probabilistic) π-calculus [25]–[28] and for CCS [23]. Alter-
natively, they can be seen as a symbolic extension of Markov
decision processes.

Let P be a πprob process. The probabilistic symbolic transi-
tion graph (PSTG) representing the semantics of the process
P is a tuple (S, sinit , Tprob) where:
• S is the set of symbolic states, each of which is a term

of the simple probabilistic π-calculus;
• sinit ∈ S, the initial state, is the term P ;
• Tprob ⊆ S×Cond×Act×Dist(S) is the probabilistic sym-

bolic transition relation and is the least relation given by
the rules in Fig. 1.

In the above,
• Cond denotes the set of all conditions (finite conjunctions

of matches) over N ;
• Act is a set of actions of four basic types: τ , x(y), x̄y

and x̄(y), where x, y ∈ N ;
• Dist(S) is the set of probability distributions over S.

We use the notation Q
M,α−−−→ {|pi : Qi|}i for the probabilis-

tic symbolic transition (Q,M,α, µ) ∈ Tprob where µ(R) =∑
Qi=R pi for any πprob term R. For simplicity we abbreviate

the transition Q
M,α−−−→ {|1 : Q′|} to Q

M,α−−−→ Q′ and omit
the trivial condition true. We use multi-sets to ensure that
processes with duplicate components such as Q = 1

2τ.0⊕ 1
2τ.0

have transitions of the form Q
τ−→ {| 12 : 0, 1

2 : 0|} as opposed
to Q

τ−→ { 1
2 : 0}.

Of the four action types in Act , the first three are described
in the previous section. The fourth, x̄(y), denotes output of
a bound name and is used by the rules OPEN and CLOSE to
extend the scope of the bound name y.

A symbolic state Q encodes a set of πprob terms. More
specifically, it encodes the set of terms obtained from Q by
applying substitutions to its name variables. A substitution σ
is applied to a process Q, denoted Qσ, by replacing each
action α in Q with ασ. Consider for example the process
Q = a(x).x̄b.0. We have that Q

a(x)−−−→ Q′ where Q′ = x̄b.0.
The symbolic state Q′ represents the terms Q′{z/x} for any
name z.

A symbolic transition Q
M,α−−−→ {|pi : Qi|}i represents the

fact, that under any substitution σ satisfying M , the process
term Qσ can perform action ασ and then with probability pi

evolve to process Qiσ. This is formally stated in Lemma 1
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PRE
α.P

α−→ {|1 : P |}
PROB

( ◦
∑

i piτ.Pi)
τ−→ {|pi : Pi|}i

SUM
Pj

M,α−−−→ {|pjk
: Pjk

|}jk(∑
i∈I Pi

) M,α−−−→ {|pjk
: Pjk

|}jk

j ∈ I

PAR
P

M,α−−−→ {|pi : Pi|}i

P |Q M,α−−−→ {|pi : (Pi |Q)|}i

bn(α) ∩ fn(Q) = ∅ COM
P

M,y(z)−−−−→ {|1 : P ′|} Q
N,x̄v−−−→ {|1 : Q′|}

P |Q [x=y]∧M∧N,τ−−−−−−−−−→ {|1 : P ′{v/z} |Q′|}

RES
P

M,α−−−→ {|pi : Pi|}i

νxP
νxM,α−−−−→ {|pi : νxPi|}i

x 6∈ n(α) CLOSE
P

M,y(z)−−−−→ {|1 : P ′|} Q
N,x̄(v)−−−−→ {|1 : Q′|}

P |Q [x=y]∧M∧N,τ−−−−−−−−−→ {|1 : νv(P ′{v/z} |Q′)|}

OPEN
P

M,ȳx−−−→ {|1 : P ′|}

νxP
νxM,ȳ(x)−−−−−−→ {|1 : P ′|}

x 6= y MATCH
P

M,α−−−→ {|pi : Pi|}i

[x=y]P
[x=y]∧M,α−−−−−−−→ {|pi : Pi|}i

{x, y} ∩ bn(α) = ∅

IDE
P{y1, . . . , yn/x1, . . . , xn}

M,α−−−→ {|pi : Pi|}i

A(y1, . . . , yn)
M,α−−−→ {|pi : Pi|}i

A(x1, . . . , xn) , P

νx (true) = true
νx [x=x] = true
νx [x=y] = false (x6=y)
νx [y=z] = [y=z] (x6=y ∧ x6=z)

νx (M ∧N) = (νxM) ∧ (νxN)

Fig. 1. The symbolic semantics for πprob, including (inset) application of operator νx to conditions

below, which relates the symbolic (PSTG) semantics of πprob,
as given in Fig. 1, and the concrete (MDP) semantics, as
presented e.g. in [5]. This corresponds to Lemma 2.5 in [27]
which discusses symbolic semantics for the (non-probabilistic)
π-calculus. In the lemma, σ � M indicates that the substitution
σ satisfies the condition M of the transition, and the constraint
bn(α)∩(fn(P )∪n(σ)) = ∅ corresponds to the fact that bound
names are not substituted in order to prevent possible conflicts
between bound and free names.

Lemma 1: Let P be a πprob term.

(a) If P
M,α−−−→ {|pi : Pi|}i, then for any substitution σ such

that σ � M with bn(α)∩ (fn(P )∪ n(σ)) = ∅, Pσ
ασ−−→

{|pi : Piσ|}i.
(b) If Pσ

α−→ {|pi : P ′
i |}i and bn(α) ∩ (fn(P ) ∪ n(σ)) = ∅,

then P
M,β−−−→ {|pi : Pi|}i where σ |= M and (β.Pi)σ =

α.P ′
i .

Proof: Since the symbolic and concrete semantics of πprob

share the same types of actions as the (standard) π-calculus,
the proof follows the one for Lemma 2.5 in [27] which is
straightforward by transition induction.

B. The stochastic π-calculus

We now describe a stochastic extension of the π-calculus
denoted πstoc, the underlying semantics of which is expressed
in terms of continuous-time Markov chains (CTMCs). Each
transition will thus be labelled with a rate, representing the
parameter of an exponential distribution characterising the
delay until the associated transition is enabled. More precisely,
for rate r, the probability that the transition is enabled within
t time-units is given by 1−e−r·t. As in [19], stochastic
behaviour is introduced at the syntactic level by associating a

rate with each channel x, denoted rate(x), and by annotating
silent τ actions with the rate r at which they occur, i.e. τr.

Syntax: Using P , Pi to range over terms and α to range
over actions, the syntax of the stochastic π-calculus is:

α ::= τr

∣∣ x(y)
∣∣ x̄y

P ::= 0
∣∣ α.P

∣∣ ∑
i∈IPi

∣∣ P |P
∣∣

νxP
∣∣ [x=y]P

∣∣ A(y1, . . . , yn)

where r ∈ R>0, I is an index set and A is a process identifier.
As in the probabilistic case, the terms 0, P1 |P2, νxP ,

[x=y]P and A(y1, . . . , yn) denote inactivity, parallel compo-
sition, restriction, match and recursive call. The prefix process
τr.P can (internally) evolve to P with rate r. The choice∑

i∈I Pi represents a race condition between the transitions
of each Pi: the first of these transitions to become enabled is
the one that is taken. Race conditions also arise from parallel
composition (P1 |P2) between processes. In this case, when
two processes synchronise on matching input/output actions
on a channel x, the rate of this transition is rate(x).

