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Semantic Place Understanding for Human-Robot
Coexistence - Towards Intelligent Workplaces

Stefano Rosa, Andrea Patanè, Chris Xiaoxuan Lu, Niki Trigoni

Abstract—Recent introductions of robots to everyday scenarios
have revealed unprecedented opportunities for collaboration and
social interaction between robots and people. However, to date,
such interactions are hampered by a significant challenge: having
a semantic understanding of their environment. Even simple
requirements, such as “a robot should always be in the kitchen
when a person is there”, are difficult to implement without
prior training. In this paper, we advocate that robot-people co-
existence can be leveraged to enhance the semantic understanding
of the shared environment, and improve situation awareness.
We propose a probabilistic framework that combines human
activity sensor data generated by smart wearables with low level
localisation data generated by robots. Based on this low level
information and leveraging colocation events between a user
and a robot, it can reason about the two types of semantic
information: 1) semantic maps, i.e. the utility of each room,
and 2) space usage semantics: tracking humans and robots thru
rooms of different utilities. The proposed system relies on two-
way sharing of information between the robot and the user. In the
first phase, user activities indicative of room utility are inferred
from wearable devices and shared with the robot, enabling it
to gradually build a semantic map of the environment. In the
second phase, via colocation events, the robot teaches the user
device to recognize the type of room where they are co-located.
Over time, robot and user become increasingly independent and
capable of semantic scene understanding.

I. INTRODUCTION

High-level semantic understanding of the environment is
still an open problem for complex cyber physical systems
involving robots and people. We envision that in the next five
years, such systems will become ubiquitous: robots’ presence
will continue to grow in workplaces, and low cost robots will
increasingly assist humans in domestic environments. The use
of wearable sensors in manufacturing has been investigated,
with a particular focus on augmented reality and dedicated
assistance [2], [18]. Existing robotic and wearable sensor
systems, however, still lack maturity in terms of how they
perceive the environment.

For example, robots typically perceive space in terms of
low-level metric, topological or feature maps. Recent work
has motivated the need for a high level understanding of
the environment (e.g., semantic, affordances or high-level
geometry) in order to enable emerging robotics applications
[8]. To date, vision-based techniques for semantic mapping
are well studied, but they are labour intensive as they require
careful training and/or fine-tuning. Our vision instead is that
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semantic information can be automatically acquired by robots
over time as a result of coexistence with users.

Similarly, wearable devices held by humans, e.g. smart-
phones or smartwatches, require tedious training (e.g. WiFi
fingerprinting) and/or bespoke sensor infrastructure (e.g.
UWB/Bluetooth) to localise themselves within a room, and
even then, they lack semantic understanding of the utility of
the room. Again, we advocate that this capability should be
acquired spontaneously by human-held devices as a result of
them interacting with robots.

To this end, we propose a system that enables robots and
wearable devices to have a semantic understanding of their
environment via colocation and interaction with each other.
We believe that this is key to a variety of applications,
from issuing simple commands to robots such as “Go to
the kitchen”, to tasks of collaborative nature like “The robot
should go to the kitchen when the user (her smartphone) is
there”. In an industrial scenario, room-level localisation of
users could enable real-time dynamic context-aware reasoning
[4], in particular in the framework of Industry 4.0, in which the
use of arrays of sensors on the shop-floor could be replaced by
a few mobile sensors, carried by autonomous mobile service
robots and by users.

The first intuition behind our approach is that user activities
provide informative hints about the utility of each room. For
example, a bedroom can be easily identified if people often
sleep in that room. However, the association between room
types and activities is not always unique. For instance, a
user may eat in the dining room most of the time, but may
occasionally opt to do so in the living room. The problem
that arises is how to reliably infer semantic labels for different
rooms of the space given two incomplete and noisy sources,
i.e., robots’ perception of space and users’ activity context.

Once we address the problem of semantic mapping, it paves
the way for inferring the sequence of room types that human
devices traverse. A robot, who is now aware of semantic room
labels, can teach human mobile devices how to recognize them
based on their own signals. Specifically, we show how a robot
can help mobile devices to tune the parameters of the Hidden
Markov Model (HMM) that they use for localisation.

To summarise, semantic mapping and semantic localisation
are two faces of the same coin; we address both by leveraging
opportunistic colocation events between robots and human-
held devices. Thru the diverse lenses of robots and wearable
devices, we show that they can both develop a semantic
understanding of their space.

In particular, the contributions of this work are as follows:
• A method for inferring semantic labels (room types)
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for different rooms by exploiting user activities and
opportunistic colocation events.

• A method for exploiting the inferred semantic map and
colocations in order to train the parameters of a Hidden
Markov Model (HMM) for user localisation.

• We propose a bidirectional recurrent neural network with
approximate variational inference for classification of
complex daily activities from a smartwatch.

