
RODES: A Robust-Design Synthesis Tool for
Probabilistic Systems?

Radu Calinescu1, Milan Češka2, Simos Gerasimou1, Marta Kwiatkowska3, and
Nicola Paoletti4

1 Department of Computer Science, University of York, UK
2 Faculty of Information Technology, Brno University of Technology, Czech Republic

3 Department of Computer Science, University of Oxford, UK
4 Department of Computer Science, Stony Brook University, USA

Abstract. We introduce RODES – a tool for the synthesis of probabilis-
tic systems that satisfy strict reliability and performance requirements,
are Pareto-optimal with respect to a set of optimisation objectives, and
are robust to variations in the system parameters. Given the design space
of a system (modelled as a parametric continuous-time Markov chain),
RODES generates system designs with low sensitivity to required tol-
erance levels for the system parameters. As such, RODES can be used
to identify and compare robust designs across a wide range of Pareto-
optimal tradeoffs between the system optimisation objectives.

1 Introduction

Quantitative verification is an effective technique for analysing the quality at-
tributes (e.g. performance and reliability) of alternative system designs from the
early stages of the development lifecycle [5]. The quality attributes of interest
are formalised as probabilistic temporal logic properties, and are evaluated over
Markov models of different system designs. The model that achieves the best
tradeoff between the quality attributes is then used as a basis for the implemen-
tation of the system. However, if this implementation cannot precisely match
the parameters of the selected model, the quality attributes of the system may
differ significantly from the values predicted by the quantitative verification of
its model. This limits the applicability of recently proposed approaches for the
automated synthesis of probabilistic system designs [4, 7].

Our RObust DEsign Synthesis (RODES) tool addresses this limitation by
generating parametric continuous-time Markov chains (pCTMCs) whose transi-
tion rates are allowed to vary within small bounded intervals that correspond
to user-specified tolerances for the parameters of the system. RODES imple-
ments our theoretical results from [1], which combine probabilistic model syn-
thesis [7] and precise parameter synthesis [2] to generate Pareto-optimal sets of
pCTMCs (i.e. designs) using a sensitivity-aware Pareto dominance relation. This
relation [1] acts as a tradeoff between optimality and robustness, and enables
adding robust but suboptimal designs into the Pareto-optimal sets. To this end,
the relation takes into account both a set of optimisation objectives (requiring
the minimisation or maximisation of certain quality attributes) and the benefit

? This work has been supported by the Czech Grant Agency grant No. GA16-17538S.

Robust design
synthesis engine

CSL properties
(objectives, constraints)

Metaheuristic algorithm
configuration (e.g.,
population size, iterations)

Sensitivity-aware Pareto
configuration (e.g., tolerance,
dominance relation)

Parametric CTMC model
with evolvable constructs RODES

Pareto-optimal
design set

Sensitivity-aware
Pareto-front

pCTMC
Formula Φi

QoS
attribute attri

Sensitivity-aware
synthesiser QoS attributes

attr1,...,attrn

Candidate
design

Parse pCTMC model and extract
design space and internal pCTMC

Evolve population and find
sensitivity-aware Pareto front

Model
parser

Probabilistic
model checker

Candidate
design analyser

Model check pCTMC
against formula ΦiEstablish quality attributes

of candidate design

RODES
users

Fig. 1: High-level RODES architecture

of selecting robust designs, i.e., designs with quality attributes insensitive to the
tolerance-induced variations in the pCTMC transition rates.

The rest of the paper presents RODES and its extensible architecture (Sec-
tion 2), and the tool scalability and applicability to systems from different do-
mains (Section 3). The RODES code, supplementary case study material, and full
experimental results are available at https://github.com/gerasimou/RODES.

2 RODES Functionality and Architecture

RODES (Fig. 1) is a Java-based tool with the inputs described below.

1) A pCTMC model of the entire design space, expressed in the modelling lan-
guage of the model checker PRISM [10] extended with the constructs

evolve double k [kmin..kmax] (1)
evolve int d [dmin..dmax] (2)
evolve module ComponentName (3)

which are used to specify ranges for the continuous and discrete parameters
of the system, and alternative component designs, respectively. A RODES
design is also a pCTMC, obtained from the design-space pCTMC by con-
straining its continuous parameters (1) to small bounded intervals

[k0 − δ, k0 + δ] ⊂ [kmin, kmax], (4)

fixing the values of its discrete parameters (2), and selecting one of the alter-
native designs (3) for each distinct ComponentName value.

2) Continuous stochastic logic (CSL) properties specifying the optimisation ob-
jectives and constraints for the quality attributes of the system.

3) Configuration parameters for the design-search metaheuristic algorithm, and
the following parameters of the sensitivity-aware Pareto dominance relation:

• a small tolerance γ > 0 for each continuous parameter (1) such that the
allowed parameter-value variation δ from (4) is δ = γ(kmax − kmin);

• a small sensitivity coefficient ε ≥ 0 such that a design needs to have (1+ε)
times better quality attributes to dominate a more robust design.

The operation of RODES is managed by a Robust-design synthesis engine
(Fig. 1). First, a Model parser (built using the Antlr parser generator, www.