Symbolic semantics: The operational semantics for the
stochastic π-calculus is in terms of CTMCs. Usually (as in
e.g. [19], on which our syntax is based), a concrete semantics
is presented which maps each process term directly to the
CTMC it represents. However, as for the probabilistic case
(see the discussion in the previous section), in order to adopt
a compositional approach we employ a symbolic semantics
based on an extension of symbolic transition graphs [23].

Let P be a πstoc process. The stochastic symbolic transition
graph (SSTG) representing the semantics for the process P is
a tuple (S, sinit , Tstoc) where:
• S is the set of symbolic states, each of which is a term

of the stochastic π-calculus;
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PREτ
τr.P

r−→ P
PREIN

x(y).P
x(y)−−−→ P

PREOUT

x̄y.P
x̄y−→ P

SUM
Pj

M,α−−−→ P ′
j(∑

i∈I Pi

) M,α−−−→ P ′
j

j ∈ I

PAR
P

M,α−−−→ P ′

P |Q M,α−−−→ P |Q
bn(α) ∩ fn(Q) = ∅ COM

P
M,y(z)−−−−→ P ′ Q

N,x̄v−−−→ Q′

P |Q [x=y]∧M∧N,rate(x)−−−−−−−−−−−−−→ P ′{v/z} |Q′

RES
P

M,α−−−→ P ′

νxP
νxM,α−−−−→ P ′

x 6∈ n(α) CLOSE
P

M,y(z)−−−−→ P ′ Q
N,x̄(v)−−−−→ Q′

P |Q [x=y]∧M∧N,rate(x)−−−−−−−−−−−−−→ νv(P ′{v/z} |Q′)

OPEN
P

M,ȳx−−−→ P ′

νxP
νxM,ȳ(x)−−−−−−→ P ′

x 6= y MATCH
P

M,α−−−→ P ′

[x=y]P
[x=y]∧M,α−−−−−−−→ P ′

{x, y} ∩ bn(α) = ∅

IDE
P{y1, . . . , yn/x1, . . . , xn}

M,α−−−→ P ′

A(y1, . . . , yn)
M,α−−−→ P ′

A(x1, . . . , xn) , P

νx (true) = true
νx [x=x] = true
νx [x=y] = false (x6=y)
νx [y=z] = [y=z] (x6=y ∧ x6=z)

νx (M ∧N) = (νxM) ∧ (νxN)

Fig. 2. The symbolic semantics for πstoc, including (inset) application of operator νx to conditions

• sinit ∈ S, the initial state, is the term P ;
• Tstoc ⊆ S×Cond×Act×S is the stochastic symbolic

transition multi-relation and is the least multi-relation
given by the rules in Fig. 2.

In the above,
• Cond denotes the set of all conditions (finite conjunctions

of matches) over N ;
• Act is a set of actions of four basic types: r, x(y), x̄y

and x̄(y), where r ∈ R>0 and x, y ∈ N .
The fact that we have used a multi-relation is standard for
stochastic process algebras [29] and ensures that multiple
transitions are generated for expressions with identical com-
ponents, such as τr.P + τr.P . This requirement is because
the choice operator is interpreted as a race condition: the first
transition to become enabled is the one that is taken. More
precisely, since the minimum of two exponential distributions
with rates r1 and r2 is an exponential distribution whose rate
is the sum r1+r2, the behaviour of the process τr.P + τr.P
should be the same as that of τ2r.P . This is captured in the
semantics by the inclusion of two separate transitions labelled
r in the multi-relation Tstoc.

Analogously to the case for PSTGs, discussed in the pre-
vious section, a stochastic symbolic transition Q

M,α−−−→ Q′

of an SSTG represents the fact that, under any substitution σ
satisfying M , the process term Qσ can perform action ασ and
then evolve to process Q′σ. This is formally stated in Lemma 2
below, which relates the symbolic (SSTG) semantics of πstoc,
as given in Fig. 2, and the concrete (CTMC) semantics, as
found in [19]. Again, this corresponds to Lemma 2.5 in [27]
for the standard (non-probabilistic) π-calculus.

Lemma 2: Let P be a πstoc term.
(a) If P

M,α−−−→ P ′, then for any substitution σ such that
σ � M with bn(α)∩ (fn(P )∪n(σ)) = ∅, Pσ

ασ−−→ P ′σ.

(b) If Pσ
α−→ Q′ and bn(α) ∩ (fn(P ) ∪ n(σ)) = ∅, then

P
M,β−−−→ Q where σ |= M and (β.Q)σ = α.Q′.

Proof: Straightforward by transition induction. The de-
tails are almost identical in structure to Lemma 2.5 of [27]
except that the action τ in the π-calculus is replaced by
numerical rates r in πstoc, which do not influence names.

Strictly speaking, the concrete semantics used above do not
correspond precisely to the usual definition of a CTMC, since
transitions can be associated with either rates (for τ actions)
or inputs/output actions (which have yet to be matched).
Furthermore, multiple transitions can occur between the same
pair of states (due to the use of a multi-relation in the definition
of an SSTG). In the semantics of a closed πstoc process,
however, only rate-labelled transitions remain and multiple
transitions between states are simply summed.

III. GENERATING PSTGS AND SSTGS USING MMC

In this section we describe the automatic generation of the
symbolic transition graph for an arbitrary process expressed
in either the simple probabilistic π-calculus or stochastic π-
calculus. This is achieved with an extension of the (non-
probabilistic) π-calculus model checker MMC [10], which
from this point on we refer to as MMCprob. In the next
section we will build upon this, presenting a more efficient,
compositional scheme for processes of a specific structure.

MMCprob is based on only a subset of MMC’s functionality:
essentially the capability to construct the full set of reachable
states of a π-calculus process. The restrictions placed on the
syntax of the calculus by MMC are the same as we impose
in Section II.

MMC works by (and derives its efficiency from) exploiting
the similarity between the way in which resolution-based
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% PRE:
trans(pref(act, P), [pstep(1, act, P)], true).

% PROB:
trans(prob_choice(ProbBranches), PSteps, true) :- prob_branch(ProbBranches, PSteps).
prob_branch([], []).
prob_branch([pref(tau(FirstProb), P)|Others],PSteps) :-

prob_branch(Others, OtherPSteps), append([pstep(FirstProb, tau, P)], OtherPSteps, PSteps).
% SUM:

trans(choice(Branches), PSteps, M) :-
length(Branches, Size), upto(Size, I), ith(I, Branches, Branch), trans(Branch, PSteps, M).

% PAR:
trans(par(P, Q), PSteps, M) :-

trans(P, PPSteps, M), set_par_psteps(PPSteps, Q, PSteps, 0).
trans(par(P, Q), PSteps, M) :-

trans(Q, QPSteps, M), set_par_psteps(QPSteps, P, PSteps, 1).
set_par_psteps([], _, [], _).
set_par_psteps([pstep(Prob, A, P)|Others], Q, PSteps, Which) :-

set_par_psteps(Others, Q, OtherPSteps, Which),
(Which == 0 -> append([pstep(Prob, A, par(P, Q)], OtherPSteps, PSteps)).

