CommonSense: Collaborative learning of scene semantics by
robots and humans

Stefano Rosa
University of Oxford
Oxford, UK
stefano.rosa@cs.ox.ac.uk

Xiaoxuan Lu
University of Oxford
Oxford, UK
xiaoxuan.lu@cs.ox.ac.uk

ABSTRACT

The recent introduction of robots to everyday scenarios has re-
vealed new opportunities for collaboration and social interaction
between robots and people. However, high level interaction will
require semantic understanding of the environment. In this pa-
per, we advocate that co-existence of assistive robots and humans
can be leveraged to enhance the semantic understanding of the
shared environment, and improve situation awareness. We propose
a probabilistic framework that combines human activity sensor
data generated by smart wearables with low level localisation data
generated by robots. Based on this low level information and lever-
aging colocation events between a user and a robot, it can reason
about semantic information and track humans and robots across
different rooms. The proposed system relies on two-way sharing
of information between the robot and the user. In the first phase,
user activities indicative of room utility are inferred from consumer
wearable devices and shared with the robot, enabling it to gradually
build a semantic map of the environment. This will enable natural
language interaction and high-level tasks for both assistive and co-
working robots. In a second phase, via colocation events, the robot
is able to share semantic information with the user, by labelling raw
user data with semantic information about room type. Over time,
the labelled data is used for training an Hidden Markov Model for
room-level localisation, effectively making the user independent
from the robot.
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1 INTRODUCTION

High-level semantic understanding of the environment is still an
open problem for complex cyber physical systems involving robots
and people. We envision that in the next five years, such systems
will become ubiquitous. We consider applications where assistive
robots are operating in domestic environments up to now almost
exclusively inhabited by humans. In such environments, concepts
such as room types and activities are important, not only because
of the interaction with humans but also for abstracting spatial
knowledge.
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Figure 1: Architecture of the proposed system. Red arrows
represent the semantic map inference information flow;
green arrows represent the user localisation flow.
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Robots typically perceive space in terms of gridmaps, topological
or feature maps. Recent work has motivated the need for a high
level understanding of the environment (e.g., semantic, affordances
or high-level geometry) in order to enable emerging robotics ap-
plications [3]. Vision-based techniques for semantic mapping are
well studied. [10] presents a conceptual model for semantic map
representation, with different levels of abstraction, from sensor
data to concepts, such as rooms, with associated appearance, and
detected objects.

Semantic information has been integrated with dense 3D SLAM
techniques such as KinectFusion in order to obtain a 3D semantic
map of the environment. [13] proposes a semantic mapping ap-
proach for inferring room types using visual place categorisation.

These techniques tend to be very sensitive to the environment
and require careful training and/or fine-tuning for each environ-
ment. We propose that semantic information should be sponta-
neously and effortlessly acquired by robots as a result of them
interacting with humans.

On the other hand, locating people indoor using wearable de-
vices, such as smartphones or smartwatches, requires either be-
spoke sensor infrastructure (e.g. WiFi, UWB [2], Bluetooth Low
Energy (BLE) [15]) or, in the case of infrastructure-less methods,
extensive offline training. Moreover, knowing the precise location
of the user is not always useful for high-level interaction. Wrist
mounted devices can also extract high-level information in the form
of human activities.

Human activity recognition with inertial sensors has been well
studied [12] [11] [14]. Activity classification has also been used
as part of Simultaneous Localisation and Mapping frameworks. In
[8] the authors proposed a 3D SLAM algorithm for users wearing
wearable sensors, by including detected activities as landmarks
in a particle filter SLAM approach. In [7] the approach is com-
bined with semantic SLAM with the goal of adding robustness to
errors in activity recognition. However, in both approaches the user
carries several inertial sensors (wrist-mounted, hip-mounted, foot-
mounted IMUs), and the coexistence with robots is not explored.
Previous work on combining user activities with WiFi and acoustic
data to localise users at room-level in domestic environments re-
quired a labour-intensive fingerprinting procedure to develop the
WiFi map [9].

Differently from above work, we move away from location-based
training efforts, and rely on lifelong learning from human-robot
interactions. The idea is to progressively make wearable devices
aware of their environment, thru the side-channel information
provided by robots. To this end, we propose a system that enables
robots and wearable devices to have a semantic understanding of
their environment via colocation and interaction with each other.
We believe that this is key to a variety of applications, from issuing
simple commands to robots such as “Go to the kitchen", to tasks of
collaborative nature like “The robot should go to the kitchen when
the user (her smart wearable) is there".

