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Abstract. Probabilistic model checking is a technique for formally veri-
fying quantitative properties of systems that exhibit stochastic behaviour.
In this chapter, we show how this approach can be applied to the study of
biological systems such as biochemical reaction networks and signalling
pathways. We present an introduction to the state-of-the-art probabilistic
model checking tool PRISM using a case study based on the Fibroblast
Growth Factor (FGF) signalling pathway.

1 Introduction

Probabilistic model checking is a formal verification technique for the analysis of
systems with stochastic characteristics. It is based on the exhaustive construction
and analysis of a probabilistic model, typically a Markov chain or Markov pro-
cess, of some real-life system. This allows various quantitative properties of the
system’s behaviour, such as performance or reliability, to be analysed automati-
cally under a range of different scenarios or parameters. The results can then be
used to identify anomalies, faults or other points of interest in the systems being
modelled. Probabilistic model checking has been used to study a wide array of
systems including randomised communication protocols such as Bluetooth and
Firewire, security protocols for anonymity and contract signing, dynamic power
management schemes and NAND multiplexing for nanotechnology.

In this chapter we focus on how probabilistic model checking can be used
to study the behaviour of biological systems such as biochemical reaction net-
works and signalling pathways which, under certain assumptions, are well suited
to being modelled as discrete stochastic systems. We give an introduction to
probabilistic model checking and to the software tool PRISM [10, 17] which im-
plements these techniques and, using a selection of examples of increasing com-
plexity, demonstrate how PRISM can used as a framework for the modelling and
analysis of biological pathways. The approaches introduced in this chapter should
not be viewed as a substitute for the classical approaches based on simulation
and differential equations. Rather, the techniques should be used in conjunction
with these classical approaches to obtain a more detailed understanding of the
complex interactions and behaviour of biological pathways.

The chapter is organised as follows. Section 2 presents an overview of proba-
bilistic model checking, including descriptions of continuous-time Markov chains,
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the temporal logic CSL and the probabilistic model checking tool PRISM. In Sec-
tions 3, 4 and 5, we consider three examples to demonstrate both how to model
biological pathways in the PRISM language and how probabilistic model check-
ing can be used to analyse such pathways. In Section 3 we start with a simple
set of reactions. Then, in Sections 4 and 5, we extend this simple example, first
by increasing the number of components of each molecular species in the system
and then by extending the possible reactions of the system. Finally, Section 6
outlines related topics of interest.

2 Probabilistic Model Checking and PRISM

Probabilistic model checking is a technique for the modelling and analysis of sys-
tems which exhibit stochastic behaviour. This technique is a variant of model
checking, a well-established and widely used formal method for ascertaining the
correctness of real-life systems. Model checking requires two inputs: a descrip-
tion of the system in some high-level modelling formalism (such as a Petri net
or process algebra), and specification of one or more desired properties of that
system, usually in temporal logic (e.g. CTL or LTL). From the former, a model
of the system is constructed, typically a labelled state-transition system in which
each state represents a possible system configuration and the transitions repre-
sent the evolution of the system from one configuration to another over time. It
is then possible to automatically verify whether or not each property is satisfied,
based on a systematic and exhaustive exploration of the model.

In probabilistic model checking, the models are augmented with quantita-
tive information regarding the likelihood that transitions occur and the times
at which they do so. In practice, these models are typically Markov chains
or Markov decision processes. In this chapter, we use continuous-time Markov
chains (CTMCs), in which transitions between states are assigned (positive,
real-valued) rates, which are interpreted as the rates of negative exponential
distributions. Properties, while still expressed in temporal logic, are now quan-
titative in nature. For example, rather than verifying that ‘the protein always
eventually degrades’, we may ask ‘what is the probability that the protein even-
tually degrades?’ or ‘what is the probability that the protein degrades within ¢
hours?’. The most common temporal logic for this purpose is is CSL (Contin-
uous Stochastic Logic). Furthermore, by adding rewards to a CTMC, we can
also specify properties such as ‘what is the expected energy dissipation through
protein binding within the first ¢ time units?’ and ‘what is the expected number
of binding reactions before relocation occurs?’.

In the remainder of this section we present an introduction to CTMCs, CSL,
and the software tool PRISM, which provides support for probabilistic model
checking of CTMCs using CSL. For further details, see e.g. [13].

2.1 Continuous-Time Markov Chains

Continuous-time Markov chains (CTMCs), frequently used in performance anal-
ysis, model both continuous real time and probabilistic choice. This is done by
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specifying the rate at which a transition between two states occurs. Formally,
we have the following definition.

Definition 1. A CTMC is a tuple C = (S,R,L) where: S is a finite set of
states; R : S x S — Rsq is a transition rate matrix; L : S — 24 is a labelling
function.

The transition rate matrix R assigns rates to each pair of states, which are used
as the parameter of an exponential distribution. A transition can only occur
between states s and s if R(s,s’)>0 and, in this case, the probability of this
transition being triggered within ¢ time-units equals 1 — e~ B®(:5)¢ Typically, in
a state s, there is more than one state s’ for which R(s, s")>0, this is known as a
race condition and the first transition to be triggered determines the next state.
The choice of successor state s’ from state s is thus probabilistic. The probability

of moving to s’ is Rg(f/), where E(s) =3 cg
The total time spent in s before any transition occurs is exponentially distributed
with rate F(s). The labelling function L assigns atomic propositions from a set
AP to each state of the CTMC. These are used to label states with properties
of interest.

A CTMC can be augmented with reward structures which are used to an-
notate its states and/or transitions with additional quantitative information.

Formally, a reward structure for a CTMC is a pair (p,¢) where:

R(s, s') is the exit rate of state s.

— p: S = Ryg is the state reward function;
— ¢: 8 x 8 = Ry is the transition reward function.

A path of a CTMC C = (S, R, L) is a non-empty sequence sglos1t182 ... where
s; € 5, t; € Ry and R(s;,8;41)>0 for all :>0. The value t; represents the
amount of time spent in the state s; and we denote by w@t the state occupied
at time ¢, i.e. s; where j is the smallest index for which Y 7_ ¢; > ¢. We denote
by Path(s) the set of all (infinite and finite) paths of the CTMC C starting in
state s. A probability measure Pry over Path(s) can then be derived [2].

Two traditional properties of CTMCs are transient behaviour, which re-
lates to the state of the model at a particular time instant; and steady-state
behaviour, which describes the state of the CTMC in the long-run. For a CTMC
C = (S,R, L), the transient probability ms.(s’) is defined as the probability,
having started in state s, of being in state s’ at time instant ¢. The steady-state
probability m,(s’) is the probability of, having started in state s, being in state s’
in the long-run. The steady-state probability distribution, i.e. the values m,(s")
for all s’ € S, can be used to infer the percentage of time, in the long-run, that
the CTMC spends in each state.

2.2 Continuous Stochastic Logic

The temporal logic CSL originally introduced by Aziz et al. [1] and since ex-
tended by Baier et al. [2] is based on the temporal logics CTL [5] and PCTL
[7] and provides a powerful means to specify both path-based and traditional
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state-based performance measures on CTMCs. We use an extended version [13]
which also allows for the specification of reward properties.