• We validate the results in two work environments co-
inhabited by robots and humans wearing smartwatches.

The remainder of the paper is structured as follows: Section
II provides an overview of related work; Section III presents
the architecture of our system; Section IV describes the
semantic representation of the map and the mapping proce-
dure; Section V discusses the training of the HMM for user
localisation; Section VI evaluates the proposed approaches in
different scenarios and Section VII presents our conclusions
and directions for future work.

II. RELATED WORK

Daily activity recognition Activity recognition, and in par-
ticular wearable activity recognition, is an important problem
that has drawn significant attention from the research commu-
nity in the last 10 years. Although different sensor modalities
have been studied, we focus on the most related work that
uses inertial sensor data (acceleration and gyroscope) for
activity recognition. We first discuss recent work on classifying
activities, and then discuss how activity information has been
used within simultaneous localisation and mapping (SLAM)
frameworks.

In [22] the authors use inertial data from a wrist-mounted
device to detect activities performed on household objects.
In [21] the authors propose to combine smartwatches and
smartphones for activity recognition and evaluate different
features. A Deep Belief Network (DBN) composed by stacked
Restricted Boltzmann Machines (RBMs) is used in [5] for
detecting activities based on spectrograms of acceleration data.
A hybrid of deep learning and hidden Markov models (DL-
HMM) is also presented for sequential activity recognition.
An alternative dense approach of labelling each sensor sample
in a sequence, as opposed to labelling a whole window
of data, is explored using fully convolutional networks in
[31]. The above papers focus entirely on improving activity
recognition; in this paper, we propose a novel approach to
activity recognition, based on variational LSTMs, that gives
us estimates of classification uncertainty. This is a distinct
advantage as it enables us to integrate the activity classification
model into a purely probabilistic model, wherein uncertainty
about activity translates to uncertainty about semantic room
labels in a principled manner.

We are now in a position to overview how activity clas-
sification has been explored within simultaneous localisation
and mapping frameworks. In [13] the authors proposed a
3D SLAM algorithm for users wearing wearable sensors, by
including detected activities as landmarks in a particle filter
SLAM approach. In [12] the approach is extended into a
unified Bayesian framework for semantic SLAM with the goal

of adding robustness to errors in activity recognition. However,
in both approaches the user carries a multitude of inertial
sensors (wrist-mounted, hip-mounted, foot-mounted IMUs),
and does not exploit interactions with robots. Moreover, while
the approach is shown to work on some medium-length
trajectories, particle filter based SLAM methods are known
to suffer from the forgetting problem over longer trajectories
(due to the nature of re-sampling, the best trajectory could
be discarded over time). In [16] a method is proposed for
tagging maps with objects. The object’s position is inferred
by detecting user activities and location, but the detected
activities are not used in the map estimation and there is no
information exchange between the robot and the user. To our
knowledge this is the first paper that infers both user activity
and its uncertainty from noisy wearable sensors, and feeds this
information to co-located robots, which then learn semantic
maps of the environment.

Semantic mapping Semantic mapping is the problem of
associating high-level semantic attributes to low-level geomet-
ric features. Both perception and suitable map representations
are active areas of research, but to date most work in the
robotics community has been devoted to camera sensors [7].
[20] presents a conceptual model for semantic map represen-
tation, with different levels of abstraction, from sensor data to
concepts, such as rooms, with associated properties, such as
shape, appearance, and detected objects. The layered structure
of the spatial knowledge is used for reasoning at the semantic
level, starting from laser range finders and camera sensors. A
number of works have focused on assigning semantic concepts
to high level map features such as planar surfaces [23]. [19]
segments known objects in the map based on semantic labels.
Recently, [29] proposed a novel recurrent neural network
architecture for semantic labeling on RGB-D videos. Semantic
information is integrated with dense 3D SLAM techniques
such as KinectFusion in order to obtain a 3D semantic map of
the environment. The most closely related work on semantic
mapping is recent work on inferring room labels [24] using
visual place categorization. A convolutional neural network
is trained on the SUN Scene Understanding dataset, and
addresses the closed-set limitation by training a set of one-
vs-all classifiers for recognizing new semantic classes.

The above techniques rely on training data that associate
visual sensor data to higher level semantic labels. Such learn-
ing tends to be very sensitive to the environment and incurs a
significant manual fine tuning effort in each environment. For
example, the appearance of a kitchen may vary significantly
across different work and home environments. In our work,
we avoid environment specific training; we rely on activity
inference that transfers well between different environments,
and exploit robot-person interaction to gradually learn room
types from user activities over time. The only other work that
exploited robot-person interaction is [16], but only to perform
activity and associated object recognition in a more reliable
manner by combining the camera sensor of the robot with the
inertial sensors of the user.

