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Abstract—We study Timed Branching Processes (TBPs), a
natural extension of (multitype) Branching Processes (BPs) where
each entity is equipped with a finite set of private continuous
variables, called clocks. Clocks grow uniformly with the same rate
and using them various timing constraints can be imposed on the
branching rules of the system, e.g. the way an entity reproduces
(branches) can depend on its age. In comparison with discrete-
time BPs, where all the entities live for a constant amount of
time before they branch (and die), and more general continuous-
time BPs, where for each entity the amount of time before the
branching takes place is governed by an exponential distribution,
our model can be seen as an abstraction of continuous-time BPs
where we do not know the exact distribution on the time before an
entity branches, but rather some time interval when it happens.
Allowing an external controller to decide at what point in time
the branching takes place permits us to study the best/worst
behaviour of the system. For each given instance of TBP, we show
how to answer the following questions: What is the supremum
probability of extinction for a given initial population? What
is the supremum probability that a given population becomes
extinct in less than t time units? What is the supremum expected
number of entities of a given type that will be created before the
population becomes extinct?

Keywords-Multitype Branching Processes; Timed Automata;
Probabilistic Timed Automata.

I. INTRODUCTION

We study Timed Branching Processes (TBPs), a natural
extension of (Multi-typed) Branching Processes (BPs). BPs
are a natural model used for studying behaviour of population
dynamics. A population consists of entities of various types
(possibly many entities of the same type can coexist at the
same time) and each of them branches after some time into
a set (possibly empty) of entities of various types while
disappearing itself.1 This assumption is natural, for instance,
for annual plants that reproduce only at a specific time of the
year. The set of offspring of an entity is chosen at random
among many possibilities with some fixed distribution that
depends only on the type of the entity that has branched. The
type can describe fundamental differences between entities,
e.g. stem cells are very different from regular cells, or
it can correspond to some characteristics of the entities,
such as their age or size. Although the entities coexist
with each other, the BP model assumes that there is no
interaction between them, so how they reproduce and for
how long they live is the same as if they were the only
entities in the system. This assumption greatly improves the
computational complexity of the analysis of such models and
is natural in situations where the population exists in an

1Actually, it is not necessary to assume that an entity dies immediately
after reproduction as long as it reproduces at most once during its lifetime.

environment that has virtually unlimited resources to sustain
the growth of the population, e.g. common situation for
bacteria or insects. BPs has wide applicability in modelling
various physical phenomena, such as nuclear chain reactions,
red blood cell formation, population genetics, population
migration, epidemic outbreaks and molecular biology (see,
e.g. [1] for many examples of BP models used in biological
systems). The lifespan of an entity is always equal to one time
unit in discrete-time BPs, and is exponentially distributed for
continuous-time BPs. In other words, both of these models
assume that an entity of the same type lives and reproduces in
the same way regardless of its past and its age. In our model,
in TBPs, the evolution happens in real-time just like for the
continuous-time model. However, the point of time at which
the branching takes place for each entity can be chosen by the
controller (i.e. it is chosen nondeterministically). This model
can be seen as an abstraction of continuous-time BPs for which
we do not know the exact distribution on the time before an
entity branches, but rather some lower and upper bound on
that time. Allowing an external controller to decide at what
point in time the branching takes place, permits us to study the
best/worst behaviour of the examined model. Also, in TBPs,
the branching rules and the probabilities assigned to them can
change throughout the life of an entity. We allow each entity
to have a finite set of real-time private clocks and an entity
can neither access nor modify clocks of the other entities in
the system. An offspring inherits the values of the clocks of
its parent, but while doing so, their values can be arbitrarily
rearranged or some of them can be reset to 0. Which clocks are
reset and the way the rest of them are assigned is common for
all the offspring of a given branching action.2 Notice that, since
there is no bound on the number of entities in our system, and
each of the entities has some finite number of private clocks,
we will need to analyse a system with potentially infinitely
many real-time clocks.

The clocks can measure not only the age of an entity or the
age of its parent, but also other parameters like its size, weight
or in the case an entity is a particle, its energy level. All of
them can be assumed to increase uniformly with time and once
such a parameter exceeds a certain threshold a splitting of the
entity occurs. Of course, in such a case it would be natural
to split the values of the clocks equally between its offspring.
However, for such systems the problems we study in this paper
become undecidable (see our technical report [2] for details)

2It is possible to restrict our model to allow only standard resets of the
clocks by introducing new types into the model. However, the number of
types would need to increase exponentially in the number of clocks. At the
same time, rearrangement of the clocks is very useful when modelling such
systems, so instead we allow such operations explicitly in our model.
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and so we will focus on the case where these values are only
allowed to be copied or reset to 0.