; append([pstep(Prob, A, par(Q, P)], OtherPSteps, PSteps))).
% RES:

trans(nu(Y, P), PSteps, M) :-
trans(P, PPSteps, M), not_in_any(Y, PPSteps), not_in_constraint(Y, M), set_nu_psteps(PPSteps, Y, PSteps).

set_nu_psteps([], _, []).
set_nu_psteps([pstep(Prob, A, P1)|Others], Y, PSteps) :-

set_nu_psteps(Others, Y, OtherPSteps), append([pstep(Prob, A, nu(Y, P1))], OtherPSteps, PSteps).
% COM:

trans(par(P, Q), [pstep(1, tau, par(P1, Q1))], (M, N, L)) :-
trans(P, [pstep(1, A, P1)], M), trans(Q, [pstep(1, B, Q1)], N), complement(A, B, L).

% OPEN:
trans(nu(Y, P), [pstep(1, outbound(X, Z), P1)], M) :-

trans(P, [pstep(1, out(X, Z), P1)], N, V), Y == Z, Y \== X, not_in_constraint(Y, M).
% CLOSE:

trans(par(P, Q), [pstep(1, tau, nu(W, par(P1, Q1)))], (M, N, L)) :-
trans(P, [pstep(1, A, P1)], M), trans(Q, [pstep(1, B, Q1)], N), comp_bound(A, B, W, L).

% MATCH:
trans(match((X=Y), P), PSteps, M) :- X == Y, trans(P, PSteps, M).
trans(match((X=Y), P), PSteps, (X=Y, M)) :- X \== Y, trans(P, PSteps, M).

% IDE:
trans(proc(PN), PSteps, M) :- def(PN, P), trans(P, PSteps, M).

Fig. 3. XSB code for the trans predicate encoding the πprob symbolic semantics

logic programming techniques handle variables and the way
in which the symbolic semantics of the π-calculus handles
names [10]. It is implemented in the logic programming
system XSB, which is a dialect of Prolog. π-calculus names
are represented by XSB variables. MMC then uses a direct
encoding of the symbolic semantics of the calculus into XSB
rules, based on the definition of a predicate called trans.
This approach has several benefits: firstly it gives a clear and
intuitive implementation; secondly, and more importantly, this
encoding is provably correct [10].

Our implementation is a direct extension of this approach.
We have a straightforward encoding of the syntax of both πprob

and πstoc into the language of XSB, with names and process
identifiers represented by XSB variables and constants, respec-
tively. We then adapt MMC’s predicate trans to represent
the symbolic semantics of each calculus. We first describe the
case for the simple probabilistic π-calculus and then discuss
the differences in the stochastic case.

The probabilistic case: We begin with the encoding of the
syntax of πprob into the language of XSB. Letting X, Y, Yi range
over variables, P range over processes and denoting comma-
delimited lists of processes as

−→
P , the syntax of πprob in the

input language of MMCprob is given by the following BNF
grammar:

act ::= tau | in(X, Y) | out(X, Y)
P ::= zero

| pref(act, P)
| choice(−→P )

| prob choice(
−−−−−−−−−−−→
pref(tau(p), P))

| par(P, P)
| nu(X, P)
| match((X = Y), P)
| proc(Ā(Y1, . . . , Yn))

where Ā is the lower case form of process identifier A, with
the definition clause of the form def(Ā(X1, . . . , Xn), P).

Assuming that ρ is a one-to-one function mapping XSB
variables to πprob names, the following function fρ relates
the MMCprob representation of the key components of πprob

(conditions, actions and processes) into their corresponding
πprob notation:

Conditions:

fρ(true) = true

fρ(X = Y) = [ρ(X) = ρ(Y)]

fρ((M, N)) = fρ(M) ∧ fρ(N)

Actions:

fρ(tau) = τ

fρ(in(X, Y)) = ρ(X)(ρ(Y))

fρ(out(X, Y)) = ρ(X)ρ(Y)

fρ(out bound(X, Y)) = ρ(X)(ρ(Y))
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Processes:

fρ(zero) = 0

fρ(pref(act, P)) = fρ(act).fρ(P)

fρ(choice(
−→
P )) =

Pn
i=1fρ(Pi)

fρ(prob choice(
−−−−−−−−−−−→
pref(tau(p), P))) =

Pn
i=1piτ.fρ(Pi)

fρ(par(P1, P2)) = fρ(P1)|fρ(P2)

fρ(nu(X, P)) = νρ(X)fρ(P)

fρ(match((X = Y), P)) = [ρ(X) = ρ(Y )]fρ(P)

fρ(proc(Ā(Y1, . . . , Yn))) = A(ρ(Y1), . . . , ρ(Yn))

where
−→
P ≡ [P1, . . . , Pn]

−−−−−−−−−−−→
pref(tau(p), P) ≡ [pref(tau(p1), P1), . . . , pref(tau(pn), Pn)]

and A is defined with A(ρ(X1), . . . , ρ(Xn)) , fρ(P).
Using the function fρ we can now define the XSB pred-

icate trans, which represents the direct encoding of the
symbolic semantics of πprob (see Fig. 1) into XSB. A tuple
trans(P, PSteps, M), where PSteps is a list of compound
structures psteps(pi, act, Pi), represents a symbolic prob-
abilistic transition:

fρ(P)
fρ(M),fρ(act)−−−−−−−−→ {pi : fρ(Pi)}i

The definition of trans is shown in Fig. 3. The predicates
prob branch, set par steps and set nu steps are defined
to construct the list PSteps according to the operational
semantics rules PROB, PAR and RES. Other auxiliary pred-
icates used in Fig. 3 are given in Fig. 4. Note the close
correspondence between the definitions in Fig. 3 and the rules
of the symbolic semantics in Fig. 1.

The soundness and completeness of the encoding can be
established by induction on the length of derivations of a
query answer of trans and a symbolic transition in πprob,
respectively. The proof details are similar to Theorems 2 and
3 in [10].

Finally, we add an extra XSB predicate stg(P), which uses
query-evaluation on trans to derive the PSTG of process P
and output it in a simple textual format. This is done through a
depth-first traversal of the graph, followed by an enumeration
of all its symbolic states and transitions. The XSB code for
this can be found in [30].

Example: Consider the simple πprob process Toss:

Toss(x) , x(y).
(
pτ.ȳhead.0 ⊕ (1− p)τ.ȳtail.0

)
which receives a name y on channel x and then sends out,
on channel y, either head or tail, with probability p or 1−p,
respectively. Fig. 5 shows the application of MMCprob to the
process Toss. The first four lines illustrate the encoding of
the πprob syntax into XSB. Below that is the output of the
tool, i.e. the application of the rule stg. Lines starting #i
show the πprob term for the ith state, lines starting ∗j and ′k
enumerate transitions and the individual edges of transitions,
respectively. All bound names are given unique names (e.g.
h417) and displayed on lines beginning >. All free names

used are listed at the end, plus other statistics for the PSTG.

complement(out(X, W), in(Y, W), W, true) :- X == Y.
complement(out(X, W), in(Y, W), W, (X=Y)) :- X \== Y.
complement(in(X, W), out(Y, W), W, true) :- X == Y.
complement(in(X, W), out(Y, W), W, (X=Y)) :- X \== Y.