User localisation Indoor localisation techniques have
gained significant maturity offering both infrastructure-based
(e.g. UWB [3], acoustic [25], Bluetooth Low Energy (BLE)
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beacons [34]) and infrastructure-less (e.g. WiFi [17], [26],
geomagnetic [27] and inertial [30]) solutions. In general,
infrastructure-based methods require the deployment and
maintenance of bespoke localisation hardware, which greatly
limits their application. On the other hand, infrastructure-less
methods exploit ambient signals in the environment and are
less costly. However, these methods typically require offline
training in the form of learning signal maps of WiFi or
geomagnetic signals. The user’s positions can be then localized
by matching the online collected signals with the surveyed
signal map. Even after significant training effort, location
estimation can still be inaccurate in the online phase due to
the environmental dynamics and pose variations of users.

Unlike previous work on learning physical signal maps,
the adopted semantics are abstract and tightly related to user
activities. In our context, the aim is to infer semantic paths,
e.g., the user went from the conference room to the kitchen
and back to his office. Previous work [15] on combining
user activities with WiFi and acoustic data to localise users
at room-level in domestic environments required a labour-
intensive training phase for building the WiFi map. Instead,
we move away from location-based training efforts, and rely
on lifelong learning from human-robot interactions. The idea is
to progressively build confidence on the semantics of different
rooms, and make wearable devices increasingly aware of their
environment.

III. SYSTEM ARCHITECTURE

This section provides a high level overview of our system.
We start by describing its actors and their sensing capabilities,
and then proceed to overview the two main components of the
system.

A. Actors and sensing capabilities

The proposed system includes two types of actors: a mobile
assistive robot and a user holding a wearable device, e.g. a
smartwatch. No other infrastructure is necessary.

Mobile robot We assume that the mobile robot is equipped
with proprioceptive sensors, such as wheel encoders or an
inertial sensor and an exteroceptive distance sensor such as
a laser range finder, sonars, or infrared sensors. Those sensors
are required in order for the robot to create a map of a
previously unseen environment and localise therein, as well
as perform basic navigation in it. We don’t rely on camera
sensors, since cameras are often forbidden in workplaces for
privacy reasons, and would also pose privacy issues in home
environments.

User We make the assumption that the user is carrying a
smart device, e.g. a smartwatch on his right arm if right-handed
or left arm if left-handed. smartwatches are a sensible choice
for detecting human activities from inertial data, and are not
intrusive compared to other sensors. smartphones can be used
to infer low-level activities such as walking, resting, climbing
stairs, etc., but are not useful for detecting a richer set of
daily activities, such as washing hands. It should be noted,
however, that smartwatches still present some limitations when
having to distinguish between activities that present similar
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Fig. 1. Architecture of the semantic mapping sub-system.

motions, e.g., washing hands and washing dishes. In this paper
we model such uncertainty and take it into account in building
semantic maps and localising users within them.

B. System components

Our system consists of two main sub-systems, one responsi-
ble for building the semantic map of the environment, and one
for localising users with wearables within the semantic map.
These two sub-systems are discussed below in more detail.

Semantic Mapping Figure 1 provides an overview of the
first sub-system, designed to infer the semantic labels of map
cells. In this phase, we assume that the robot has already built a
grid map representation of the environment using an existing
Simultaneous Localisation and Mapping (SLAM) algorithm,
such as gmapping. The robot is also able to localise in the map
using its sensors and a suitable localisation algorithm such as
amcl. Moreover, the robot is able to navigate the environment
by planning trajectories and avoiding obstacles. Such aspects
of robot functionality are already mature and accessible to
researchers and practitioners in mobile robotics.

The user is wearing a smartwatch, which is acquiring inertial
measurements (accelerations and angular velocities). Based
on these measurements, we infer probability distributions of
activities using bidirectional long-short term memory neural
networks. Whenever the robot happens to be colocated with
the user in the same room, the robot detects the human figure
with its sensors and registers the colocation event.

The semantic map subsystem takes as input motion data
from the user, metric / topological maps inferred from the
robot, and colocation events detected by the robot, and com-
bines them to infer semantic labels for each grid cell of the
robot map. Details are further discussed in Section IV.

Semantic Localisation Having obtained a semantic map of
the environment thru the previous process, our system includes
a second component for localising users within the semantic
map, as shown in Figure 2. Our aim is to infer trajectories that
are not sequences of time-x-y-floor coordinates, but sequences
of time-roomLabel tuples.

In order to obtain such semantic paths reliably, we combine
the semantic map learnt from the previous phase, with user
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Fig. 2. Architecture of the user localisation sub-system.

activity distributions and colocation events between robot
and user. Fusing the above information in a probabilistic
framework, we are able to train the parameters of a Hidden
Markov Model (HMM), which we then apply to infer the
user’s semantic paths. It is worth noting that colocation events
are only used for training the HMM; they are not used at
the inference stage. This means that the system can learn to
track the user thru rooms independently of whether the robot
happens to be there. Further details on this part of the system
are provided in Section V.