As a motivating example, let us discuss a simple model of
bacteria population. There are two types of bacteria, harmful
ones that cause some damage to the organism and harmless
ones that do not. Each type evolves differently, but each
bacterium has to branch within six minutes after it was born.
All harmful bacteria die between the second and fifth minute
of their life without any offspring. On the other hand, there are
two possibilities for harmless bacteria to evolve. Assuming that
a harmless bacterium is at least four and at most six minutes
old, it can branch (while disappearing itself) into one harmful
and one harmless bacterium with probability 1. As a second
possibility, assuming that the harmless bacterium is at least
one and at most three minutes old and its grandparent was
born no more than five minutes ago (if it existed, otherwise
its parent), the bacterium branches with probability 1

4 into two
harmless ones and with the remaining probability, it changes
into a harmful bacterium.

We would like to answer the following questions about
this model. Is the supremum probability that a population
consisting of one harmless bacterium becomes extinct greater
than 2

3 (i.e. can we make the organism recover with probability
≥ 2

3 )? Is the supremum probability that this happens within
one hour greater than 1

2 (i.e. can we make this bacteria
population extinct within one hour with probability ≥ 1

2 )?
What is the supremum of the expected number of harmful
bacteria created before extinction? And more importantly, for
estimating the worst possible expected cumulative damage
done to the organism, what is the supremum of the expected
value of the sum of lifetime of all harmful bacteria before
the whole population becomes extinct? (That is, e.g. time
periods when exactly two harmful bacteria coexisted in the
system are counted twice.) TBPs are a suitable formalism for
modelling evolutions of such populations and we will show
how to answer this sort of questions about them.
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Fig. 1. Reproduction of the example bacteria population. Harmless bacteria
are white, harmful are black. Clocks t, p and g correspond to the the age of the
bacterium, the age of its parent and the age of its grandparent, respectively.
An offspring of an entity inherits the values of its parent clocks after the
following reassignment is applied to them θ(t, p, g) = (0, t, p) (in other
words, we shift the values of the clocks one position to the right and reset the
age of the new entity to 0). There are two actions available to the controller,
A and B.

Also, TBPs can be used to analyse the expected total
workload of distributed computations. The goal is to complete
a task, which can be split in many different ways into subtasks
that can be performed independently on a distributed computer
network. Each such subtask can be split further and so on. We
do not know exactly how the execution of a given task will
proceed. For some of the subtasks it is the computer executing
it that decides how to split a given subtask and sometimes this
choice is probabilistic. For each subtask, we are given a lower
and upper bound on its execution time and possible ways how
its execution can proceed. In order to get an upper bound
on the expected amount of money we would need to pay to
run a given task, assuming that the cost of running a task is
proportional to its total workload, we need to compute the
worst possible expected total workload for the initial task.

It can be shown that the decision problems that we study
in this paper become undecidable if entities coexisting at the
same time are allowed to exchange information with each
other, for instance by allowing entities when they die to reset
some of the private clocks of the other entities. However, due
to space constraints and to ease the exposition of the results,
we restrain ourselves from defining such a general model in
this paper and refer the reader to its full version [2].

A. Related work
The simplest model of BPs, Galton-Watson process ([3])

which is a discrete-time model where all entities are of the
same type, dates as far back as 1874 and was used to explain
why some aristocratic family surnames became exctinct. The
generalisation of this model to multiple types of entities
was first studied in 1940s by Kolmogorov and Sevast’yanov
([4]). For an overview of the results known for BPs, see
e.g. [5] and [1]. The precise computational complexity of
decision problems about the probabilities of extinction of an
arbitrary BP was done for the first time in [6]. Branching
Decision Processes (BDPs), a natural generalisation of BPs
to controlled setting was studied before for discrete-time BPs
in the OR literature (e.g. [7], [8]) and found applications in
manpower planning, controlled queuing networks, manage-
ment of livestock and epidemic control, among others. The
focus of these works was on optimising the expected average
or discounted reward over a run of the process, or optimising
the population growth rate. In [9] and [10], it was shown
that decision problems about probability of extinction of
BDPs are polynomial-time many-one reducible to computing
the optimal probability of termination for so-called 1-exit
Recursive Markov Decision Processes. The computational
complexity of approximating the probability of extinction for
BDPs follows from these results. Similarly, the computational
complexity of computing the best/worst expected total reward
before extinction follows from [11].