Definition 2. The syntax of CSL is as follows:

pu=true | a| ¢ | dpAd|Pyld U ¢ | Sopld] |
Bor[I7] | Rer[CS] | Ror[F @] | Rey[S]

where a is an atomic proposition, ~€{<,<,>,>}, p € [0,1], I is an interval of
R>g and r,t € R>o.

CSL formulae are evaluated over the states of a CTMC and we write s |= ¢
to indicate the CSL formula ¢ is true is state s. We also say that ¢ holds or
is satisfied in s. CSL includes the standard operators from propositional logic:
true (satisfied in all states); atomic propositions (a is true in states which are
labelled with a); negation (—¢ is true if ¢ is not); and conjunction (¢; A ¢
is true if both ¢; and ¢ are true). From these, we can derive other standard
Boolean operators such as disjunction (¢1 V ¢2 = =(—¢1 A =¢2)) and implication
(1 = P2 = ~p1 V ¢p2) in the usual way.

CSL also includes two probabilistic operators, P and S, both of which include
a probability bound ~p. A formula P.,[¢] is true in a state s if the probability
of the path formula v being satisfied from state s meets the bound ~p. In this
chapter we use a single type of path formula, ¢ U’ ¢s, called an until formula,
which is true of a path w if, for some time instant ¢ € I, at time ¢ in the path w
the CSL subformula ¢4 is true and the subformula ¢, is true at all preceding time
instants. Perhaps the most common use of this operator is the case where ¢ is
true, in which case P.,[true U! ¢] states that the probability of ¢ being true
at some point in the interval I satisfies ~p. In particular, this allows reasoning
about transient behaviour of a CTMC (P.,[true U ¢], i.e. the probability of
¢ being true at time instant ¢) and untimed reachability (P~,[true yl0-20) ¢,
i.e. the probability of ¢ eventually being true). In the latter case we often omit
the interval, i.e. P,[true U ¢] = P, [true UI®>) ¢]. The S operator is used to
specify steady-state behaviour of a CTMC. More precisely, S.,[¢] asserts that
the steady-state probability of being in a state satisfying ¢ meets the bound ~p.

CSL also has an R operator for properties concerning the expected value
of rewards. The formula R.,[I=!] asserts that the expected value of the state
reward at time instant ¢ meets the bound ~r. Similarly, R.,.[CS?] refers to the
expected reward accumulated up until time ¢, R,.[F ¢] to the expected reward
accumulated before a state satisfying ¢ is reached, and R..[S] to the long-run
average expected reward. Note that the I=! operator refers only to state rewards,
whereas the others refer to both state and transition rewards. Also, in the latter
case state rewards are interpreted as the rate at which rewards are accumulated,
i.e. spending time ¢ in state s accumulates a reward of p(s)-t.

The semantics of CSL over CTMCs is defined as follows.
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Definition 3. Let C = (S,R, L) be a labelled CTMC. For any state s € S the
relation s = ¢ is defined inductively by:

skEtrue forallse S
sEa < a€lL(s)
SE-¢ & s
SENG & sEMASE @
sEPLW] < Prob(s,y) ~p
sESwldl & Yaems(s) ~p
sER[ITY &  Ezp(s,Xi=)~r
s ER[CSY] &  Erp(s,Xe<i)~r
sERu[F ¢ &  Exp(s,Xpy) ~r
sER[S] & limyeot - Bap(s, Xest) ~r

def

where Prob(s,v) = Prs{w € Path(s)|w = ¢}, Fxp(s,X) denotes the expecta-
tion of the random wvariable X with respect to the probability measure Pry and
for any path w = sotositi18a -+ € Path(s):

Wk ¢ U ¢y & It el (wlt = ¢y AVa € [0,1). (wQz |= ¢1))
X1=t(w) = p(w@t)

Ke<i(w) = ngl (ti - p(si) + t(si, si41)) + (t - Zz;)ltz) - p(s5.)

0 ifw(0) = ¢
Xrp(w) = o 00 if Vi e N.s; £ ¢
Z;ig{ﬂsj For-ty, - p(si) 4+ t(si,8541)  otherwise

and j; = min{j | ZLO t; > t}.

In many cases, it is more useful to generate quantitative, rather than Boolean,
results for CSL properties. For this purpose, we allow the bounds ~p and ~r
attached to the P, S and R operators to be replaced with =?. This permits, for
example, properties such as:

— P_[true U ¢] - ‘what is the probability of ¢ being true at time ¢?’;

— S—¢[¢] - ‘what is the long-run probability of ¢ holding?’;

— R—¢[F ¢] - ‘what is the expected reward accumulated before a state satisfying
¢ is reached?’.

The =7 form of the P, S and R operators can only be used when it is the outermost
operator in a CSL formula.

2.3 PRISM

PRISM [10,17] is a probabilistic model checker which provides automatic veri-
fication of CTMCs using the logic CSL, as described in the previous sections. It
also provides support for two other types of probabilistic models: discrete-time
Markov chains and Markov decision processes. See e.g. [22] for more information.
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PRISM 3/ 1AEV, EER)

4| Experiments

Property [Defined Con...[ Prograss Status
1=0.0103 Done

t=00:103 Done
t=00:1.03 Done
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t

Fig. 1. A screenshot of the PRISM graphical user interface

The tool accepts probabilistic models described in the PRISM modelling lan-
guage, a simple, state-based language which will be explained in the later sections
of this chapter. The basic functionality of PRISM is to take a model described
in this formalism, construct the corresponding probabilistic model (in this case,
a CTMC) and then perform model checking of one or more CSL properties.
PRISM also supports the notion of experiments, which is a way of automating
multiple instances of model checking. This allows the user to easily obtain the
outcome of one or more properties as functions of model and property parame-
ters. The resulting table of values can either be viewed directly, exported for use
in another application such as a spreadsheet, or displayed using PRISM’s graph
plotting tool. This is frequently a good way of identifying interesting patterns
or trends in the behaviour of a system. You will see several examples of this
throughout the chapter.

Figure 1 shows a screenshot of the PRISM graphical user interface, illustrat-
ing the results of a model checking experiment being plotted on a graph. The tool
also features a built-in text-editor for the PRISM language and a discrete-event
simulation engine which can be used to debug PRISM models. Alternatively, all
model checking functionality is also available in a command-line version of the
tool. PRISM is a free, open source application. It presently operates on Linux,
Unix, Windows and Macintosh operating systems. Both binary and source code
versions can be downloaded from the website [17].

PRISM incorporates a variety of techniques to construct CTMCs and perform
CSL model checking on them. Much of the underlying work is a combination of
graph-theoretical algorithms, e.g. for reachability analysis, and numerical com-
putation, e.g. to calculate probabilities and expected reward values for each state
of the CTMC. For the latter, due to the sizes of the problems typically solved,
PRISM uses iterative numerical solution methods. Some aspects of CSL model
checking (e.g. those based on long-run properties of a CTMC) require solution
of linear equation systems. For these, well-known techniques such as the Jacobi,
Gauss-Seidel and SOR (successive over-relaxation) methods are available. For
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1: FGF binds/releases FGFR
FGF + FGFR — FGF:FGFR k1=5e+8 M~ 1s!
FGF + FGFR + FGF:FGFR ko=0.002 s~ !
2: Phosphorylation of FGFR (whilst FGF:FGFR)
FGFR — FGFRP k3=0.1s"!
3: Dephosphorylation of FGFR
FGFRP — FGFR k4=0.01s"1!
4: Relocation of FGFR (whilst FGFRP)
FGFR — relocFGFR k5=1/60 min~*!