IV. SEMANTIC MAPPING

In this section we describe the first phase of our approach,
in which the robot is able to create a semantic map on
top of the metric map of the environment, by accumulating
information on user activities over time during robot-user
colocation events. We first introduce Bidirectional Long-Short
Term Memory (BLSTM) neural networks and describe the
proposed activity classification network architecture. Then, we
describe the semantic mapping creation process.

A. Activity recognition

Bidirectional Long-Short Term Memory (LSTM) Recurrent
Neural Networks (RNNs) have recently shown promising
results when applied to the problem of human activity recog-
nition [11], [32]. Inspired by these works, we started off
by training a BLSTM network that uses raw acceleration
and gyroscope data as input. However, the disadvantage of
this method is that it does not offer a Bayesian probabilistic
interpretation of the quality of classification results. In order to
estimate the uncertainty surrounding our classification results
we applied for the first time the approach of variational
LSTMs [9] to the problem of activity recognition. In what
follows we first introduce the reader to pure and bidirectional
LSTMs, and then explain the benefits of the variational ap-
proach.

Traditional RNNs are a type of neural network where
the layers operate not only on the input data but also on

delayed versions of the hidden layers and/or output. Therefore,
the network has an internal state which it can use as a
”memory” to keep track of past inputs and its corresponding
decisions. Traditional RNNs, however, suffer from the problem
of forgetting, as they are unable to learn long-term trends in the
input data. This is known as the vanishing gradient problem.
In [14] Long Short-Term Memory networks (LSTMs) were
introduced as a modified version of RNNs, in order to address
the vanishing point problem. Through the inclusion of gating
cells which allow the network to selectively store and forget
past memories. The input gate gi controls how the input enters
into the contents of the memory cell for the current time-step.
The forget gate, gf , determines when the memory cell should
be emptied by producing a control signal in the range 0 to 1
which clears the memory cell as needed. The output gate go

determines whether the contents of the memory cell should be
used at the current time-step. gc is the cell state vector.

gi = σ(Wi ∗ ht−1 + Ii ∗ xt)

gf = σ(Wf ∗ ht−1 + If ∗ xt)

go = σ(Wo ∗ ht−1 + Io ∗ xt)

gc = tanh(Wc ∗ ht−1 + Ic ∗ xt)

mt = gf �mt−1+gu � gc

ht = tanh(go �mt−1)

(1)

where Wu,Wf ,Wo,Wc are weight matrices and
Iu, If , Io, Ic are projection matrices. σ is the logistic
sigmoid function. mt is the internal state of the cell and ht

is the hidden vector.
LSTMs have been showed to be able to learn temporal be-

haviour and have been extensively used in many applications.
Hence, they seem a natural choice for detection of complex
activities from sequences of data that present a temporal
component.

Bidirectional LSTMs (BLSTMs) [10] are a variant of
LSTMs composed by one forward LSTM and one backward
LSTM running in reverse on the data and with their features
concatenated at the output layer. This enables information from
both past and future to come together. BLSTMs have been
found to perform better when dealing with small datasets.

A limit of RNNs is their tendency to overfit. Dropout can
help to a certain extent, but it has been shown to fail when
applied to recurrent layers. In [9] the authors suggested the use
of dropout in LSTMSs for approximate Bayesian inference.
In the proposed variant, dropout is also used in the recurrent
connections, and the same dropout masks are repeated at each
time step for inputs, outputs, and recurrent layers.

Variational LSTMs have been shown to outperform the
classic variant, while at the same time offering a useful
Bayesian representation of the output, giving an estimate of the
output uncertainty. However, to our knowledge they have not
yet been explored in the context of human activity recognition.

In the variational variant Equation 1 becomes:

gi = σ(Wi ∗ (ht−1 � zh) + Ii ∗ (xt � zx))

gf = σ(Wf ∗ (ht−1 � zh) + If ∗ (xt � zx))

go = σ(Wo ∗ (ht−1 � zh) + Io ∗ (xt � zx))

gc = tanh(Wc ∗ (ht−1 � zh) + Ic ∗ (xt � zx))

(2)
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where zx, zh are random binary masks that remain constant
at each step.

The other difference from standard LSTMs is that at pre-
diction time the dropout remains active. Each prediction is
repeated n times, in our case 50 times, and it is possible to
compute the mean class prediction and the associated variance
over the set of n samples, obtaining a prediction vector HAR
(Human Activity Recognition), where each element i denotes
the probability p[i] of activity i and the uncertainty σ[i] around
it:

HAR[i] = (HAR p[i], HAR σ[i])

The ability to have an estimation of the uncertainty as-
sociated with the detection is crucial when including this
information in a probabilistic framework.