The first intuition behind our approach is that user activities pro-
vide informative hints about the utility of each room. For example,
a bedroom can be easily identified if people often sleep in that room.
Once we address the problem of semantic mapping, it paves the
way for inferring the sequence of room types that human devices
traverse. A robot, who is now aware of semantic room labels, can
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teach human mobile devices how to recognise them based on their
own signals. Specifically, we show how a robot can help mobile
devices to tune the parameters of the graphical model that they use
for localisation.

Semantic mapping and semantic localisation are two faces of the
same coin; we address both by leveraging opportunistic colocation
events between robots and human-held devices. Through the di-
verse lenses of robots and wearable devices, we show that they can
both develop a semantic understanding of their space.

We finally validate the results in a work and a domestic envi-
ronment, both co-inhabited by robots and humans wearing smart-
watches.

2 SYSTEM ARCHITECTURE

The proposed system includes two types of actors: a mobile assistive
robot and a mobile device worn by the user, e.g. smartwatch. The
information flow among the actors is shown in Figure 1.

We assume that the mobile robot is equipped with proprioceptive
sensors, such as wheel encoders or an inertial sensor and a distance
sensor such as a laser range finder, sonars, or infrared sensors.
Those sensors are required in order for the robot to create a map
of the environment and localise therein, as well as perform basic
navigation in it. We don’t rely on camera sensors, since cameras are
very privacy-intrusive and would also pose severe privacy issues
in home environments.

We make the assumption that the user is carrying a smart device,
e.g. a smartwatch on her right arm if right-handed or left arm if left-
handed. Considering that smartwatches have been gaining steadily
in public acceptance, our assumption is mild. In fact, smartwatches
are a sensible choice for detecting human activities from inertial
data, and are not intrusive compared to other sensors.

3 SEMANTIC MAPPING PHASE

In this section we describe the first phase of our approach, in which
the robot is able to create a semantic map on top of the metric
map of the environment, by accumulating the user activities infor-
mation over time, during robot-user colocation events. We start
by introducing some basics of Bidirectional Long-Short Term Mem-
ory (BLSTM) neural networks for this work and then describe our
proposed activity classification network architecture. Finally, we
introduce the semantic mapping creation process.

3.1 Human activity recognition

Long-Short Term Memory (LSTM) networks were introduced as a
modified version of Recurrent Neural Networks (RNNs), in order
to address the vanishing point problem, through the inclusion of
gating cells which allow the network to selectively store and forget
past memories. They have recently shown promising results when
applied to the problem of human activity recognition [6]. Bidirec-
tional LSTMs (BLSTMs) [5] are a variant composed by one forward
LSTM and one backward LSTM running in reverse on the data and
with their features concatenated at the output layer. BLSTMs have
been found to perform better when dealing with small datasets.
However, traditional neural networks do not offer a Bayesian
probabilistic interpretation of the quality of classification results.
In order to estimate the uncertainty surrounding our classification
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results we applied the approach of variational LSTMs [4] to the
problem of activity recognition. In [4] the authors suggested the use
of dropout in LSTMSs for approximate Bayesian inference. Dropout
is also used in the recurrent connections, and the same dropout
masks are repeated at each time step for inputs, outputs, and recur-
rent layers. Variational LSTMs have been shown to outperform the
classic variant, while at the same time offering a useful Bayesian
representation of the output. However, to our knowledge they have
not yet been explored in the context of human activity recognition.

The input gate g’ controls how the input enters into the contents
of the memory cell for the current time-step. The forget gate, gf ,
determines when the memory cell should be emptied by producing
a control signal in the range 0 to 1 which clears the memory cell
as needed. The output gate g° determines whether the contents of
the memory cell should be used at the current time-step. g€ is the
cell state vector.

g = o(Wh s (hyo1 ©2p) + 1 # (x¢ © 2y))
g/ =W/« (b1 0zp) + 1 = (x; ©24))
g’ =o(W°x (hyg ©zp) +1° % (x4 O zy))

1
g = tanh(W€ = (hy—1 © zp,) + I % (x4 © zy)) W

m; =gl om,_1+g' 0 g°
h; = tanh(g® © m;_1)

where W¥, WS, W°, W€ are weight matrices and I¥, ¥, 19, 1€ are
projection matrices. o is the logistic sigmoid function. m; is the
internal state of the cell and h; is the hidden vector. zy,z; are
random binary masks that remain constant at each step.

The other difference from standard LSTMs is that at prediction
time the dropout remains active. Each prediction is repeated n times,
in our case 50 times, and it is possible to compute the mean class
prediction and the associated variance over the set of n samples.