comp_bound(outbound(X, W), in(Y, W), W, true) :- X == Y.
comp_bound(outbound(X, W), in(Y, W), W, (X=Y)) :- X \== Y.
comp_bound(in(X, W), outbound(Y, W), W, true) :- X == Y.
comp_bound(in(X, W), outbound(Y, W), W, (X=Y)) :- X \== Y.

not_in_any(_, []).
not_in_any(Z, [pstep(_, A, _)|L]) :-

not_in(Z, A), not_in_any(Z, L).

not_in(_, tau).
not_in(Z, in(X,Y)) :- Z \== X, Z \== Y.
not_in(Z, out(X,Y)) :- Z \== X, Z \== Y.
not_in(Z, outbound(X,Y)) :- Z \== X, Z \== Y.
not_in(Z, outbound1(X,Y)) :- Z \== X, Z \== Y.

not_in_constraint(_, true).
not_in_constraint(X, (Y=Z)) :- X \== Y, X \== Z.
not_in_constraint(X, (M, N)) :-

not_in_constraint(X, M), not_in_constraint(X, N).

upto(N, N) :- N > 0.
upto(N, I) :- N > 0, N1 is N - 1, upto(N1, I).

Fig. 4. Auxiliary XSB code for the trans predicate

def(toss(X),
pref(in(X, Y),
prob_choice([pref(tau(p), pref(out(Y, head), zero)),
pref(tau(1-p), pref(out(Y, tail), zero))]))).

| ?- stg(toss(try)).

#1: proc(toss(try))

*1: 1 ==
#2: prob_choice([pref(tau(p),pref(out(_h417,head),

zero)),pref(tau(1-p),pref(out(_h417,tail),zero))])
>1: _h417
’1: -- ’1’:in(try,_h417) --> 2

*2: 2 ==
#3: pref(out(_h417,head),zero)
’2: -- ’p’:tau --> 3
#4: pref(out(_h417,tail),zero)
’3: -- ’1 - p’:tau --> 4

*3: 3 ==
#5: zero
’4: -- ’1’:out(_h417,head) --> 5

*4: 4 ==
’5: -- ’1’:out(_h417,tail) --> 5
[1: try] [2: head] [3: tail]

+++ Statistics of toss(try) +++
Nodes:5, Edges:5, P-Steps:4, Free Names:3, Bound Names:1

Fig. 5. Sample output from MMCprob

The stochastic case: The generation of the SSTG for
a πstoc process proceeds in almost identical fashion. Since
the calculus has no probabilistic choice operator, the list
PSteps in the representation trans(P, PSteps, M) of each
symbolic transition contains only a single item of the form
pstep(ri, act, Pi), where ri now represents a real-valued
rate, instead of a probability.

The encoding of a rate-labelled prefix process τr.P is
treated as a special case of the probabilistic choice operator for
πprob with a singleton operand. Input and output actions over a
channel x are given dummy rates of 1 which will be replaced
with the channel rate rate(x) subsequently. Since MMCprob

simply enumerates all matching transitions when evaluating
the symbolic semantics (and does not remove any duplicates),
no special treatment is required to deal with the multi-relation
in the definition of SSTGs.
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IV. TRANSLATING PSTGS AND SSTGS INTO PRISM

We use the probabilistic model checker PRISM (which
supports both MDPs and CTMCs) to perform analysis of
the semantic models derived from πprob or πstoc processes. The
scheme described in the previous section can be used to
translate an arbitrary process described in either the simple
probabilistic π-calculus or stochastic π-calculus into the prob-
abilistic or stochastic symbolic transition graph representing
its semantics. We apply model checking to closed processes
(this issue is discussed further in Section IV-F), for which the
symbolic (PSTG or SSTG) semantics and concrete (MDP or
CTMC) semantics coincide. The list of states and transitions
produced by MMCprob, as illustrated by the example in Fig. 5,
can hence easily be imported directly into PRISM for analysis.

However, for processes of a specific structure, we instead
propose to adopt a compositional translation, using the high-
level modelling language supported by PRISM. This results in
a much more efficient translation procedure. More specifically,
we consider the case where systems are of the form P =
νx1 . . . νxk (P1 | · · · |Pn) and each Pi contains no instances
of the ν operator (including inside recursive definitions). The
basic idea is to generate the symbolic transition graph for
each subprocess Pi (as described in the previous section), map
each individual symbolic transition graph to a PRISM module
(a component of a PRISM language model), and then use
PRISM to construct the semantics of P through the parallel
composition of these modules. Note that the compositional
nature of this approach is reliant on our use of symbolic
semantics. Without this, we would not be able to generate
the full semantics of Pi in isolation.

The overall process structure we impose (a parallel com-
position of a set of processes, optionally enclosed inside a
restriction of one or more names) is actually fairly typical:
systems are generally modelled as a parallel composition of
multiple components and, since we assume that P is closed, it
is likely that free names used as channels between processes
will be restricted in this way. Furthermore, in most cases a
process can be rearranged to a structurally congruent process
which is of the correct form, by pushing ν operators to the
outside. We have, for example, that P1 | νxP2 and νx (P1 |P2)
are structurally congruent under the assumption that x does
not occur in P1. The only class of processes which cannot be
renamed in this way are those that include ν inside recursive
definitions. In this case, the process can in principle generate
an infinite number of new names. This can be resolved in the
context of a parallel composition with other processes, and
therefore in such a case we can resort to the basic approach:
use MMCprob to construct the symbolic transition graph for the
full system and import this directly into PRISM.

There are two principal challenges regarding the translation
of symbolic transition graphs into PRISM: (1) mapping the
name datatype into PRISM’s basic type system; and (2)
mapping binary (CCS-style) communication of names over
channels to PRISM’s multi-way (CSP-style) synchronisation
without value passing. In brief, (1) is handled by enumerating
the set of all free names, assigning each an (identically named)
integer constant to represent it, and (2) is handled by introduc-

ing an action label for each required combination of process
sender/receiver pair, channel and name. Communication of
names between processes is handled by including in each
receiver process with a bound input variable x, an identically
named local (integer) variable which will be used to store the
name assigned to x.

Before discussing the details of this compositional trans-
lation, we give both an overview of the PRISM syntax and
semantics and a simple example which illustrates the key
aspects of the translation.

A. PRISM semantics

A PRISM model comprises a set of n modules, the state of
each being given by a set of finite-ranging local variables. The
global state of the model is determined by the union of all local
variables, which we denote V . The behaviour of each module
is defined by a set of guarded commands. When modelling
MDPs, these commands take the form:

[act ] guard → p1 : u1 + · · ·+ pm : um;

where act is an (optional) action label, guard is a predicate
over V , pi ∈ (0, 1] and ui are updates of the form:

(x′1=ui,1) & . . . & (x′k=ui,k)

where ui,j is a function over V . Intuitively, in global state s
of the PRISM model, the command is enabled if s satisfies
guard . If a command is executed, the module will, with
probability pi update its local variables according to the update
ui, by setting the value of each local variable xj to ui,j(s).

When modelling CTMCs, commands are of the form:

[act ] guard → r : u;

where act is an (optional) action label, guard is a predicate
over V , r ∈ R>0 and u is an update (of the form shown
above). In this case, when the guard is satisfied, there is a
transition with rate r that updates the local variables according
to u. When multiple commands with the same update are
enabled, the corresponding transitions are combined into a
single transition whose rate is the sum of the individual rates.