B. Semantic map inference

Topological mapping As in [20], at the lower level a SLAM
algorithm creates a grid map of the environment using the
robot sensors. Using a template-based door detector [20] on
laser distance data, the robot is able to group together multiple
cells into individual rooms. We use the concept of room in a
broad sense to denote both regular rooms and corridors. The
aim of semantic mapping is to assign semantic categorical
labels (e.g. kitchen, bathroom, corridor, etc.) to each cell in
the grid.

Detecting colocation events Once the robot builds a grid
map of the environment, it starts roaming thru it, and records
any colocation events with users. In this section, we explain
how to robustly detect colocation events and identify the user
with whom the robot is colocated. For detecting humans, we
use fusion of distance data from the laser range finder on board
of the robot; we use open source code of an existing detector
that learns to recognise human legs [28].

However, in our application we must ensure that the de-
tected person is effectively the user wearing the smartwatch.
To this end, we placed one BLE beacon onboard of the robot
and measured the received signal strength at the smartwatch.
On detecting a beacon, the smartwatch sends to the robot, the
user identifier along with that user’s HAR (activity distribu-
tion) vector. Note that other methods based on Received Signal
Strength (RSS) beyond BTLE could be used for identifying
users, for example WiFi typically available on smartwatches.

When the robot detects a user and receives probabilistic
activity data from that user, it triggers a colocation event.
Figure 3 shows an example of the colocation detection while
the user is approaching the robot.

Semantic map updates
Each cell c in the robot’s grid map is assigned a vector

smap[c] indicating the probability that cell c belongs to a room
of a particular type. We use the abbreviation ’smap’ to refer
to the semantic map. For example,

smap[c] =


0.20 → office
0.40 → kitchen
0.15 → bathroom
0.35 → bedroom
· · ·



RSS

R
SS

 (d
B

)
Legs detection

Time (s)

Pr
ob

ab
ili

ty

Time (s)

Fig. 3. Colocation detection. Bottom: laser scans as seen by the robot, with
the detected leg pattern highlighted in red; third row: output of leg detector
(the output is 1 if any person is detected, 0 otherwise); second row: RSS from
user ID 1 (the RSS threshold is shown by the dashed horizontal line); top
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Fig. 4. Grid mapping update. Each cell is represented as a vector of room
type probabilities (shown in different colors), and is updated based on laser
observations using a raytracing procedure along each laser measurement.

Let smap[c]r be the element of smap[c] that corresponds
to a certain room type r; for example smap[c]r=kitchen is the
current estimate of the probability that cell c is in the kitchen.
At bootstrap, smap[c] is uniformly distributed over all room
types.

On detecting a colocation event, the robot highlights a
number of cells that are within its view, with the intention
of updating their semantic map probabilities. Figure 4 shows
the cells that are within the sensing range of the robot when
it detects a person nearby. Note that if a robot is situated in a
room and looks in the direction of the door, it ignores those
cells that are beyond the door frame.

The probabilities of selected cells having different room
types are then updated as follows.

smap[c]r := smap[c]r ×
∑

a∈Activities

p(r|a)×HAR p[a]

(3)
where p(r|a) is the probability of being in a room given activ-
ity a, and HAR p[a] is the probability that the user is actually
performing that activity. In practice this is implemented as a
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sum of logs of the prior and conditional probabilities, instead
of a product of probabilities [24].

Probabilities p(r|a) are drawn from the Concept net open
source knowledge graph [1], which gives a list of all possible
activities associated with each room type, with a weight that
represents the strength of the relationship between room and
activity. We can exploit these weights, after normalization, in
order to obtain usable priors.

The semantic map is updated after each robot-user coloca-
tion event. It can further be refined by taking into account that
cells belonging to the same room should be of the same type.
By averaging out the smap values of all cells in the same
room we obtain a probabilistic semantic label for each room.

V. USER LOCALISATION

In this section we propose a simple graphical model for
room-level localisation based on Hidden Markov Models. The
model is based on the joint probability distribution between
user location and activity. The states of the model represent
semantic room types and the transitions represent the transition
probability between different room types, e.g. from kitchen to
bathroom.

The model alternates between two phases, depending on the
predicted activity, namely a walking phase, and a stationary
activity phase. If a series of walking activities are detected, the
model estimates the length of the walking phase in seconds
(this is possible since activities are detected at a constant rate)
and treats it as a single walking event, representing a transition
between two nodes.

Otherwise, if another activity is detected, the model updates
the probability distribution of each node according to emission
probabilities, as in a classical HMM.