2

ε=0, γ=0.01 ε=0.1, γ=0.01 ε=0.2, γ=0.01

F
ro

n
ts

D
es

ig
n
s

Fig. 2: Sensitivity-aware Pareto fronts (top) for the producer-consumer model, and
corresponding synthesised Pareto-optimal designs (bottom). Boxes represent quality-
attribute regions, coloured by sensitivity (red: sensitive, blue: robust). Red-bordered
boxes indicate sub-optimal robust designs. Designs are compared based on the worst-
case quality attribute value (i.e. lower-left corner of each box).

antlr.org) preprocesses the design-space pCTMC. Next, a Sensitivity-aware
synthesiser employs the jMetal Java framework for multi-objective optimisa-
tion with metaheuristics (jmetal.github.io/jMetal) to evolve an initially ran-
dom population of candidate designs, generating a close approximation of the
sensitivity-aware Pareto front. This involves using a Candidate design analyser,
which invokes the probabilistic model checker PRISM-PSY [3] to obtain the
ranges of values for the relevant quality attributes of candidate designs through
precise parameter synthesis. The Pareto front and corresponding Pareto-optimal
set of designs are then plotted using MATLAB/Octave scripts, as shown in Fig. 2.

A key feature of RODES is its modular architecture. The Sensitivity-aware
synthesiser supports several metaheuristics algorithms, including variants of ge-
netic algorithms and swarm optimisers. Further, the sensitivity-aware Pareto
dominance relation can be adapted to match better the needs of the system un-
der development (e.g., by comparing designs based on the worst, best or average
quality attribute values). Finally, different solvers could be plugged in the prob-
abilistic model checker component, including e.g. the GPU-accelerated version
of PRISM-PSY [3], or parameter synthesis tools for DTMCs [6].

3 Case Studies and Experimental Results
We evaluate RODES in three case studies: a variant of the producer-consumer
problem;5 a workstation cluster [9]; and a replicated file system used by Google’s
search engine [8]. Runtimes (Table 1) depend on the number of evaluations (using
more typically improves the quality of the Pareto fronts) and by the time required
to analyse a candidate design. These runtimes were obtained using the sequential
version of PRISM-PSY, but we are currently integrating the GPU-accelerated
version, which will significantly improve the scalability of the tool [3].

Fig. 2 shows Pareto fronts and designs obtained for a producer-consumer
model comprising a slow high-capacity buffer and a fast buffer of small capac-

5 E.W. Dijkstra.“Information Streams Sharing a Finite Buffer” Inf. Proc. Letters,
1972. The model can be found at https://github.com/gerasimou/RODES/wiki.

3

Table 1: Time (mean ± SD) for the synthesis using 10,000 evaluations. variant: val-
ues of scenario parameters. #states (#trans.): number of states (transitions) of the
underlying pCTMC. |K|: number of continuous parameters.

Model/ Google File System (|K|=2) Workstation cluster (|K|=2) Prod.-cons.
variant: S=5000 S=10000 S=20000 N=9 N=12 N=15 (|K|=2)

#states 1323 1893 2406 3440 5876 8960 5632
#trans. 7825 11843 15545 18656 32204 49424 21884

Time (m) 104±4 149±4 180±9 185±19 191±27 205±42 29±1

ity. The design space has two continuous parameters—overall production rate,
prod rate, and probability of using the fast buffer, p send fast; and a discrete
parameter that selects between two alternative designs (3) so either packets stay
in the designated buffers, or packets in the slow buffer are redirected to the
fast buffer with probability proportional to the slow buffer occupancy. We aim
to maximise two objectives: the expected system throughput (x-axis), and the
probability that both buffers are utilised at between 20–80% of their capacity
(y-axis). Fig. 2 shows results for tolerance γ = 0.01 and for several values of the
sensitivity coefficient ε (cf. Section 2). As expected, the number of slightly sub-
optimal but more robust solutions increases with ε. The sensitivity-aware Pareto
fronts provide unique insights into the system behaviour, and facilitates the selec-
tion of designs with a wide range of robustness levels, making RODES an effective
tool for the synthesis of robust designs from multi-objective specifications.

References

[1] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska, and N. Paoletti.
“Designing Robust Software Systems through Parametric Markov Chain
Synthesis”. In: ICSA. 2017, pp. 131–140.

[2] M. Češka, F. Dannenberg, N. Paoletti, et al. “Precise Parameter Synthesis
for Stochastic Biochemical Systems”. In: Acta Informatica (2016), pp. 1–35.

[3] M. Češka, P. Pilař, N. Paoletti, L. Brim, and M. Kwiatkowska. “PRISM-
PSY: Precise GPU-accelerated parameter synthesis for stochastic systems”.
In: TACAS. 2016, pp. 367–384.

[4] T. Chen, E. M. Hahn, T. Han, et al. “Model Repair for Markov Decision
Processes”. In: TASE. 2013, pp. 85–92.

[5] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik. “Early Pre-
diction of Software Component Reliability”. In: ICSE. 2008, pp. 111–120.

[6] C. Dehnert, S. Junges, N. Jansen, et al. “PROPhESY: A PRObabilistic
ParamEter SYnthesis Tool”. In: CAV. 2015, pp. 214–231.

[7] S. Gerasimou, G. Tamburrelli, and R. Calinescu. “Search-Based Synthesis
of Probabilistic Models for QoS Software Engineering”. In: ASE. 2015.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google File System”. In:
SOSP. 2003, pp. 29–43.

[9] B. R. Haverkort, H. Hermanns, and J.-P. Katoen. “On the use of model
checking techniques for dependability evaluation”. In: SRDS. 2000.

[10] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of
Probabilistic Real-time Systems”. In: CAV. 2011, pp. 585–591.

4