In practice (see for example Fig. 6), we omit probabilities
(or rates) equal to one and elements of updates that are of
the form (x′=x). The semantics of the whole PRISM model
is the parallel composition of all modules using the stan-
dard CSP parallel composition [31] (i.e. modules synchronise
over all their common actions). For transitions arising from
synchronisation between multiple processes, the associated
probability or rate is obtained by multiplying those of each
component transition. See [32] for the full semantics of the
PRISM language.

B. Example Translation

Consider the following parallel composition of two processes
expressed in the simple probabilistic π-calculus:
• Q , νa (Q1 |Q2)
• Q1 , νc νd

(
1
2τ.āc.c(v).0 ⊕ 1

2τ.ād.d(w).0
)

• Q2 , νb
(
a(x).b̄x.0 | b(y).ȳe.0

)
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1. const int a = 1; const int b = 2; const int c = 3;
2. const int d = 4; const int e = 5;
3. module P1
4. s1 : [1..6] init 1;
5. v : [0..5] init 0;
6. w : [0..5] init 0;
7. [] (s1 = 1) → 0.5 : (s′

1 = 2) + 0.5 : (s′
1 = 3);

8. [a P1 P2 c] (s1 = 2) → (s′
1 = 4);

9. [a P1 P2 d] (s1 = 3) → (s′
1 = 5);

10. [c P3 P1 e] (s1 = 4) → (s′
1 = 6); & (v ′ = e)

11. [d P3 P1 e] (s1 = 5) → (s′
1 = 6); & (w ′ = e)

12. endmodule
13. module P2

14. s2 : [1..3] init 1
15. x : [0..5] init 0;
16. [a P1 P2 c] (s2 = 1) → (s′

2 = 2) & (x ′ = c);
17. [a P1 P2 d] (s2 = 1) → (s′

2 = 2) & (x ′ = d);
18. [b P2 P3 x ] (s2 = 2) → (s′

2 = 3);
19. endmodule
20. module P3

21. s3 : [1..2] init 1
22. y : [0..5] init 0;
23. [b P2 P3 x ] (s3 = 1) → (s′

3 = 2) & (y′ = x);
24. [c P3 P1 e] (s3 = 2) & (y = c) → (s′

3 = 3);
25. [d P3 P1 e] (s3 = 2) & (y = d) → (s′

3 = 3);
26. endmodule

Fig. 6. PRISM code for the example

Process Q1 includes two names c and d, available only within
the scope of Q1, representing private channels. It makes a
random choice, outputting with equal probability either the
name c or d on channel a. It then attempts to receive an
input on the corresponding channel (c or d, respectively) and
terminates. Process Q2 is the parallel composition of two
subprocesses which communicate over a channel b. The first
subprocess inputs a name on channel a (which will be one of
the two private channels from Q1) and re-outputs it on channel
b. The second subprocess inputs on channel b and then outputs
e on whichever channel it received.

Noting that c and d do not occur in Q2 and that b does not
occur in Q1, we can rewrite Q as the structurally congruent
process P , defined as follows:
• P , νa νb νc νd (P1 |P2 |P3)
• P1 , 1

2τ.āc.c(v).0 ⊕ 1
2τ.ād.d(w).0

• P2 , a(x).b̄x.0
• P3 , b(y).ȳe.0

and the corresponding PSTGs are given by:

• P1 : Q1
1

τ−→ {| 12 :Q1
2,

1
2 :Q1

3|}, Q1
2

āc−→ Q1
4

c(v)−−→ Q1
6 and

Q1
3

ād−→ Q1
5

d(w)−−−→ Q1
6

• P2 : Q2
1

a(x)−−−→ Q2
2

b̄x−→ Q2
3

• P3 : Q3
1

b(y)−−→ Q3
2

ȳe−→ Q3
3

In the above, we omit probabilities that are 1 and conditions
true. The PSTGs for P1, P2 and P3 have the sets of bound
names {v, w}, {x} and {y}, respectively, and the combined
set of free names is {a, b, c, d, e}. The resulting PRISM model
is shown in Fig. 6. This example will be referred to in the full
explanation of the translation given below.

C. Formal translation

We assume that the set of all names in the system is
N , which is partitioned into disjoint subsets: N fn , the set
of all free names appearing in processes P1, . . . , Pn, and
N bn

1 , . . . ,N bn
n , the sets of input-bound names for processes

P1, . . . , Pn.

For clarity, we will retain wherever possible identical no-
tation between the π-calculus terms and the resulting PRISM
language description. Thus, each of the n subprocesses (or
symbolic transition graphs) Pi becomes a PRISM module Pi

and the (finite) set of terms Si = {Qi
1, . . . , Q

i
ki
} that constitute

states of the symbolic transition graph of Pi becomes a set of
integer indices Qi

1, . . . , Q
i
ki

uniquely representing each one.
Module Pi has |N bn

i | + 1 local variables: its local state
(i.e. the state of the corresponding symbolic transition graph)
is represented by variable si, with range Qi

1, . . . , Q
i
ki

, and
each bound name xi

j ∈ N bn
i has a corresponding variable

xi
j with range 0, . . . , |N fn |. The model also includes |N fn |

integer constants, one for each free name, which are assigned
(in some arbitrary order) distinct, consecutive non-zero values.
If the value of variable xi

j is equal to one of the these constants,
then the corresponding bound name has been assigned the
appropriate free name (by an input action). If xi

j=0, no input
to the bound name has occurred yet.

In this way, the conditions which label transitions of
the symbolic transition graph can be translated directly into
PRISM. For example, if condition M equals [x=a]∧[y=b]
where x, y are bound names and a, b free names, then the
translation of M into PRISM is identical: (x=a)&(y=b),
where x, y are integer variables and a, b integer constants.

In addition, when translating stochastic π-calculus pro-
cesses, for each free name x we add to the PRISM description
a constant rate x whose value is equal to rate(x), i.e. the rate
associated with the channel x.

For each transition in the symbolic transition graph for Pi,
we will include a set of corresponding PRISM commands in
the module Pi. We consider each type of transition separately
below. Note that, if Pi is a simple probabilistic π-calculus
term, then from the semantics (see Fig. 1) the only transitions
which can include multiple probabilistic choices are inter-
nal, therefore the remaining types of transitions (input and
output) can be written in the simplified form Qi

M,α−−−→ Ri.
For the stochastic case, since PRISM multiplies the rates of
synchronising transitions and synchronisation in the π-calculus
is always binary, we associate rates (e.g. rate x for channel
x) with the “output” transitions and set the rates for “input”
transitions to 1 (which is the default so can be omitted).

Case 1 (probabilistic internal transition). For a transition:

Qi
M,τ−−−→ {|p1 : Ri

1, . . . , pm : Ri
m|}

we add the command:

[] (si=Qi) & M → p1:(s ′i=Ri
1) + · · ·+ pm:(s ′i=Ri

m);

See Fig. 6 line 7 for an example.