Let pt = (pt1, . . . , p
t
n) be the probability vector for the

current location at time t, where n is total number of rooms.
Each time a new activity is detected, the vector pt is updated
using one of the two rules discussed below.

Walking Phase Update We model the walking phase via
a random variable w which contains information about the
currently performed walking activity. Examples of possible
interpretations for w are walking time, number of steps,
walking distance, or even a part of a trajectory. In this work
we consider the simple case that w represents the walking time
between two stationary user activities.

Assuming w is a continuous random variable we have:

pti =

m∑
j=1

p(rt−1 = rj)

∫
p(rt = ri|w, rt−1 = rj)p(w)dw

(4)
where we have assumed that W and rt−1 are statistically inde-
pendent. The integral in the above formula, marginalises over
the uncertainty on the walking random variable w, whereas
the sum marginalises over the uncertainty of the location at
the previous step rt−1.

The term p
(
rt = ri|w, rt−1 = rj

)
represents the likelihood

of the transition from room type rj to room type ri via a
walking event w.

This formulation accounts for the uncertainty on the esti-
mation of the walking times between rooms. For simplicity,

we can evaluate the walking time w without uncertainty
by estimating the duration of multiple contiguous walking
activities. This results in the simpler formula:

pti =

m∑
j=1

p
(
rt−1 = rj

)
N (w;µij , σij) (5)

where µij and σij is the mean and standard deviation of the
time required to walk from a room type ri to a room type rj .

In summary, the walking activity events are concatenated
into a single walking event which acts as a control input in the
HMM, and impacts the transition probability between different
room types.

Stationary Activity Phase Update In the stationary activity
phase, state probabilities are only updated using emission
probabilities. The emission probability for a given room type
represents the probability of observing an activity a given
room type r. The state probabilities are then updated as
follows:

pti = pt−1i

m∑
j=1

p(at = aj |rt = ri)p(a
t = aj) (6)

The factor p (at = aj) is the probability of the user performing
activity aj at time step t. It is the result of the activity
prediction represented as HAR p(aj) in Section IV-A.

Empirically, we found increased localisation accuracy by
tweaking the above formula into:

pti = pt−1i

m∑
j=1

p(at = aj |rt = ri)p(a
t = aj)(1− σt

j) (7)

where the factor
(
1− σt

j

)
penalises the effect of activity

predictions that show a high standard deviation. By setting
σt
j to HAR σ[a] the model is able to embed the uncertainty

estimation from the variational BLSTM (see Section IV-A).
Training phase Note that the conditional probability p(at =

aj |rt = ri) is learnt automatically before it is used within
the HMM for localisation. This occurs during the colocation
events between the robot and the user. Whenever they are
both in room ri, the activity recognition module returns a
vector HAR as discussed in Section IV-A. HAR vectors
corresponding to the same room are averaged out in order
to learn the conditional probability of activity given room.

VI. EXPERIMENTAL RESULTS

We implemented our neural network using the Keras library
and Tensorflow as the optimization backend. The semantic
mapping system is implemented using the Robot Operating
System (ROS). The source code will be available online as
well as the user activity dataset used in the experiments.

A. User activities

1) Data collection protocol: For training our network, we
gathered inertial data from a set of 20 users (of ages between
24 and 60 (with µ=31). Users were given a smartwatch (Sony
Smartwatch 3) to be worn on their right hand if right-handed
or on the left if left-handed. We defined a list of complex daily
activities typical of domestic environments. Each subject was
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Parameter Value

BLSTM layers # 2
Neurons layer 1 50
Neurons layer 2 200

pW,1 0.8
pU,1 0.05
pW,2 0.05
pU,2 0.05
pdo 0.05

batch size 64
learning rate 0.001

TABLE I
OPTIMAL VALUES FOR THE NEURAL NETWORK HYPERPARAMETERS.

asked to perform the activities, one by one, based on his/her
own interpretation and style. In order to sufficiently sample the
continuous movement of non-transient actions, each subject
was asked to perform each activity continuously for 60 seconds
or more. We define the following list of 10 activities:

1) Washing dishes
2) Opening door
3) Dressing up
4) Drinking/eating
5) Washing hands

6) Idling
7) Using a PC/laptop
8) Brushing teeth
9) Walking

10) Writing

Two are simple activities (walking, idling), while the rest are
complex activities that are typically performed very differently
by different people and in different environments. 3 hours and
10 minutes of data were collected in total.

2) Training: We train our network architecture using stan-
dard back-propagation and the ADAM optimizer. For activity
recognition the input of the network is a sequence of 3-axial
acceleration data and 3-axial angular velocity data of fixed
length. Since the sensors present different sampling rates (the
accelerometer samples acceleration at ∼ 100Hz, while the
gyroscope samples at a lower ∼ 30Hz), we oversample the
gyroscope data in order to match that of the accelerometer,
using piecewise cubic spline interpolation.