In the branching processes arising in biology, the probability
that an entity will branch is usually dependent on its age.
Age-dependent models of BPs were considered before in the
literature (see, e.g. [5], [1]), but not in the presence of time
constraints on transitions and invariants on states. TBPs can
be used to perform the best/worst behaviour analysis of age-
dependent continuous-time branching processes.
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Timed automata, defined in [12], and its extension to
probabilistic setting ([13]) are the most commonly used
formalisms for describing systems that evolve in real-time.
The use of timing constraints to describe the behaviour of the
system is both intuitive and expressive enough to capture a
large class of real-time systems occurring in practice, and yet
many of the decision problems for these models have moderate
computational complexity.

B. Summary of the results

In this paper we show complexity upper bounds for the
following problems. The problem of deciding whether the
optimal expected probability of extinction of a given initial
population is ≥ p (p is given in binary) is in EXPSPACE.
Moreover, the problem of deciding whether the optimal time-
bounded probability of extinction, with time bound T (given
in binary), is ≥ p is as well in EXPSPACE. Finally, for the total
reward objective, which for instance can be used to compute
the supremum of the expected number of entities of a given
type created before the whole population becomes extinct, the
optimal value can be computed exactly in EXPTIME. The
exponential blow-up in the computational complexity of all
these problems comes from the (boundary) region abstraction
of the underlying Timed Automata. On the other hand, if
all entities have just one private clock, the computational
complexity remains the same as for BDPs without any clocks.

II. DEFINITIONS

A. Preliminaries

1) Notation: We denote by N the set of non-negative
integers, by R the set of reals and by R⊕ the set of non-
negative reals and R∞⊕ = R⊕ ∪ {∞}. For n ∈ N, let JnKN
and JnKR denote the sets {0, 1, . . . , n}, and {r ∈ R | 0≤r≤n}
respectively. For a real number r ∈ R we write brc for the
floor of r, i.e., largest integer n ∈ N such that n ≤ r; and
we write *r+ for the fractional part of r, i.e. r − brc. For an
arbitrary set X , we denote by |X| the number of elements
in X and by X∗ the set of all possible finite sequences (also
called lists) of elements from X .

2) Lists: We will use α, β, γ to denote finite lists of ele-
ments. For two lists α = a1, a2, . . . , ak and β = b1, b2, . . . , bl:
α · β denotes their concatenation, in this case α · β =
a1, . . . , ak, b1, . . . , bl; αi denotes the i-th element of list α,
in this case ai and |α| denotes the length of list α, in this
case k. The empty list will be denoted by ε (|ε| = 0).
Given a list α = a1, a2, a3, . . . , an and an element b, we
write α ⊗ b for the list (a1, b), (a2, b), . . . , (an, b). We can
also compose this operation, e.g. α ⊗ b ⊗ c is the list
(a1, b, c), (a2, b, c), . . . , (an, b, c).

3) Probability Distributions: A discrete probability distri-
bution over a countable set Q is a function µ : Q→[0, 1] such
that

∑
q∈Q µ(q)=1. For a possible uncountable set Q′, we

define D(Q′) to be the set of functions µ : Q′ → [0, 1] such
that the set supp(µ)= {q ∈ Q |µ(q)>0} is countable and, over
supp(µ), µ is a distribution. We say that µ ∈ D(Q) is a point
distribution if µ(q)=1 for some q ∈ Q.

4) Markov Decision Processes: Markov decision processes
(see, e.g. [14]), are well-studied modelling formalism for sys-
tems exhibiting nondeterministic and probabilistic behaviour.

Definition 1: A Markov decision process (MDP) is a tuple
M = (S,A, p, r) where:
• S is the set of states;
• A is the set of actions;
• p : S × A → D(S) is a partial function called the

probabilistic transition function;
• r : S×A→ R is the reward function.

We say that an MDP M is finite (discrete) if both S and A
are finite (countable). We write A(s) for the set of actions
available at s, i.e. the set of actions a for which p(s, a) is
defined. In an MDP M, if the current state is s, then one of
the actions in A(s) is chosen nondeterministically and if the
chosen action is a then the probability of reaching state s′ ∈ S
in the next step is p(s, a)(s′) and the reward obtained for this
transition is r(s, a).