Case 2 (stochastic internal transition). For a transition:

Qi
M,r−−→ Ri

we add the command:

[] (si=Qi) & M → r : (s ′i=Ri);

Case 3 (output on free name). For a transition:

Qi
M,x̄y−−−→ Ri where x ∈ N fn
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when translating simple probabilistic π-calculus processes we
add, for each j ∈ {1, ..., n}\{i}, the command:

[x Pi Pj y] (si=Qi) & M → (s ′i=Ri);

while for stochastic π-calculus processes we add, for each
j ∈ {1, ..., n}\{i}:

[x Pi Pj y] (si=Qi) & M → rate x : (s ′i=Ri);

The channel x, sender Pi, receiver Pj and sent name y are
all encoded in the action label. See Fig. 6 lines 8 and 18 for
examples of sending free and bound names y, respectively.

Case 4 (output on bound name). For a transition:

Qi
M,x̄y−−−→ Ri where x ∈ N bn

i

in the probabilistic case we add, for each a ∈ N fn and j ∈
{1, ..., n}\{i}:

[a Pi Pj y] (si=Qi) & M & (x=a) → (s ′i=Ri);

while, in the stochastic case, for each a ∈ N fn and j ∈
{1, ..., n}\{i} the command:

[a Pi Pj y] (si=Qi) & M & (x=a) → rate a : (s ′i=Ri);

is added. This is similar to Case 3 except that we include a
command for each possible value a of x. See for example
lines 24 and 25 of Fig. 6.

Case 5 (input on free name). For a transition:

Qi
M,x(z)−−−−→ Ri where x ∈ N fn

in both cases we add, for each y ∈ N\N bn
i and j ∈

{1, ..., n}\{i}, the command:

[x Pj Pi y] (si=Qi) & M → (s ′i=Ri) & (z′=y);

For input actions, we add a line for each possible received
name y. The assignment (z′=y) models the update of the
bound name z to y. See for example lines 16 and 17 of Fig. 6
which match the output commands from lines 8 and 9. Notice
that this translation also works in the case where y is a bound
name in another process Pj (see for example line 23 of Fig. 6).

Case 6 (input on bound name). For a transition:

Qi
M,x(z)−−−−→ Ri where x ∈ N bn

i

when translating both simple probabilistic and stochastic pro-
cesses, we add for each a ∈ N fn , y ∈ N\N bn

i and j ∈
{1, ..., n}\{i} the command:

[a Pj Pi y] (si=Qi) & M & (x=a) → (s ′i=Ri) & (z′=y);

This case combines elements of Cases 4 and 5: we add a
command for each possible pairing of channel a that x may
represent and name y that may be received.

Finally, we need to remove some spurious commands added
in Cases 5 and 6, since they correspond to input actions which
will never occur. More precisely, for each module Pj we
identify labels x Pi Pj y which appear on a command of Pj

but which do not appear in any of the commands in module
Pi. Commands with such action labels are removed from Pj .

For example, in Fig. 6 since process P1 only outputs c or d on
channel a, there is no label of the form a P1 P2 e in module
P1, and therefore commands with this label have been removed
from module P2.

D. Correctness of the translation

By assumption, the term being translated is finite control, is
closed and of the form P = νx1 . . . νxk (P1 | · · · |Pn). The
first step in the proof is to show that any term in the derivation
tree of P is of the form νx1 . . . νxk (Q1σ1 | · · · |Qnσn)
where, for any 1≤j≤n, Qj is a state of the symbolic transition
graph for the process Pj and σj is a substitution from
the bound names of Pj to the free names of P1, . . . , Pn.
The proof is by induction on the (concrete) transition rules
using Lemma 1 or Lemma 2, depending on whether we are
considering πprob or πstoc.

Using this result, we now show that the translation is
correct by constructing a mapping between these terms and
the states of the PRISM model and demonstrating that, for
any term in the derivation tree of P , there is a transition
in the (concrete) semantics if and only if the correspond-
ing PRISM state has a matching transition. For any term
νx1 . . . νxk (Q1σ1 | · · · |Qnσn) the state in the PRISM model
is constructed as follows: for any 1 ≤ j ≤ n, the val-
ues of the variables of module Pj are given by sj=Qj ,
xj

1=ij1, . . . , x
j
kj

=ijkj
where if σ(xj

l )=z ∈ N fn , then ijl is
the integer constant corresponding to the free variable z and
otherwise (i.e. σ(xj

l )=xj
l ) ijl equals 0.

The remainder of the proof is dependent on whether we are
in the probabilistic or stochastic setting.

1) Probabilistic case: Consider any πprob term Q in the
derivation tree, where Q = νx1 . . . νxk (Q1σ1 | · · · |Qnσn)
and the transition Q

τ−→ {|pm : Rm|}m.
From the transition rules and the conditions we have im-

posed on the structure of πprob terms, there are the following
two cases to consider.

Internal transition. Qjσj
τ−→ {|pm : Rj′

m|}m and
Rm = νx1 . . . νxk (Q1σ1 | · · · |Rj′

m | · · · |Qnσn). From
Lemma 1(b), we have Qj

Mj ,τ−−−→ {|pm : Rj
m|} where σj |= Mj

and Rj
mσj = Rj′

m. Hence, by construction in the module Pj

there is a command of the form:

[] (sj=Qj ) & Mj → p1:(s ′j=Rj
1) + · · ·+ pm:(s ′j=Rj

m);

Finally, since σj |= Mj and by definition of the mapping
between πprob terms and PRISM, it follows that the PRISM
state corresponding to Q satisfies the guard (sj=Qj) &Mj

and that the transition is preserved in the translation.

Communication. Qjσj
x(z)−−−→ R′

j , Qlσl
x̄y−→ R′

l,
j 6= l, and {|pm : Rm|}m = {|1 : R|} where R =
νx1 . . . νxk (Q1σ1 | · · · |R′

j{y/z} | · · · |R′
l | · · · |Qnσn).

From Lemma 2(b), assuming without loss of generality that
z is fresh:
• Qj

Mj ,xj(zj)−−−−−−→ Rj where σj |=Mj and (xj(zj).Rj)σj =
x(z).R′

j ;

• Ql
Ml,x̄lyl−−−−−→ Rl where σl|=Ml and (x̄lyl.Rl)σl = x̄y.R′

l.
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Now, since z is fresh, it follows that z=zj and, because σl

is a substitution from bound to free names of P1, . . . , Pn, it
follows that y ∈ N\N bn

j . In addition, since σj is a substitution
from bound to free names, either xj is free and equals x, and
hence in module Pj we have the command:

[x Pl Pj y] (sj=Qj ) & Mj → (s ′j=Rj) & (z′j=y);

or xj is bound and, since xjσj = x, it follows that x is free,
and therefore the command:

[x Pl Pj y] (sj=Qj ) & Mj & (xj=x) → (s ′j=Rj) & (z′j=y);

appears in module Pj . Employing similar arguments, if xl is
free, then xl = x and the command:

[x Pl Pj y] (sl=Ql) & Ml → (s ′l=Rl);

appears in module Pl. While, if xl is bound, then module Pl

includes the command:

[x Pl Pj y] (sl=Ql) & Ml & (xl=x) → (s ′l=Rl);

Since σj |= Mj , σl |= Ml, xjσj = x and xlσl = x, it follows
that the guards (sj=Qj ) & Mj , (sj=Qj ) & Mj & (xj=x),
(sl=Ql) & Ml and (sl=Ql) & Ml & (xl=x) hold in
the PRISM state encoding Q. Finally, since the encoding of
R′

j{y/z} can be obtained from the encoding of Rjσj by
setting the variable z to value y, it follows that the transition
is preserved by the translation.