Fig. 2. Summary of the reactions

timed operators of CSL (i.e. those based on transient CTMC properties), PRISM
implements another common iterative numerical method called uniformisation.
In addition, the tool provides approximate solution methods based on Monte
Carlo techniques and the built-in discrete-event simulation engine.

One final notable aspect of PRISM is that it is a symbolic model checker:
it is implemented primarily using data structures based on binary decision dia-
grams (BDDs), for example multi-terminal binary decision diagrams (MTBDDs)
and other variants. These data structures provide compact representations and
efficient manipulation of large, structured probabilistic models by exploiting reg-
ularity from the high-level descriptions of the models. In order to maximise ef-
ficiency, PRISM actually uses combinations of these symbolic data structures
and conventional explicit storage schemes such as sparse matrices and arrays.
See e.g. [12,15] for more information about the implementation of PRISM.

3 Modelling a simple biological system in PRISM

We now illustrate how PRISM can be used as a tool for modelling and analysing
biological systems. We will do this by developing a case study based on the role
of FGF (Fibroblast Growth Factor) in receptor biosynthesis. FGF are a family
of proteins which play an important role in cell signalling, e.g., wound healing.

3.1 A simple set of reactions

Figure 2 shows a simple set of reactions based on the role of FGF in receptor
biosynthesis, which can be summarised as follows. An FGF ligand (molecule) can
bind to an FGF receptor (FGFR) to form the compound FGF:FGFR. Once the
compound FGF:FGFR is formed, FGFR can become phosphorylated. These two
reactions (binding and phosphorylation) are also reversible. Finally, when FGFR
is phosphorylated, it can be relocated (we assume that FGF disappears if it is
bound to FGFR when relocation occurs). Each reaction has an associated kinetic
rate (values ky to ks in Figure 2). Note that for the binary reaction (binding)
the units of the kinetic rate include the concentrations of the reactants, more
precisely, the kinetic rate k; has units M~'s™!, where M refers to the molar
concentration, i.e. the number of moles per litre.
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ka

FGF:FGFRP

k1 ks ko
k5 k5

v v

relocFGFR FGF
relocFGFR

Fig. 3. Underlying CTMC of the system of reactions given in Figure 2

Our approach to modelling the behaviour of biochemical reaction systems
is as follows. We consider a collection of molecules, from a variety of molecular
species, interacting according to a set of reactions. We make the assumption that
the reactions take place in a spatially uniform mixture in a fixed volume at con-
stant pressure and temperature. Under this assumption, two distinct modelling
approaches have been proposed. The first, which we refer to as the continuous
deterministic approach, represents the number of molecules of each species at
time ¢ by a continuous function. A set of ordinary differential equations are then
derived, the solutions to which give the (average) concentration of each molecular
species over time.

The second approach, and the one used in this chapter, is to use a discrete
stochastic model. In this case, the amount of each molecular species is modelled
as a discrete quantity and the occurrence of a reaction between one or more of
these molecules is considered a discrete event. The evolution of this model over
time is inherently stochastic. In fact, the underlying model can be shown to be
a continuous-time Markov chain (CTMC), where the stochastic rates associated
with each transition of the CTMC can be derived from the kinetic rates of the
reaction system. In the case of unary reactions the stochastic rate equals the
kinetic rate. For binary reactions, supposing the kinetic rate is given in terms of
molar concentrations, the stochastic rate is obtained by dividing by V - N where
V is the volume and A is Avogadro’s number. For a more in-depth coverage of
this topic, see for example [24, 6].

We now return to the simple example described above. The different possi-
ble species which can be present in the system are as follows: free FGF (FGF),
free FGFR (FGFR), FGF bound to FGFR (FGF:FGFR), FGF bound to phos-
phorylated FGFR (FGF:FGFRP), free phosphorylated FGFR (FGFRP) and
relocated FGFR (relocFGFR). Making the assumption that the system initially
comprises a single FGF ligand and a single FGFR receptor, the corresponding
CTMC for this example is given in Figure 3. Where the stochastic rates (k;) are
derived from the kinetic rates (k;) via the calculation described in the previous
paragraph.
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ctmc

const double kI = 5000; // rate of binding

const double k2 = 0.002; //rate of release

const double k3 = 0.1; // rate of phosphorylation
const double k4 = 0.01; // rate of dephosphorylation
const double k5 = 1/(60 * 60); // rate of relocation

module FFGF

faf + [0..2] init O; // O - free, 1 - bound, 2 - removed from system

[bind] fgf=0 — (fgof'=1); // FGF and FGFR bind

[rel] fof=1 — (fgf'=0); // FGF and FGFR unbind

[reloc] fgf=1 — (fgf'=2); // FGF disappears since bound when FGFR relocates
endmodule
module FGFR

fafr : [0..1] init O; // O - free, 1 - bound

phos : [0..1] init 0; // O - unphosphorylated, 1 - phosphorylated

reloc : [0..1] init 0; // 0 - not relocated, 1 - relocated

[bind] fgfr=0 & reloc=0 — (fgfr’'=1); // FGF and FGFR bind

[rel] fgfr=1 & reloc=0 — (fgfr'=0); // FGF and FGFR unbind

gfr=1 & phos=0 & reloc=0 — k3 : (phos'=1); FGFR phosphorylates

[ fofr=1 & ph & rel k3 : (phos’=1); // FGFR phosphoryl

[] phos=1 & reloc=0 — k4 : (phos’=0); // FGFR dephosphorylates

[] phos=1 & fgfr=0 & reloc=0 — k5 : (reloc’=1) & (fgfr’'=0) & (phos'=0); // Relocates

[reloc] phos=1 & fgfr=1 & reloc=0 — (reloc’=1) & (fgfr’'=0) & (phos’=0); // Relocates
endmodule
module RATES

[bind] true — k1 : true; // FGF and FGFR bind

[rel] true — k2 : true; // FGF and FGFR unbind

[reloc] true — k5 : true; // FGFR relocates

endmodule

Fig. 4. First possible PRISM representation

3.2 PRISM models

We now give two alternative approaches for modelling these reactions in PRISM,
shown in Figures 4 and 5, respectively. A model described in the PRISM language
comprises a keyword, corresponding to the model type (ctmc in this case), and
a set of modules, the state of each being represented by a set of finite-ranging
variables. The behaviour of this module, i.e. the changes in states which it can
undergo, is specified by a number of guarded commands of the form [| g — r : u.
The interpretation of a command is that if the predicate (guard) g is true, then
the system is updated according to w, which comprises one or more statements
of the form (2’ = ...) indicating how the value of variable x is changed. The
rate at which this occurs is given by r, i.e. this is the value that will be attached
to the corresponding transition in the underlying CTMC.