B. Branching Decision Processes
Our definition of (multitype) Branching Decision Processes

(BDPs) is essentially the same as in [7] and [9]. The differ-
ences are pointed out at the end of this section.

Definition 2: A Branching Decision Process (BDP) is a
tuple B = (Q,A, p, r) where:
• Q is a set of types;
• A is a set of actions;
• p : Q × A → D(Q∗) is a partial function called the

probabilistic transition function;
• r : Q×A→ R is the reward function.

We say that an BDP B is finite if both S and A are finite. We
write A(q) for the set of actions available to an entity of type
q, i.e., the set of actions a for which p(q, a) is defined. Notice
that our definition does not assume that the set of types and
actions is finite; in fact the semantics of TBPs will be given
as BDPs with uncountably many types.

Let us first describe informally how BDPs evolve. A
configuration of a BDP B is a list of elements of Q that
we call entities. A BDP starts at some initial configuration,
α0 ∈ Q∗, and the controller picks simultaneously for each
entity one of the actions available to an entity of its type.
In the new configuration each entity is replaced by a list of
new entities. These lists are picked according to the probability
distribution p(q, a) that depends both on the type of the entity,
q, and the action, a, performed on it by the controller. The
next configuration, α1, is a concatenation of all these lists in
the same order as these entities occurred in α0. The process
proceeds in exactly the same manner from α1, moving to α2,
and from there to α3, etc. Once the state ε is reached, i.e.
no entities are present in the system, the process will stay
in that state forever. Notice that the probability of moving to
configuration β from α while performing a list of actions γ
is the sum over all possible β1, . . . , βl, where l = |α| and
β1 · . . . · βl = β, of the product of the probabilities that entity
αi branches into βi after action γi was performed on it.
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Definition 3 (Semantics of BDP): The semantics of a
Branching Decision Process B = (Q,A, p, r) is given as an
MDP MB = (StatesB,ActionsB,ProbB,RewardB) where:
• StatesB = Q∗ is the set of states;
• ActionsB = A∗ is the set of actions;
• ProbB : StatesB × ActionsB → D(StatesB) is the

probabilistic transition function such that for α ∈ StatesB
and γ ∈ ActionsB we have that ProbB(α, γ) is defined
when |γ| = |α| (this length is denoted by l) and
γi ∈ A(αi) for each i; moreover

ProbB(α, γ)(β) =
∑

β1,...,βl∈Q∗
β1·...·βl=β

l∏
i=1

p(αi, γi)(βi),

for every β ∈ StatesB. Notice that for a fixed β, there
are only finitely many combinations of βi-s such that
β1 · . . . · βl = β, so we sum over a finite set, even if
the set Q has uncountably many elements. (Also, such
defined ProbB(α, γ) is a probability distribution.)

• RewardB : StatesB × ActionsB → R⊕ is the reward
function such that RewardB(α, γ) =

∑l
i=1 r(αi, γi);

Observe that according to this definition ProbB(ε, ε)(ε) = 1
and RewardB(ε, ε) = 0. For a given BDP B and any of its
states α ∈ StatesB, we denote by ActionsB(α) the set of
actions γ ∈ ActionsB for which ProbB(α, γ) is defined.

Our semantics differs a little bit from the previous equivalent
models [7] and [9]. First of all, a configuration of a BDP is
represented explicitly as a simple list of entities, as opposed
to a vector holding for each type the number of entities of
that type in the current population. The vector representation
can be a lot more succinct than the explicit one, because
these numbers can be represented in binary. Secondly, as a
consequence of representing configurations as lists, config-
uration s1, s2 is different than s2, s1 as well will be their
evolution. In order to make our representation equivalent to
the vector notation, we could define an equivalence relation
that would group such configurations together. In the BDP
model in [9], instead of having probability distribution on the
outcomes of an action assigned to each type, the types are
partitioned between controlled, for which the action can be
chosen be the controller, and probabilistic ones, for which the
choice of the next action is probabilistic. It can easily be seen
that by introducing auxiliary types and transitions, that model
can simulate tightly the other one. None of this differences
influences the results presented in this paper.