To complete the proof it remains to show that for any transition
of the PRISM model there is a matching transition in the
corresponding πprob term. The result follows in a similar manner
to the above using Lemma 1(a) instead of Lemma 1(b).

2) Stochastic case: Consider any πstoc term Q in the deriva-
tion tree, where Q = νx1 . . . νxk (Q1σ1 | · · · |Qnσn) and the
transition Q

r−→ νx1 . . . νxk R.
From the transition rules and the conditions we have im-

posed on the structure of πstoc terms, there are the following
two cases to consider.

Internal transition. Qjσj
r−→ R′

j and R =
Q1σ1 | · · · |R′

j | · · · |Qnσn. From Lemma 2(b), we have

Qj
Mj ,r−−−→ Rj where σj |= Mj and Rjσj = R′

j . Hence, by
construction in the module Pj there is a command of the
form:

[] (sj=Qj ) & Mj → r : (s ′j=Rj);

Finally, since σj |= Mj and by definition of the mapping
between πstoc terms and PRISM, it follows that the PRISM
state corresponding to Q satisfies the guard (sj=Qj) &Mj

and that the transition is preserved in the translation.

Communication. Qjσj
x(z)−−−→ R′

j , Qlσl
x̄y−→ R′

l, j 6= l, R =
Q1σ1 | · · · |R′

j{y/z} | · · · |R′
l | · · · |Qnσn and rate(x) = r.

From Lemma 2(b), assuming without loss of generality that z
is fresh:

• Qj
Mj ,xj(zj)−−−−−−→ Rj where σj |=Mj and (xj(zj).Rj)σj =

x(z).R′
j ;

• Ql
Ml,x̄lyl−−−−−→ Rl where σl|=Ml and (x̄lyl.Rl)σl = x̄y.R′

l.

We employ the same arguments used in the probabilistic case.
If xj is free, module Pj contains the command:

[x Pl Pj y] (sj=Qj ) & Mj → (s ′j=Rj) & (z′j=y);

while if xj is bound, it contains the command:

[x Pl Pj y] (sj=Qj ) & Mj & (xj=x) → (s ′j=Rj) & (z′j=y);

Similarly, if xl is free, the command:

[x Pl Pj y] (sl=Ql) & Ml → rate x : (s ′l=Rl);

appears in module Pl and, if xl is bound, then the command:

[x Pl Pj y] (sl=Ql) & Ml & (xl=x) → rate x : (s ′l=Rl);

appears in module Pl.
The remaining arguments are the same as in the probabilistic

case, using additionally the fact that the PRISM constant
rate x has been given the value rate(x).

E. Optimisations

The translation from symbolic transition graphs to PRISM
code described in this section can be optimised to reduce
the size of the generated code and the resulting model. The
basic idea is to compute an over-approximation of the possible
values that each symbolic transition graph’s bound name can
take and, thus, the channels it can send out on and the values
that can be sent on those channels. With this information,
we can decrease the range of the PRISM local variables
corresponding to each bound name and remove unnecessary
commands corresponding to combinations of channel, value
and processes that can never occur. The over-approximation
is computed iteratively, starting with an empty set of possible
values for each bound name, and at each step adding any name
that can be received upon any channel that can be used to
assign to the bound name. The iterations required is bounded
by the number of processes n. For clarity of presentation, the
example in Fig. 6 has in fact been optimised in this way.

This optimisation could be improved by employing more
complex techniques based on those developed in [18] which
use control flow analysis to establish an over-approximation
of the set of channels a name may be bound to and the set of
names that may be sent along a given channel.

F. Properties

For probabilistic model checking of MDPs and CTMCs,
properties are typically specified using the temporal logics
PCTL [33], [34] and CSL [35], [36], the key components
of which are timed and untimed probabilistic reachability.
Examples of expressible properties include the maximum
probability of a failure occurring (Pmax=?[F failure]), the
minimum probability of a process successfully completing
(Pmin=?[F success]), the probability that a message is delivered
by time t(∈ R) (P=?[F≤t delivered ]) and the probability
of a reaction occurring in the time interval [t1, t2](⊆ R)
(P=?[F[t1,t2] reaction]). In practice, a wide range of useful
properties can be expressed in this way.



12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Most probabilistic model checking tools, including PRISM,
use state-based property specifications, i.e. the atomic propo-
sitions (failure , delivered , etc.) in the examples above are
quantifier-free predicates identifying a set of states in the
model. Also, the models that are checked are closed: there
are no inputs/outputs between the model and its environment,
only between components included within the model. This is
our reason for only performing probabilistic model checking
on closed π-calculus processes.

In terms of the translation from π-calculus description to
PRISM model, we simply need to be able to identify the
particular set of target states specified in the reachability
property. This is done through the MMCprob translator when
it constructs a PSTG or SSTG: either by identifying which
symbolic states correspond to a particular process term; or
those in which a particular action is available (in the latter
case, such actions can be added purely for the purposes of
identifying states, and then removed through restriction).

For example, consider a distributed randomised algorithm
executed between n parallel components, P1, . . . , Pn. A typi-
cal property to be checked is that algorithm always terminates
with probability 1 (for any possible scheduling of the n
components). In this case, we would identify the term in the
π-calculus description of each process Pi that corresponds to
that process finishing its execution of the algorithm. From
the output of the MMCprob translator, we can identify the
corresponding local state Qi of the process. We would then
compute (in PRISM) the (minimum probability) of reaching
the state s1 = Q1 ∧ · · · ∧ sn = Qn.

Although not considered in the case studies used in this
paper, our implementation could also be extended to allow for
the computation of cost- or reward-based properties, which are
also supported by PRISM. This allows expression of prop-
erties such as the “maximum expected number of messages
sent before termination” or “the minimum expected power
consumption within t time units”. Typically the cost/reward
information needed for these properties is added to the model
(MDP or CTMC) by annotating either transitions labelled
with particular actions (for example the action-label which
corresponds to a message being sent between two compo-
nents) or states with real values. Since our translation of the
probabilistic or stochastic π-calculus to PRISM preserves both
information about the state and channel communications of a
process, information of this kind could be incorporated into
the translation in a relatively straightforward fashion.

More general temporal properties, for example that a certain
sequence of actions is performed, could be encoded through
the addition of a test/watchdog process [37]. Model checking
for specification formalisms more specifically tailored to the
mobile aspects of the π-calculus, such as spatial logic [38],
will be an area of future work.

V. IMPLEMENTATION AND RESULTS

Our implementation of model checking for the simple
probabilistic π-calculus and stochastic π-calculus is fully auto-
mated and comprises three parts: (1) MMCprob, an extension of
MMC (as described in Section III), which constructs the sym-

bolic transition graphs for a simple probabilistic or stochas-
tic π-calculus process, (2) the translator from the symbolic
transition graph to PRISM code (as described in Section IV),
implemented in Java, and (3) the probabilistic model checker
PRISM [11] which builds the MDP/CTMC from part (2) and
performs verification of PCTL/CSL properties. We based our
implementation on MMC 1.0 and PRISM 3.1.1.