PRISM supports synchronisation between modules in the style of process
algebras. This is achieved by labelling commands with actions (placed between
the initial square brackets). Transitions in different modules labelled with the



10 Marta Kwiatkowska, Gethin Norman, and David Parker

ctmc

const double kI = 5000; // rate of binding

const double k2 = 0.002; //rate of release

const double k3 = 0.1; // rate of phosphorylation
const double k4 = 0.01; // rate of dephosphorylation
const double k5 = 1/(60 * 60); // rate of relocation

module SYSTEM

z : [0..5] init O;

// 0 - FGF and FGFR free

// 1 - FGF and FGFR free (FGFR phosphorylated)
// 2 - FGF and FGFR bound

// 8 - FGF and FGFR bound (FGFR phosphorylated)
// 4 - FGF free and FGFR relocated

// 5 - FGFR relocated

// FGF and FGFR bind
z=0 — k1 : (2'=2); // FGFR not phosphorylated
9/1:1 — k1 : (2'=3); // FGFR phosphorylated

FGF and FGFR unbind
lz=2 — k2 : (z'=0); // FGFR not phosphorylated
lz=3 — k2 : (2'=1); // FGFR phosphorylated
// FGFR becomes phosphorylated (FGF must be bound)
lz=2 — k3 : (2'=3);
// FGFR dephosphorylates
H =1 — 1124 : ga:jZOS; ;; FgF Zot b(;)und

z=3 — k4 : (z'=2); FGF boun

// FGFR relocates (FGFR must be phosphorylated)
lz=1 — k5 : (z'=4); // FGF not bound
lz=3 — k5 : (2'=5); // FGF bound

endmodule

Fig. 5. Second possible PRISM representation

same action occur simultaneously. The rate of synchronised transitions is equal
to the product of the individual rates of the commands of the different modules
that synchronise. Since the product of several rates is not always meaningful, a
common technique, as seen here, is to make one action active, which actually
defines the rate for the synchronised transition, and the others passive with rate
1. In PRISM, when a rate is omitted for a command it is assumed to be 1. By
default, all modules are combined using the standard CSP parallel composition
[21] (i.e. modules synchronise over all their common actions). In addition, by us-
ing the system ... endsystem construct, several other CSP operators, including
asynchronous parallel composition and hiding, can be employed when combining
PRISM modules. Some of these constructs will be illustrated in later examples.
For further details see the PRISM manual [17].

In our first approach (Figure 4), we represent the two main molecules (FGF
and FGFR) as separate modules, each with variables representing their cur-
rent state (details are given in the comments after each variable declaration).
Reactions involving more than one species are modelled using synchronisation.
Consider for example the binding of FGF and FGFR, modelled by the first com-
mands of modules FGF and FGFR and synchronisation on the action label bind.
In this case, the variables fgf and fgfr in the two modules simultaneously change
from 0 to 1. For this model, we use a third module RATES to store the rates of
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// time spent in any state | | // time spent phosphorylated | | // number of bindings
rewards “time” rewards “phos” rewards “bind”

true : 1; phos=1 : 1; [bind] true : 1;
endrewards endrewards endrewards

Fig. 6. Three reward structures for the PRISM model of Figure 4

synchronous transitions. This module also takes place in the synchronisation on
bind and the overall rate is thus k1. Reactions involving only a single protein can
be modelled without synchronisation, as seen for example in the third, fourth
and fifth commands of module FGFR.

In our second approach (Figure 5), we use a single module with one variable
x representing the (six) possible states of the whole system. The meaning of each
value of z is given in the comments and these correspond directly to the states
of the CTMC shown in Figure 3. These two PRISM models result in identical
CTMCs. The second is a more concise description in PRISM but the first has
a more intuitive state encoding and is hence easier to modify and to express
properties for. In general, a combination of the above two modelling approaches
is used: in simple cases it is possible to use a single variable, but as the system
becomes more complex the use of separate variables and synchronisation becomes
more desirable. We will see this as we develop this case study further in Sections 4
and 5.

Finally, we add reward structures to our model. In PRISM, these are de-
scribed using the

rewards “reward_name” ... endrewards
construct and are specified using multiple reward items of the form
g :m; or [a]lg: r

to describe state and transition rewards, respectively. In the above, g is a pred-
icate (over all the variables of the model), a is an action label appearing in the
commands of the model and r is a real-valued expression (which can contain
any variables, constants, etc. from the model). A reward item “g : r” assigns
a state reward of r to all states satisfying g and a reward item “[a] g : 77
assigns a transition reward of r to all a-labelled transitions from states satisfying
g. Multiple rewards (from different reward items) for a single state or transition
are summed and states or transitions with no assigned reward are assumed to
have reward 0.

Figure 6 shows three such reward structures for the PRISM model of Figure 4.
The first reward structure (“time”) simply assigns a state reward of 1 to all states
in the model. This can be used, for example, to analyse the total expected time
before some event occurs. The second reward structure (“phos”) assigns a state
reward of 1 only to states in which FGFR is phosphorylated. This could be used
to compute the amount of time which FGFR spends phosphorylated within a
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particular period of time or the expected amount of phosphorylated FGFR at a
specific time instant. Lastly, the reward structure “bind” assigns a reward of 1
to all transitions which correspond to a binding between FGF and FGFR.

3.3 Model analysis with PRISM

We now demonstrate how the temporal logic CSL (see Section 2.2) can be used
to express properties of the reaction system model presented in Figure 4, aug-
mented with the reward structures from the previous section. Below are some
CSL examples together with their informal meaning. Since there are multiple
reward structures, we will adopt PRISM’s notation R{ “rew”} to indicate use of
the CSL reward operator R using the reward structure with name “rew”. Note
also that, in our model, the unit of time used is seconds.

— (phos=1) = Pwg.1[ true U%Y (reloc=1) ] - ‘if FGFR is currently phospho-
rylated, then the probability of it being relocated within the next ¢ seconds
is greater than 0.1’;

— (phos=1 A fgfr=0) = P<¢.2o[ (fgfr=0) U (reloc=1) ] - ‘if FGFR is phosphory-
lated and free, then the probability of it being relocated before binding to
FGF is at most 0.2;

— P_;[ true UMY (fgf=1) | - ‘the probability that FGF is bound to FGFR at
time instant ¢ (i.e. after exactly ¢ seconds)’;

— P_¢[ true U (reloc=1 A fgf=2) ] - ‘the probability that FGFR relocates and
FGF is bound when relocation occurs’;

— S_+[ (fgf=0) ] - ‘the probability that, in the long run, FGF is free’;

— R{“time” } —7| F (reloc=1) ] - ‘the expected time taken before FGFR relocates’

— R{“phos” }—»[ C=! ] - ‘the expected time that FGFR spends phosphorylated
within the next ¢ seconds’;

— (reloc=0) = R{“bind” }>2.4[ C=' | - ‘if FGFR is not relocated, the expected
number of bindings during the next ¢ seconds is at least 2.4’;

When analysing quantitative properties of system such as these, it is often also
useful to study how the properties vary as changes are made to parameters
either in the properties (e.g. ¢ above) or in the model. Analysis of this kind is
much more likely to provide insight into the model or to identify interesting or
anomalous behaviour.