3.2 Semantic map inference

Detecting rooms As in [10], at the lower level a SLAM algorithm
creates a grid map of the environment using the robot sensors.
Using a template-based door detector [10] on laser distance data,
the robot is able to group together multiple cells into individual
rooms. We use the concept of room in a broad sense to denote both
regular rooms and corridors. The aim of semantic mapping is to
assign semantic categorical labels (e.g. kitchen, bathroom, corridor,
etc.) to each cell in the grid.

Detecting colocation events Once the robot builds a grid map
of the environment, it starts roaming through it, and records any
colocation events with users. For detecting the user’s position rel-
ative to the robot, we use a leg detector on distance data coming
from the robot. In order to ensure that the detected person is indeed
the user wearing the smartwatch, we place one BLE emitter on the
robot and measure the received signal strength at the smartwatch.
On detecting the beacon, the smartwatch sends to the robot the
user identifier along with the current detected activity distribu-
tion. Whenever the robot detects the user and receives probabilistic
activity data from that user, it triggers a colocation event.

Semantic map updates Each cell c in the robot’s grid map is
assigned a vector M(c) indicating the probability that cell ¢ belongs
to a room of a particular type.
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Figure 2: Grid mapping update. Each cell is represented as a
vector of room type probabilities (shown in different colors),
and is updated based on laser observations using a raytrac-
ing procedure along each laser measurement.

On detecting a colocation event, the robot highlights a number
of cells that are within its view, with the intention of updating their
semantic map probabilities. Figure 2 shows the cells that are within
the sensing range of the robot when it detects a person nearby.
Note that if a robot is situated in a room and looks in the direction
of the door, it ignores those cells that are beyond the door frame.

The probabilities of selected cells having different room types
are then updated as follows.

M(©)" = M(e)" x )" p(rla) x pla) @)

where M(c)" is probability of cell ¢ of belonging to room type r,
p(r|a) is the probability of being in a room given activity a, and p(a)
is the probability that the user is actually performing that activity.
In practice this is implemented as a sum of logs of the prior and
conditional probabilities, instead of a product of probabilities [13].

Probabilities p(r|a) are drawn from the Concept net open source
knowledge graph [1], which gives a list of all possible activities
associated with each room type, with a weight that represents the
strength of the relationship between room and activity. We can
exploit these weights, after normalization, in order to obtain usable
priors.

The semantic map is updated after each robot-user colocation
event.

4 USER LOCALISATION PHASE

In this section we propose a simple graphical model for room-level
localisation based on Hidden Markov Models. The model is based on
the joint probability distribution between user location and activity.
The states of the model represent semantic room types and the
transitions represent the transition probability between different
room types, e.g. from kitchen to bathroom.

The model alternates between two phases, depending on the
predicted activity, namely a walking phase, and a stationary activity
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phase. If a series of walking activities are detected, the model esti-
mates the length of the walking phase in seconds (this is possible
since activities are detected at a constant rate) and treats it as a
single walking event, representing a transition between two nodes.

Otherwise, if another activity is detected, the model updates
the probability distribution of each node according to emission
probabilities, as in a classical HMM.

In summary, the walking activity events are concatenated into a
single walking event which acts as a control input in the HMM, and
impacts the transition probability between different room types.

In the stationary activity phase, state probabilities are only up-
dated using emission probabilities.

5 EXPERIMENTAL RESULTS

The system was implemented using the Robot Operating System
(ROS) and the Keras library.

5.1 User activities

Data collection protocol For training our network, we gathered
inertial data from a set of 20 users of ages between 24 and 60
(with p=31). Users were given a smartwatch (Sony Smartwatch
3) to be worn on their right hand if right-handed or on the left if
left-handed. We defined a list of complex daily activities typical
of domestic environments. Each subject was asked to perform the
activities, one by one, based on his/her own interpretation and style.
In order to sufficiently sample the continuous movement of non-
transient actions, each subject was asked to perform each activity
continuously for 60 seconds or more.

Two are simple activities (walking, idling), while the rest are
complex activities that are typically performed very differently by
different people and in different environments (e.g., washing dishes,
brushing teeth, using a PC). 3 hours and 10 minutes of data were
collected in total.

Training We train our network architecture using standard
back-propagation and the ADAM optimizer. For activity recognition
the input of the network is a sequence of 3-axial acceleration data
and 3-axial angular velocity data of fixed length.

We experimentally found that a window size of 3s offers the
best results for complex activity classification in most cases. This
is due to the fact that these activities are composed by a series
of movements that span over a longer time window, compared to
classic activities such as walking, running, biking, etc. We divide
the data into windows of 3s with an overlap of 50%. The data is
subsampled to a frequency of 50 Hz.