Firstly, we consider the dining cryptographers protocol
(DCP) [39], Chaum’s randomised solution to the classic
anonymity problem in which a group of N parties collectively
establish whether either one of the group or an independent
party has to make a payment. If the former, this is achieved
without any of the N−1 non-paying parties knowing the
identity of the paying one. This was previously modelled
in the probabilistic π-calculus in [6]. To check anonymity,
we compute the probability of reaching each of the possible
outcomes of the protocol (from the point of view of an
individual party) and establish that they are identical.

Secondly, we study the partial secret exchange (PSE) al-
gorithm of [3] for anonymous contract signing between two
parties. A probabilistic π-calculus model of PSE was given
in [5]. The protocol was independently analysed in PRISM
[40], where a potential flaw of the protocol was identified, in
that one party always has an advantage over the other. Several
modifications to the protocol were proposed and shown to have
a lower probability of this occurring. We used a πprob model
of both the original and a modified version to demonstrate the
same flaw.

Thirdly, we constructed both a probabilistic and stochastic
model of a mobile communication network (MCN), based on
the (non-probabilistic) π-calculus model in [41]. The system
comprises N base stations with fixed communication links to
a mobile switching centre and a mobile station which can
be connected to each of the base stations via radio links.
The mobile station roams between the base stations. When it
changes base station, the mobile communication network acts
as an intermediate party, controlling the handover protocol and
exchange of communication links between stations. This case
study was analysed using MMC in [10]. In both this and the
original paper, though, the occurrence of a failure during the
handover protocol was modelled as a nondeterministic choice.
In the probabilistic version we are able to correctly model
this as a random event. For the stochastic model, we used the
adapted version of [42]. This allows both correct modelling of
the failure event and also timing characteristics of the network.
We check the probability of a handover operation completing
successfully, within a given number of communications (for
the probabilistic case) or within a fixed time deadline (for the
stochastic case).

Our final case study is a CTMC model of the Fibroblast
Growth Factor (FGF) signalling pathway. We consider a
slightly simplified version of the model from [43], comprising
interactions between a mixture of FGF ligands and receptors.
In the πstoc formulation, the ν operator is used to give each
FGF ligand a unique channel name. The binding between a
particular FGF ligand and receptor is modelled by this name
being passed between the two. Unbinding occurs through
a communication over this private channel. We check the



NORMAN et al.: MODEL CHECKING PROBABILISTIC AND STOCHASTIC EXTENSIONS OF THE π-CALCULUS 13

TABLE I
PERFORMANCE OF THE PROBABILISTIC MODEL CHECKING PROCESS

Case N Model size MTBDD Construction time (sec.) Model checking
study States Transitions size PSTGs/ PRISM MDP/ in PRISM

(nodes) SSTGs code CTMC (sec.)

5 160,543 592,397 58,448 2.20 0.27 0.93 5.21
6 1,475,401 6,520,558 100,122 2.50 0.27 1.98 15.1

DCP 7 13,221,889 68,121,834 154,074 2.95 0.31 3.10 39.4
8 116,192,457 683,937,352 220,043 3.31 0.31 4.23 90.8
9 1,005,495,499 6,657,256,911 298,285 3.62 0.36 6.26 316.2

3 9,321 32,052 17,999 1.63 0.21 0.43 0.31
PSE 4 89,025 419,172 43,120 2.12 0.27 0.95 1.23

5 837,361 5,028,700 88,074 2.60 0.31 1.89 2.96

3 9,328 32,059 18,184 1.57 0.22 0.41 0.86
PSEmod 4 89,040 419,187 43,388 1.99 0.26 0.89 3.45

5 837,392 5,028,731 89,309 2.49 0.31 1.96 14.3

MCN 2 609 950 58,430 1.38 0.31 2.61 0.34
(probabilistic) 3 3,611 5,811 216,477 1.60 0.46 12.0 6.06

MCN 2 565 854 32,898 1.44 0.38 2.13 1.18
(stochastic) 3 3,295 5,079 119,197 1.59 0.44 7.05 2.76

3 13,081 43,330 8,667 1.00 0.11 0.25 2.22
FGF 4 87,109 315,436 28,725 1.08 0.12 1.34 24.1

5 453,593 1,763,842 108,354 1.21 0.12 8.62 156.6
6 2,011,729 8,318,684 304,464 1.39 0.16 32.3 999.3

probability that all FGF receptors have relocated (are no longer
active) by a certain time bound.

Table I shows the performance of our implementation on the
case studies. Experiments were run on a 2 GHz PC with 2 GB
RAM running Linux. For each case study, we analysed several
models of increasing size by varying a parameter N . For the
DCP model, N represents the number of parties; for PSE
(we consider two variants: the original protocol EGL and the
modified version EGL3 from [40]) N is the size of contract;
for the MCN models, N represents the number of base
stations; and for FGF, N is the number of FGF ligands (the
number of receptors remains fixed). The table shows the size
of the resulting MDPs/CTMCs (number of states/transitions)
and corresponding storage in PRISM (MTBDD nodes, where
1 node uses 20 bytes). We also give the time required for
each stage of the process, i.e. constructing: the PSTGs (using
MMCprob); the PRISM code (using the translator); and the MDP
or CTMC model (using PRISM). Finally, we give the time
to check a single (quantitative) PCTL/CSL property for each
using PRISM (with the fastest available engine).

The results are very encouraging. We see that our techniques
are scalable to the construction and analysis of πprob and πstoc

models with extremely large state spaces and that the times
required for all stages of the process are relatively small.
Furthermore, the compositional approach to the translation
proved to be essential. On the FGF model (N=3), for example,
constructing the full model in MMCprob took more than 100
times as long as the compositional technique. For larger
parameter values, it was not feasible to directly construct the
full model.

The MCN case study, although smallest in terms of state
space, is a particularly good example of the applicability of
this implementation since it fully exploits all mobile aspects
of the calculus. The most obvious area for improvement in

our results concerns MTBDD sizes. As is often the case with
automatically generated code, the PRISM models resulting
from our technique do not always exhibit the kind of structure
and regularity that can be exploited by PRISM’s symbolic
implementation. We are confident that performance can be
improved in this area.

VI. CONCLUSIONS

In this paper we have demonstrated the feasibility of im-
plementing model checking for probabilistic and stochastic
extensions of the π-calculus. Furthermore we have shown,
through its application to several large examples, the efficiency
of the approach. The probabilistic version of the π-calculus
we used (with only blind probabilistic choice) has proved to
be expressive enough for the appropriate application domains
(probabilistic algorithms for security and dynamic communi-
cation protocols with failures and/or randomisation) and yet
amenable to analysis with extensions and adaptions of existing
verification tools. Similarly, the version of the stochastic π-
calculus we used (with rates assigned to τ transitions and to
channels) is both a natural formalism for modelling biological
systems and well suited for the model checking techniques we
have proposed.

We would like to extend this work in several directions. For
convenience of modelling, we plan to add support for polyadic
communication over channels. We also hope to add support
for more flexible property specifications using watchdog pro-
cesses. Finally, we will investigate ways to further improve the
efficiency of our implementation, in particular, with regards to
the automatically generated PRISM code. Possibilities include
optimisations to reduce the resulting symbolic (MTBDD)
storage in PRISM and bisimulation minimisation techniques.
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