To illustrate this, Figure 7 shows results obtained with PRISM for the prob-
abilities that, at time instant ¢, FGFR is: (i) bound to FGF; (ii) phosphory-
lated; (iii) relocated. The first of these, for example, uses the CSL property
P_-[ true UMY (fgf=1) ] from the list above. Results are plotted for ranges of ¢
over three different time scales (seconds, minutes and hours). Figure 7(a) shows
that in the initial evolution of the system FGF and FGFR bind very quickly
(and remain bound) after which FGFR becomes phosphorylated while there is
almost no chance of FGFR relocating. Figure 7(b) and Figure 7(c) show however
that, as time elapses, the chance that FGF and FGFR are bound diminishes and
the chance that FGFR is phosphorylated diminishes faster. In addition we see
that eventually FGFR will become relocated.
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Fig. 7. Transient properties of FGFR for the model of Figure 4

3.4 Exercises

1. Based on the model in Figure 4 and the reward structures in Figure 6, write
CSL specifications for the following properties:

(a) ‘if FGFR is currently phosphorylated, then the probability that it re-
mains phosphorylated until relocation occurs is at most 0.65’;

(b) ‘the probability that FGFR is phosphorylated at time instant ¢’;

(c) ‘the probability that FGFR is phosphorylated for the first time within
the time interval [t1,ts]’;

(d) ‘the expected time that FGFR is phosphorylated before it relocates’;

(e) ‘the expected number of times that FGF and FGFR bind before FGFR
relocates’.

2. Construct appropriate reward structures for properties of the model in Fig-
ure 4 relating to the expected time that FGF and FGFR are bound and the
expected number of bindings and unbindings. Write CSL specifications for
calculating the expected time that FGF and FGFR spend bound during the
first ¢ seconds, the expected number of bindings and unbindings in this time,
and the expected time spent bound before relocation occurs.

3. Extend the model of Figure 4 with a variable to count the number of phos-
phorylations and write CSL specifications for the properties:

(a) ‘the probability that at least I phosphorylations occur within the first ¢
seconds’;

(b) ‘the probability that at most [ phosphorylations occur before relocation’.

Hint: Since the variable you add to the model must be bounded, make sure
that the bound is larger than required for the property.

4. Based on the model of Figure 4, write a new version in which each of the
six possible species (FGF, FGFR, FGF:FGFR, FGF:FGFRP, FGFRP, re-
locFGFR) is represented by a separate PRISM module. Check that the states
and transitions in the new model match those of the original one and that
numerical results such as those in Figure 7 agree.

Hint: In this model the relevant modules will need to synchronise when phos-
phorylation and dephosphorylation occurs.
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ctme

const double N = 3; // number of each type

const double kI = 5000/N; // rate of binding

const double k2 = 0.002; //rate of release

const double k3 = 0.1; // rate of phosphorylation

const double k4 = 0.01; // rate of dephosphorylation

const double k5 = 1/(60 * 60); // rate of relocation

module F'GF .... endmodule

// construct further FGF molecules through renaming

module FGF2 = FGF [ fgf =fgf2 | endmodule

module FGF3 = FGF [ fgf =fgf3 | endmodule

module FGFR .... endmodule

// construct further FGF molecules through renaming

module FGFR2 = FGFR | fgfr=fqfr2, phos=phos2, reloc=reloc2 | endmodule
module FGFRS = FGFR | fgfr=fqgfr3, phos=phos3, reloc=reloc3 | endmodule
module RATES

[bind] true — kI : true; // FGF and FGFR bind
[rel] fof + fof2 + fgf3>0 — k2/(fof + faf2 + fgf3) : true; // FGF and FGFR unbind
[reloc] fgf + faf2 + faf3>0 — k2/(fgf + faf2 + faf3) : true; // FGFR relocates

endmodule
system // system definition (molecules of the same type do not interact)

(FGF ||| FGF2 ||| FGF3) || (FGFR ||| FGFR2 ||| FGFRS3) || RATES

endsystem

Fig. 8. Individual-based PRISM representation (extending Figure 4)

4 Modelling larger numbers of molecules

4.1 Individual-based representations

In this section we extend our existing model by allowing more than one of each
FGF and FGFR molecule (and thus of the other various species) to occur in the
system. One possible approach to doing this is to model each individual molecule
in the system separately. This is sometimes necessary when the properties of
interest for the system refer to the behaviour of a particular molecule.

Figure 8 shows PRISM code that can be used to extend the previous model of
Figure 4 to contain three of each molecule. First, we add a new PRISM module
for each extra molecule. This is done using a PRISM language feature called
renaming: this creates a copy of an existing module, identical except for its
variable names which are given new names (in fact, other constants and actions
can also be renamed in the same way). This is equivalent to writing out each
new module separately but is less error-prone and improves the readability and
scalability of the model.

Figure 8 also illustrates the use of PRISM’s system ... endsystem construct
which describes how the modules in the system are composed to produce the
full model. Since the FGF modules do not interact with each other, they are
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composed using the asynchronous parallel operator (|||), which stops them from
synchronising on any actions. The same is true for the FGFR modules. The
(standard) parallel operator (]|) is then used to compose these sub-systems, i.e.
we make these sub-systems synchronise over their common actions. If the asyn-
chronous parallel operator had not been used here, we would have needed to
introduce a different action label for each possible interactions between FGF and
FGFR (e.g. actions of the form bind_i_j for binding of the ith FGF molecule with
the jth FGFR molecule) to stop FGF (or FGFR) molecules reacting amongst
themselves. PRISM also supports several other CSP-based process-algebraic op-
erators to aid modelling of complex systems; see the manual [17] for details.

We also need to modify the reaction rates of the system when increasing the
number of molecules. More precisely, supposing that the volume of the system
remains proportional to the initial number of FGF molecules, then the rates of
binary reactions in Figure 8 (i.e. k1) are obtained from those in Figure 4 by
dividing by the initial number of FGF molecules (see the earlier discussion of
computing stochastic reaction rates in Section 3.1).

4.2 Population-based representations

As might be expected, a potential problem with the model outlined above is
scalability. The individual-based modelling approach will suffer from the well
known state-space explosion problem where, as the complexity of the system
under study increases, there is an exponential growth in the state space of the
underlying model.

An alternative is to employ a ‘population’-based approach where the number
of each type of molecule or species is modelled, rather than the state of each indi-
vidual component. In terms of the PRISM modelling language, this is achieved
by using variables as counters, i.e. there is a counter for each of the possible
species that can be present in the system (in this case free FGF, free FGFR,
free phosphorylated FGFR, FGF bound to FGFR, FGF bound to phosphory-
lated FGFR and relocated free FGFR). In such a model, for example, an FGF
ligand can bind with a FGFR receptor if the counters for the number of free
FGF ligands and FGFR receptors are both greater than 0, and the occurrence
of such a reaction is modelled by decrementing these counters and incrementing
the counter representing the number of FGF ligands bound to FGFR receptors.

In Figure 9 we give a population-based PRISM model for the running ex-
ample. This is based on the earlier model representing a single instance of
each species (Figure 5). Note that we must adjust the rates of the CTMC to
take into account the different possible interactions encoded. For example, if
there are three FGF ligands (FGF;, FGF3 and FGF3) and two FGFR receptors
(FGFR; and FGFRy) then there are six different possible species: FGF1:FGFR,,
FGFllFGFRQ, FGFQZFGFRl, FGFQ:FGFR27 FGFgFGFRl and FGFgFGFRQ
This is achieved by multiplying the rate of interaction by the number of species
of each type that can take part in the reaction and, as can be seen in Figure 9,
since rates in the PRISM language can be expressions involving variables, this
is straightforward to achieve in the PRISM modelling language.