We experimentally found that a window size of 3s offers the
best results for complex activity classification in most cases.
This is due to the fact that these activities are composed by
a series of movements that span over a longer time window,
compared to classic activities such as walking, running, biking,
etc. We divide the data into windows of 3s with an overlap
of 50%. The data is subsampled to a frequency of 50 Hz and
a median filter is applied on the raw data in order to smooth
outlier measurements.

The optimal hyperparameters for the network were found
using the Hyperas python package with TPE optimization and
are reported in Table I. pW , pU and pdo represent the dropout
ratios for the W weight matrices, for the U weight matrices,
and for the drop-out layer respectively. Note that the batch
size is dependent on the hardware setup.

Figure 5 shows the classification results. The network
achieves an accuracy of 87.5% on the test set. In order to val-
idate the choice the proposed architecture, we also compared
with three baselines: anon-variational LSTM, a non-variational
BLSTM (i.e., dropout was disabled at prediction time), both
using the same hyperparameters, and another non-recurrent
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Fig. 5. Confusion matrix for the variational BLSTM over 10 classes.

deep method [6]. The LSTM and the BLSTM achieved an
accuracy of 78% and 82% respectively. [6] achieved 82.5%
accuracy.

B. Semantic mapping

We test the semantic mapping in both an office-like en-
vironment and a domestic environment. In our experiments,
users are equipped with a smartwatch, connected via WiFi
to the robot. The robot is a Turtlebot 2 equipped with a
Microsoft Kinect camera. The robot is using the Kinect to
simulate a laser range finder to localize in the map, to detect
doors using a simple template matching algorithm available
in ROS and to detect the user using a simple classifier for
leg detection based on laser scans. As mentioned before,
the camera is not used due to privacy concerns. The first
scenario is an office-like environment, composed by a series
of rooms and a corridor. We had access to the planimetry of
the floor in the form of CAD files, but the robot could build a
map beforehand by performing SLAM. In our experiment we
are interested in mapping five rooms (lab, conference room,
kitchen, office, bathroom). There is a sixth multi-purpose room
in the center, but it is not included in the experiment since it is
not represented by any particular set of activities. The setup for
the experiment is shown in Figure 6. For the second scenario,
a grid map was built autonomously by the robot beforehand
using the gmapping ROS package.

The experiment lasted for a total of 30 minutes per user,
with the robot and the user moving in the environment,
entering various rooms and triggering colocation episodes, and
the cumulative result is shown in Figure 7. It should be noted
that in our experiments the robot was wandering autonomously
from room to room in a randomized manner.

Some issues are visible in the resulting semantic maps. For
instance, one door leading from the kitchen to the corridor
was not correctly detected at first. This is due to the difficulty
to tune the parameters of the door detector for different
types of openings. This led to part of the corridor nearby
the kitchen to be labelled as corridor. The resulting semantic
map is somewhat sparse in certain areas, since there were
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Fig. 6. The setup for the experimental tests during a colocation event, while
the user is performing an activity. The user is wearing a smartwatch; the robot
is using a Kinect camera for simulating a laser range finder.

Fig. 7. Resulting semantic map for the first scenario (activities only). The
estimated topological and semantic maps are superimposed a CAD map. Each
color of the map corresponds to a different room type (blue = corridor, red
= lab, light red=office, yellow = kitchen, green = bathroom, cyan = common
room). The topological map is represented by colored circles (each color
represents a different room and red dots represents detected doors).

few colocation episodes. Over a longer period of time we can
expect the map to become more complete. On the other hand,
the probabilistic mapping procedure was able to cope with
misclassified activities among the users, by smoothly updating
the map probabilities over time.

Figure 9 reports the ratio of map cells identified as a par-
ticular room type for the five rooms in the first scenario. The
values are computed as the ratio between the cells classified
as a particular room type and the total number of cells in
each room. Note that the final mapped area is dependent on
the presence of furniture or obstacles and on the trajectory of
the robot. The values in Figure 9(a) reflect the fact that only
partial areas of each room have been mapped. For instance as
the office was occupied by a desk and several chairs, the robot
couldn’t reach the whole room.

In order to provide a baseline for semantic mapping we
also show the result of semantic mapping using the visual
place classification approach from [24]. The result is shown
in Figure 8. In [24], a convolutional neural network based on
AlexNet was pre-trained on the Places205 dataset [33] for
place classification. The network takes RGB images in input
from from the Microsoft Kinect camera mounted on the robot.
We only use the subset of the 205 place labels which are

Fig. 8. Resulting semantic map for the first scenario with the approach
proposed in [24].