Figure 3 shows the classification results. The network achieves
an accuracy of 87.5% on the test set.

5.2 Semantic mapping

We test the semantic mapping in both an office-like environment
and a domestic environment. In our experiments, users are equipped
with a smartwatch, connected via WiFi to the robot. The robot
is a Turtlebot 2 equipped with a Microsoft Kinect camera. The
camera is only used to simulate a laser range finder to localize in
the map, to detect doors using a template matching algorithm and
to detect the user’s position during colocations. The first scenario
is an office-like environment, composed by a series of rooms and
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Figure 4: Resulting semantic maps for the two scenarios.
The estimated semantic map is superimposed to a CAD
map. Each color correspond to a different room type (red =
lab/office, yellow = kitchen, green = bathroom, cyan = con-
ference room, brown = bedroom, blue = living room, orange
= dining room).

a corridor. In the first scenario we are interested in mapping five
rooms (lab, conference room, kitchen, office, bathroom). There is a
sixth multi-purpose room in the center, that is not considered in
the experiment. The second is a domestic scenario located inside
Keble College in Oxford. In the second scenario we are interested
in mapping domestic utilities (bedroom, bathroom, kitchen, dining
room, living room).

The experiments lasted for a total of 1 hour per user, with the
robot and the user moving in the environment, entering various
rooms and triggering colocation episodes. The final semantic maps
are shown in Figure 4. The resulting semantic maps are somewhat
sparse in certain areas, since there were few colocation episodes.
Over a longer period of time we can expect the map to become
more complete. Anyway, the results show how the robot is able to
compute a relatively dense and accurate semantic map just from a
few colocation events, in both office-like and domestic scenarios.

Figure 5 reports the ratio of map cells identified as a particular
room type for the five rooms in the two environments. The values
are computed as the ratio between the cells classified as a particular
room type and the total number of cells in each room. Note that
the final mapped area is dependent on the presence of furniture or
obstacles and on the trajectory of the robot. The values reflect the
fact that only partial areas of each room have been mapped. For
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Figure 5: Confusion matrix for the two scenarios. Each row
represents one room; each column represent a semantic la-
bel; we report the percentage of cells in each room that are
classified with a particular semantic label.

instance as the office was occupied by a desk and several chairs,
the robot could not reach the whole room.

5.3 User localisation

In this experiment we show how we can combine the semantic
map obtained in the first phase and successive colocation events
in order to learn the parameters of a simple graphical model for
user localisation at room-level, independently from the robot. We
perform these experimental tests in the same two scenarios of the
previous experiment. Inertial data was collected from a test set of 5
users. We show the localisation results and compare them with the
ground-truth location, which is obtained by placing BLE beacons
in each room of interest in both scenarios.

The system first learns the correlation between room locations
and activities, in the form of emission probabilities for the different
activities given room types, over a series of colocation events over
time. Since the robot has access to the semantic maps from the
previous experiment, it is able to learn the emission probabilities
over time. We expect that the activities performed in rooms which
are of the same type to be similar (e.g. lab and office), so in this
experiment we combine the two room types. As the classes are
somewhat unbalanced (e.g., people tended to spend most of the
working day in the lab), the classification accuracy for each specific
class is weighted by the number of samples in the class.

The room-to-room distances used to estimate transition proba-
bilities are obtained from the map built by the robot.

We provide the results of the localisation module in Table 1 for
both environments on a test set of 5 users. In Figure 6 we show the
detected activities along with the predicted room locations for one
user in the second scenario, over a window of 30 minutes.

Precision Recall fi score

Office-like  0.81 0.91 0.86

Domestic  0.87 0.95 0.91
Table 1: Prediction accuracy of user localisation for both sce-
narios.
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6 CONCLUSIONS

This work presented a framework that integrates assistive robots
and consumer wearable devices, for sharing information about
room utility between robots and users. In our scenario, the robot
and the user coexist in a workplace or household. The robot creates
a map using any sensor that can provide distance measurements,
then it is able to navigate the environment using standard algo-
rithms. The user wears a smartwatch that continuously acquires
inertial data. When the robot and the user are in the same room,
meaningful user activities are used to add semantic meaning to the
map in the form of room type probability. We then proposed the use
of a variational B-LSTM network for recognizing complex spatio-
temporal activities from raw data, that keeps the whole framework
probabilistic. In a second phase, when a semantic map is available
and the robot detects the user, raw data from the user’s wearable
device can be used to detect room types. We trained a simple graph-
ical model to provide room level localisation for the user even in the
absence of the robot. In the model, nodes represent room types and
transitions represent transitions between room types. This enables
the robot to be aware of the room location of the user at any time.
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