16 Marta Kwiatkowska, Gethin Norman, and David Parker

ctmc

const int N; // number of possible elements of FGF
const int M; // number of possible elements of FGFR
const int K = min(N, M); // number of possible elements of FGF:FGFR

const double kI = 5000/N; // rate of binding

const double k2 = 0.002; //rate of release

const double k3 = 0.1; // rate of phosphorylation
const double k4 = 0.01; // rate of dephosphorylation
const double k5 = 1/(60 % 60); // rate of relocation

module POPULATION_MODEL

fgf : [0..N] init N; // free FGF

fafr : [0..M] init M; // free FGFR (not phosphorylated)

fgfrp : [0..M] init O; // free FGFR (phosphorylated)

bnd : [0..K] init 0; // bound FGF:FGFR (FGFR not phosphorylated)
bndp : [0..K] init 0; // bound FGF:FGFR (FGFR phosphorylated)
reloc : [0..M] init 0; // relocated FGFR

// FGF and FGFR bind
[l faf >0 & fgfr>0 & bnd<K

— faf * fofr x k1 (faf'=faf — 1) & (fafr'=fgfr — 1) & (bnd'=bnd + 1);
[l faf >0 & fgfrp>0 & bndp<K

— fof * fofrp * k1 : (faf'=fof — 1) & (fofrp’=fofrp — 1) & (bndp'=bndp + 1);
// FGF and FGFR unbind
I fof <N & fafr<M & bnd>0

— bnd x k2 : (fof'=fof +1) & (fafr'=fgfr + 1) & (bnd'=bnd — 1);
[l fof <N & fgfrp<M & bndp>0

— bndp * k2 : (fof'=fof + 1) & (fafrp'=fgfrp + 1) & (bndp’=bndp — 1);
// FGFR becomes phosphorylated (FGF must be bound)
[] bnd>0 & bndp<K — bnd * k3 : (bnd’'=bnd — 1) & (bndp’=bndp + 1);
// FGFR dephosphorylates
[| fafrp>0 & fofr<M — fofrp x k4 : (fofrp’=fofrp — 1) & (fofr'=fofr + 1);
[] bndp>0 & bnd<K — bndp * k4 : (bndp’=bndp — 1) & (bnd’=bnd + 1);
// FGFR relocates (FGFR must be phosphorylated)
[ fofrp>0 & reloc<M — fgfrp x k5 : (fgfrp’=fgfrp — 1) & (reloc’=reloc + 1);
[] bndp>0 & reloc<M — bndp x k5 : (bndp’'=bndp — 1) & (reloc’=reloc + 1);

endmodule

Fig. 9. Population-based PRISM model (extending Figure 5)

// amount of phosphorylated FGFR | | // number of bindings
rewards “phos” rewards “bind”

true : fgfrp + bndp; [bind] true : 1;
endrewards endrewards

Fig. 10. Reward structures for the PRISM model given in Figure 9

Table 1 lists the number of states and transitions in the individual- and
population-based models as the initial number of FGF ligands and FGFR re-
ceptors ranges between 1 and 10. As can be seen there is a rapid increase in
the number of states for the individual-based approach, quickly making model
checking infeasible. On the other hand, the results for the population-based
model show a far more gradual increase in the state space, allowing analysis of
much larger models.



Probabilistic Model Checking for Systems Biology 17

(N,M) ] Individual-based [[ Population-based |
[ States [ Transitions [| States [Transitions|
&) 6 9 6 9
(2,2) 52 190 21 57
(3,3) 492 3185 56 193
(4,4) 4,816 48,804 126 500
(5.5) 47.916 699,407 252 1,140
(6,6) 480,880 9,548,278 462 2,275
(7,7) 4,849,620 125,662,133 792 4,166
(8,8) 49,045,120 1,606,974,376 || 1,287 7,137
(9,9) 496,798,620 | 20,079,205.667 || 2,002 11,593
(10,10) || 5,036,699,152 | 246,135,326,874 || 3,003 18,029

Table 1. States and transitions for individual and population based models

4.3 Model analysis with PRISM

Two reward structures for the population model are presented in Figure 10. The
first reward structure (“phos”) assigns a reward to each state equal to the sum
of the variables fgfrp and bndp, i.e. a reward equal to the amount of FGFR
that is phosphorylated. Note the difference between “phos” in Figure 10 and
Figure 6: instead of assigning states with reward 1 or 0 depending on whether
FGFR is phosphorylated or not, we now assign a reward equal to the sum of the
two variables indicating the amount of each of the two phosphorylated forms of
FGFR.

The second reward structure (“bind”) associates a reward of 1 with all transi-
tions of the CTMC corresponding to the binding of FGF and FGFR. To do this,
we assume that we have added the label bind to the commands corresponding
to FGF and FGFR binding (i.e. to the first and second commands of the module
POPULATION_MODEL given in Figure 9). This example demonstrates that
action labels can be used purely to specify reward structures, with no influence
on the interaction between modules (it is of course important to ensure that
additional unwanted interactions are not introduced in this way, i.e. by modules
synchronising when they should not).

We now use the temporal logic CSL and reward structures given above to
express a number of properties of the population-based model given in Figure 9.

— P_+[ true U (reloc>l; A fgf <ls) ] - ‘the probability of reaching a situation
where there are at least [; relocated FGFR receptors and the number of free
FGF ligands is at most ly’;

— (bnd>l1) = Pso7[ true U (reloc>15) | - “if the number of FGF:FGFR
compounds is greater than [y, then the probability that the amount of relo-
cated FGFR will reach I within the next ¢ seconds is at least 0.7;

— P_+[ (reloc=0) U (fgfp=l) ] - ‘the probability that | FGFR receptors are
phosphorylated before any FGFR is relocated’;

— (fgfr=M) = P_q.os[ (fgfr>1y) Ultr-trttal (fofr<iy) ] - ‘if all FGFR receptors
are free and unphosphorylated, then the probability that at least ; FGFR
receptors remain free and unphosphorylated until time instant ¢; and within
the next t5 seconds this number drops below I is less than 0.05;
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Fig. 11. Transient properties for the population example: (a) probability of I reloca-
tions by time ¢; (b/c) expected phosphorylated FGFR at time ¢ (seconds/minutes).

— (fafp + bndp=l) = R{“phos” }>¢.s] I=" | - ‘if | FGFR receptors are phospho-
rylated, the expected number of FGFR receptors phosphorylated ¢ seconds
later is at least 6.8’;

— R{“bind” }—7[ F reloc=l ] - ‘the expected number of times that an FGF ligand
binds with an FGFR receptor before | FGFR receptors have relocated’.

As in the previous section, we also give an illustration of the kind of quantitative
results than can be obtained. Figure 11(a) shows the probability of I relocations
by time ¢ for a range of different values of [ when there are initially both 10 FGF
ligands and 10 FGFR receptors. Figure 11(b)—(c) shows the expected amount of
phosphorylated FGFR at time t for a variety of initial configurations and two
different time scales (seconds and minutes). The latter graphs demonstrate that
after a rapid increase in phosphorylated FGFR there is a gradual decrease as the
amount of relocated FGFR increases and starting from a larger concentration of
FGFR and FGF leads to an increase in the amount of phosphorylated FGFR.