(a) First scenario (b) Second scenario

Fig. 9. Confusion matrix for the semantic maps in the two scenarios. Each row
represents one room; each column represent a semantic label; we report the
percentage of cells in each room that are classified with a particular semantic
label.

relevant to the testing environment (office, kitchen, conference
room, corridor). It can be seen how the corridor class, absent
from our method, is correctly classified by the network from
[24], at the cost of a large number of false positives. No fine-
tuning of the network was done.

Figure 11 shows the results of one run in a household
composed by four rooms (bedroom, living room, kitchen,
bathroom), while Figure 9(b) reports the ratio of map cells
identified as a particular room type for the four rooms in the
scenario. The experimental results show consistently accurate
classifications.

C. User localisation

In this experiment we show how we can combine the seman-
tic map obtained in the first phase and successive colocation
events in order to learn the parameters of a simple graphical
model for user localisation at room-level, independently from
the robot. We perform these experimental tests in the same
two scenarios of the previous experiment. Inertial data was
collected from a test set of 5 users. We show the localisation
results and compare them with the ground-truth location,
which is obtained by placing BLE beacons in each room of
interest in both scenarios.

The system first learns the correlation between room loca-
tions and activities, in the form of emission probabilities for
the different activities given room types. This is done over
a series of colocation events over time. Since the robot has
access to the semantic maps from the previous experiment, it is
able to learn the emission probabilities over time. The relation
between the activities and the six semantic rooms considered
is plotted in Figure 12. We expect that the activities performed
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Fig. 10. Trace of activities and room location aligned in time. The top image shows the estimated activity probabilities; the bottom image shows the predicted
location as well as the ground truth.

Fig. 11. Resulting semantic map for place classification in a domestic environ-
ment. Here red=bedroom, blue=living room, cyan=kitchen, green=bathroom.
The map constructed by the robot is used here.
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Fig. 12. Learned emission probabilities for activities performed in each room
(office-like environment).

in rooms which are of the same type to be similar (e.g. lab and
office), so in this experiment we combine the two room types.
Notice that the opening door activity is not considered, as it
is not related to a specific room, but to the transition between
rooms. We use Laplace smoothing on the estimated transition
probabilities. As the classes are somewhat unbalanced (e.g.,
people tend to spend most of the working day in the lab),
the classification accuracy for each specific class is weighted
by the number of samples in the class. The room-to-room
distances used to estimate transition probabilities are obtained
from the topological map built by the robot on top of the

metric map.
We provide statistical results for the localisation module in

Table II for both environments and averaged over a test set of
5 users, and we compare our graphical model with a baseline
approach consisting of a trivial HMM implementation, where
the transition and emission probabilities are the same as the
proposed graphical model. It should be noted that for the
office-like scenario we used 3s windows, while for the domes-
tic scenario a window of 5s gave the best results. In Figure 10
we show the detected activities along with the predicted room
locations for one user in the second scenario, for a duration
of 30 minutes. The results show how the proposed model can
outperform a classical HMM in our particular task.

VII. CONCLUSIONS

This work presented a framework that integrates assistive
robots, that will be present in workplaces and households
of the future, and consumer wearable devices, for sharing
information between robots and users that benefit each other.
In our scenario, a robot and the user coexist in a workplace
or household. The robot creates a map using any sensor that
can provide distance measurements, then it is able to navigate
the environment using standard navigation algorithms. The
user wears a smartwatch that continuously acquires inertial
data. Whenever the robot and the user meet, user activities
are used to build additional semantic layers on top of the
map, representing room type probability. We propose the use
of a variational bidirectional LSTM network for recognizing
complex spatio-temporal activities from raw data, that keeps

Precision Recall f1 score

Baseline HMM Office-like 0.8 0.71 0.75
Domestic 0.8 0.75 0.77

Proposed model Office-like 0.81 0.91 0.86
Domestic 0.87 0.95 0.91

TABLE II
PREDICTION ACCURACY OF USER LOCALISATION FOR BOTH SCENARIOS
FOR THE PROPOSED MODEL AND A BASELINE HMM IMPLEMENTATION.
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the whole framework probabilistic. Once a semantic map is
available, raw data from the user’s wearable device can be
used to detect room types. Over time, we train a room-based
graphical model for room level localisation for the user even in
the absence of the robot. In the model, nodes represent room
types and transitions represent transitions between room types.
This enables the robot to know the type of room the user is in
at any time, for executing high-level tasks. Future work could
be devoted to integrating a Pedestrian Dead Reckoning (PDR)
algorithm into the localisation module. Another interesting
extension would be to investigate active exploration strategies
for the robot in order to maximize the chance of co-location
events. Finally, semantic user localisation could provide real-
time context information to context-aware reasoning systems
for supporting users without the need to instrument the en-
vironment, relying instead on mobile autonomous robots and
wearable sensors.
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