4.4 Exercises

1. Based on the model in Figure 9 and the reward structures in Figure 10, write
CSL specifications for the following properties:

(a) ‘the probability that the number of free FGF ligands does not drop below
1 until after I, FGFR receptors have been relocated’;

(b) ‘if the number of phosphorylated FGFR receptors is at least I, then the
probability that all FGFR receptors have been relocated by time t is
greater than 0.6’;

(c) ‘the probability that no FGF ligands are bound to FGFR receptors until
time ¢; and, before another ts seconds pass, a binding occurs’;

(d) ‘if at most | FGFR receptors are bound, then the expected number of
bindings that occur within ¢ seconds is at least 12.4’.

2. Construct appropriate reward structures for properties of the model in Fig-
ure 9 relating to the expected time that at least | FGFR receptors are phos-
phorylated and the expected number of phosphorylations.

Hint: You may first need to change the PRISM model description for this.

Using these reward structures, write specifications for calculating:
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(a) ‘the expected time that at least | FGFR receptors are phosphorylated
up until time t’;

(b) ‘the expected time that at least { FGFR receptors are phosphorylated
before M —I receptors have been relocated’;

(c) ‘the expected number of phosphorylations before a relocation occurs’;

(d) ‘the expected number of phosphorylations by time ¢’.

3. Extend the model in Figure 9 with variables to count the number of times
that an FGF ligand binds and the number of times that an FGF ligand
unbinds with an FGFR receptor and write CSL specifications for the prop-
erties:

(a) ‘the probability that at most ! reactions between FGF ligands and FGFR,
receptors (i.e. bindings or unbindings) occur within the first ¢ seconds’;

(b) ‘if no FGF ligands have bound to FGFR receptors, then the probability
that [ bindings occur before any of unbindings occur is at least 0.5’.

5 A more complex model: Compartments

In this section we extend the population model of the previous section to include
behaviour relating to the relocated FGFR. The model is motivated by the fact
that FGF ligands can only interact with FGFR receptors at the cell surface;
relocation causes FGFR to move inside the cell where it loses sight of the ligand.
Inside the cell we suppose that either the FGFR is recycled back to the surface
or it is destroyed by degradation. To incorporate this behaviour into our model
we divide the system into the following compartments:

main compartment: in this compartment FGF ligands interact with FGFR
receptors (i.e. at the cell surface);

recycling compartment: this compartment receives FGFR receptors from the
main compartment and at a rate of kg (=1/30 min~!) re-introduces the
FGFR receptors back into the main compartment;

degradation compartment: this compartment also receives FGFR receptors
from the main compartment, but in this case the proteins are degraded at a
rate of k7 (=1/15 min~1).

In this model, we keep the assumption that the ligand FGF disappears if it is
bound to FGFR when relocation occurs. In addition, we suppose that the choice
between whether the proteins reach either the recycling or degradation compart-
ment from the main compartment is probabilistic: the recycling compartment
is reached with probability p and the degradation compartment is reached with
probability 1—p. Considering the rates in the CTMC representation of this model
it follows that if r is the rate in the CTMC that FGFR receptors leave the main
compartment, then the rate of FGFR being relocated to the recycling compart-
ment is p-r and the rate of being relocated to the degradation compartment is

(1=p)-r.
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const double k6 = 1/(30 % 60); // half an hour to return
const double k7 = 1/(15 % 60); // time to degrade
const double p; // probability relocation causes recycling as opposed to degradation

module MAIN_COMPARTMENT

fof  : [0..N] init N; // free FGF
fafr : [0..M] init M; // free FGFR (not phosphorylated)
fafrp : [0..M] init 0; // free FGFR (phosphorylated)
bnd : [0..M] init 0; // bound FGF:FGFR (FGFR not phosphorylated)
bndp : [0..M] init 0; // bound FGF:FGFR (FGFR phosphorylated)
// FGF and FGFR bind
[l faf >0 & fgfr>0 & bnd<K

= faf * fofr = k1 = (fof'=fof — 1) & (fofr'=fofr —1) & (bnd'=bnd +1);
[l fof >0 & fgfrp>0 & bndp<K

— fof * fafrp x k1 : (fof'=fof — 1) & (fofrp’=fafrp — 1) & (bndp’=bndp + 1);
// FGF and FGFR unbind
[l faf <N & fgfr<M & bnd>0

— bnd k2 5 (fof'=fof + 1) & (fafr'=fofr +1) & (bnd'=bnd — 1);
[l faf <N & fgfrp<M & bndp>0

— bndp x k2 : (fof '=fof +1) & (fafrp'=fafrp + 1) & (bndp'=bndp — 1);
// FGFR becomes phosphorylated
[] bnd>0 & bndp<K — bnd * k8 : (bnd'=bnd — 1) & (bndp’=bndp + 1);
// FGFR becomes dephosphorylated
[l fafr<M & fafrp>0 — fofrp * k4 : (fofr’=fofr + 1) & (fafrp’=fafrp — 1);
[ bnd<K & bndp>0 — bndp x k4 : (bnd’=bnd + 1) & (bndp'=bndp — 1);
// phosphorylated FGFR leave main compartment

[reloc2] bndp>0 — bndp * p * k5 ¢ (bndp'=bndp — 1);
[reloc3] bndp>0 — bndp * (1 — p) x k5 : (bndp'=bndp — 1);
[reloc2] fgfrp>0 — fofrp xp x k5 = (fgfrp'=fofrp — 1);

[reloc8] fafrp>0 — fafrp + (1 —p) * k5 : (fgfrp’=fafrp — 1);
// FGFR arrives from compartment 2
[recyc] fofr<M — (fgfr'=fgfr +1);
[recycp] fofrp<M — (fofrp’=fofrp + 1);
endmodule

module RECYCLING_COMPARTMENT
fafr2 : [0..M] init 0; // free FGFR (not phosphorylated)
fafrp2 : [0..M] init O; // free FGFR (phosphorylated)
// FGFR relocates
[reloc2] fafrp2<M — (fofrp2'=fgfrp2 + 1);
// FGFR dephosphorylates
[l fafre<M & fgfrp2>0 — fofrp2 « k4 : (fofr2’'=fgfr2 + 1) & (fafrp2’'=fafrp2 — 1);
// FGFR returns to main compartment
[recye] fgfre>0 —  fafr2 x k6 : (fgfr2' =fgfr2 — 1);
[recycp] fafrp2>0 — fofrp2 * k6 : (fofrp2'=fafrp2 — 1);
endmodule

module DEGRADATION_COMPARTMENT

fgfr3 : [0..M] init 0; // free FGFR (not phosphorylated)

fafrp3 : [0..M] init 0; // free FGFR (phosphorylated)

deg3 : [0..M] init 0; // degraded FGFR (not phosphorylated)

degp3 : [0..M] init 0; // degraded FGFR ( phosphorylated)

// FGFR relocates

[reloc3] fofrp3<M — (fofrp3’'=fgfrp3 + 1);

// FGFR dephosphorylates

(| fafra<M & fgfrp3>0 — fofrp3 * k4 - (fgfr3'=fofr3 +1) & (fofrp3'=fofrp3 — 1);

// FGFR degrades

[| deg8<M & fgfr3>0 — fgfr3 = k7 : (deg3'=deg3 + 1) & (fgfr3'=fgfr3 — 1);

[| degp3<M & fgfrp3>0 — fafrp3 x k7 : (degp3’'=degp3 + 1) & (fafrp3'=fgfrp3 — 1);
endmodule

Fig. 12. Compartments PRISM model (extending Figure 9)
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// amount of phosphorylated FGFR

number of relocations
rewards “phos” // f

rewards “reloc”
true : fgfrp + bndp;

true : fgfrp2;
true : fgfrp3;

[reloc2] true : 1;
[reloc3] true : 1;

endrewards
endrewards

Fig. 13. Reward structures for the PRISM model of Figure 12

5.1 The PRISM model

Figure 12 shows a PRISM language model for this system based on the popula-
tion model of the previous section (see Figure 9). Each compartment is modelled
by a separate module and transitions between compartments (relocations and
re-introductions) are modelled through the modules synchronising on actions.
Figure 13 gives two reward structures for this model. The first reward struc-
ture (“phos”) assigns a reward to each state equal to the total number of phos-
phorylated FGFR receptors in the entire system (i.e. in any of the compart-
ments). Note that we could also have expressed this reward in a single line as:

true : fofrp+bndp+fofrp2-+fgfrp3;

however, by taking advantage of the fact that for states/transitions which sat-
isfy multiple guards of a reward structure the reward assigned is the sum of
the rewards, often we can write the reward structure in a more readable form.
The second reward structure (“reloc”) assigns a reward of 1 to the transitions
associated with FGFR receptors being relocated, i.e. those labelled by reloc2 or
reloc3.

We now list a number of properties of the compartments model using CSL
and the reward structure given in Figure 13.

— P_+[ true U (fgfr2+fgfp2>1) | - ‘the probability that at any time there are
more than [ FGFR receptors being recycled’;

— (degp3+fgfp3=0) = P<o.o1] (fafr2+fafp2=0) U (degp3+fgfp3>1) | - ‘if
nothing is degraded, then the probability that the number of degraded FGFR
receptors reaches | before a receptor enters the recycling compartment is at
most 0.017;

— R{“phos”}_+[ I7¢ | - ‘the expected number of FGFR receptors phosphory-
lated at t seconds’;

— R{“reloc” }—»[ C=! ] - “the expected number of relocations in the first ¢ sec-
onds’.

In Figure 14 we have presented the expected number of phosphorylated FGFR
receptors in the main compartment at time ¢ as the probability of moving to
recycling when relocated varies. These results correspond to the case when ini-
tially the number of FGF ligands equals 50 and the number of FGFR receptors
equals 10 (i.e. N=50 and M=10). To demonstrate the different results that are
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Fig. 14. Expected amount of phosphorylated FGFR in main compartment at time ¢

obtained through simulation as opposed to model checking, in Figures 14(a) and
14(b) we present the results obtained with PRISM’s simulator when averaging
over 10 and 100 runs respectively and Figure 14(c) presents the same results
when using model checking. The graphs show, that increasing the chance of
being relocated to the recycling compartment as opposed to the degradation
compartment will increase the amount of phosphorylated FGFR receptors in
the main compartment. This is due to the fact that as FGFR receptors from the
main compartment relocated to the degradation compartment will not return to
the main compartment while those relocated to the recycling compartment will
eventually return to the main compartment.

Consider the difference between the plots, we see a large fluctuation in the
amount of phosphorylated FGFR receptors in the main compartment when only
a small number of runs are considered (Figure 14(a)) and as the number of
runs increases these fluctuations diminish (Figure 14(b)), while employing the
model checking approach we obtain ‘smooth’ curves (Figure 14(c)). This can
be attributed to the fact that, when we consider an individual run, a reaction
(e.g. a binding, phosphorylation or relocation) occurs (with probability 1) at a
specific time point and therefore its influence can be seen at that specific time
point, while in model checking, an average over all possible runs is considered,
and hence the probability of the reaction occurring at a certain time point is
also taken into account.

5.2 Exercises

1. Based on the model in Figure 12 and the reward structures in Figure 13,
write CSL specifications for the following properties:

(a) ‘the probability that eventually all FGFR receptors get degraded’;

(b) ‘if there are [; free FGF ligands and ls free FGFR receptors in the main
compartment, the probability that the first degradation of an FGFR
receptor occurs after time ¢ is less than 0.1;

(c) ‘if in the main compartment there are more than | FGF:FGFR com-
pounds phosphorylated, then the expect number of relocations occurring
by time t is at least 5.6’.
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2. Construct an appropriate reward structure for calculating the expected num-
ber of dephosphorylations that occur in the recycling and degradation com-
partments of the model in Figure 12 and write a CSL specification for the
expected number of dephosphorylations in the recycling and degradation
compartments by time .

Hint: You will need to add extra action labels. Make sure sure that these are

all distinct to avoid unwanted synchronisations between modules.

3. Extend the model in Figure 12 with variables to count the number of re-
ceptors that get relocated to the recycling compartment and the number of
receptors that return from the recycling compartment to the main compart-
ment. Write CSL specifications for the following properties:

(a) ‘if l; receptors have entered the recycling compartment and nothing has
returned to the main compartment then, with probability at least 0.55,
lo receptors will return within the next ¢ seconds’;

(b) ‘the probability that I; receptors return from the main compartment
before the total number of relocations is I3 .

Hint: Since nothing leaves the degradation compartment you can use the

variables in this compartment to determine the number of relocations to

this compartment.

4. Rewrite the PRISM description of Figure 12 using a single PRISM module.
Check that the new model has the same number of states and transitions
as the original. In addition, using the simulation engine, generate graphs
similar to those presented in Figures 14(a) and 14(b).

6 Related Work

In [8], PRISM has been used to study a more detailed model of the FGF (Fi-
broblast Growth Factor) signalling pathway. The model corresponds to a single
instance of the pathway, i.e. there can be at most one of each molecule or species.
This has the advantage that the resulting state space is relatively small, however
the model is still highly complex due to the large number of different interac-
tions that can occur in the pathway and is sufficiently rich to explain the roles
of the components in the pathway and how they interact. In [4], PRISM is used
to model the RKIP-inhibited ERK pathway using an approximate ‘population’
approach to modelling in which concentrations are modelled by discrete abstract
quantities. Also modelling the RKIP-inhibited ERK pathway, [3] demonstrates
how the stochastic process algebra PEPA [9] can be used to model biological
pathways. The stochastic m-calculus [18] has also been proposed as a model
language for biological systems [20,19]; this approach has so far been used in
conjunction with stochastic simulation, for example through the tools BioSpi
[19] and SPiM [16]. A translation from the stochastic m-calculus to PRISM has
also been developed [14].

An alternative is to use the language SBML [11], a computer-readable lan-
guage based on XML for representing models of biochemical reaction networks,
and the translator from SBML to the PRISM modelling language [23]. SBML is
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intended as a standardised representation of models that can be shared, manipu-
lated and analysed using tools available in the systems biology community. Mod-
els are composed from components, which permit definition of reactant species,
product species, descriptions of reaction equations using MathML expressions,
and the specification of kinetic laws and parameters.

The principal challenge remaining for the application of probabilistic model
checking to biological systems, as in so many other domains, is the scalability of
the techniques to ever larger systems and models. There is hope that some of the
techniques that have already been developed in the field of formal verification,
such as symmetry reduction, bisimulation minimisation and abstraction, will
prove beneficial in this area. For further details on such approaches and pointers
to related work, see for example [8].
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