C. Strategies

A path of a BDP B is a finite or infinite
sequence π = α0, (γ1, α1), (γ2, α2), . . . ∈ StatesB ×
((ActionsB×StatesB)∗ ∪ (ActionsB×StatesB)ω), consisting of
the initial state and a finite or infinite sequence of pairs of an
action and a state, such that ProbB(αi, γi)(αi+1) > 0 for any
0 ≤ i ≤ |π|, where |π| is the number of actions taken during
path π (|π| =∞ if the path is infinite). For any path π we will
denote by πA(i)(= γi) the i-th action taken during the path
π, by πS(i)(= αi) the i-th state visited, where πS(0)(= α0)

is the initial state, and by π(i)(= α0, (γ1, α1), . . . , (γi, αi))
the first i action-state pairs of the path π.

We will call a path of infinite (finite) length a run (finite
path). We write RunsB (FPathB) for the sets of all runs (finite
paths) and RunsB,α (FPathB,α) for the sets of all runs (finite
paths) that start at a given initial state α ∈ StatesB, i.e. paths
π such that πS(0) = α. For a finite path π, its last state will
be denoted by last(π).

A strategy in BDP B is a function σ : FPathB →
D(ActionsB), such that for all π ∈ FPathB: supp(σ(π)) ⊆
ActionsB(last(π)). We write ΣB for the set of all strategies.
A strategy σ is pure if σ(π) is a point distribution for all
π ∈ FPathB for which σ is defined, while it is memoryless if
for all π, π′ ∈ FPathB we have that last(π)=last(π′) implies
σ(π)=σ(π′). A pure strategy can be identified with a function
σ : FPathB → ActionsB. A strategy is called static, if it is pure
and for any state and all entities of the same type in that state
it picks the same action, i.e. for an arbitrary π ∈ FPathB, we
have σ(π)i = σ(π)j whenever last(π)i = last(π)j . A static
and memoryless strategy is essentially a function of the form
σ : StatesB → ActionsB.

A strategy σ ∈ ΣB and an initial state α induce a
probability measure over the set of runs of BDP B in the
following way: the basic open sets of RunsB are of the
form π · (ActionsB × StatesB)ω , where π ∈ FPathB, and the
measure of this open set is equal to

∏|π|−1
i=0 σ(π(i))(πA(i+1)) ·

ProbB(πS(i), πA(i+1))(πS(i+1)) if πS(0) = α and equal to 0
otherwise. It is a classical result of measure theory that this
extends to a unique measure over all Borel subsets of RunsB
and we will denote this measure by PσB,α.

Let X : RunsB → R∞⊕ be an arbitrary measurable function
in respect to PσB,α. The expected value of X under strategy σ
when starting at α is defined as EσB,α {X} =

∫
RunsB

X dPσB,α
(which can be ∞ even if PσB,α(X =∞) = 0). The supremum
expected value of X in B when starting at α is defined
as V∗(α)(X) = supσ∈ΣB EσB,α {X}. A strategy, σ̂, is said
to be optimal if Ebσ

B,α {X} = V∗(α)(X) and ε-optimal if
Ebσ
B,α {X} ≥ V∗(α)(X)−ε. It is common for the objective of

the controller to be optimisation of the probability that a run
of B belongs to a given Borel set B. In such a case, we can
just use the indicator function χB(r) = 1 if r ∈ B and = 0
otherwise, as the function X .

D. Clocks, clock valuations, regions and zones.

We fix a constant K ∈ N and finite set of clocks C. A (K-
bounded) clock valuation is a function ν : C → JKKR and we
write V for the set of clock valuations.

Assumption 1: Although clocks are usually allowed to take
arbitrary non-negative values, we have restricted their values to
be bounded by the constant K. This restriction is for technical
convenience and comes without significant loss of generality.

If ν ∈ V and t ∈ R⊕, we write ν+t for the clock
valuation defined by (ν+t)(c) = ν(c)+t if ν(c)+t ≤ K
and (ν+t)(c) = K otherwise, for all c ∈ C. Let Θ(C) be
the set of all functions from C to (C ∪ {0}). For a function
θ ∈ Θ(C), by ν〈θ〉 we denote the clock valuation ν′ such that
ν′(c) = ν(θ(c)) if θ(c) 6= 0 and ν′(c) = 0 otherwise.
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The set of clock constraints over C is the set of conjunctions
of simple constraints, which are constraints of the form
c ./ i or c−c′ ./ i, where c, c′ ∈ C, i ∈ JKKN, and
./ ∈ {<,>,=,≤,≥}. For every ν ∈ V , let SCC(ν) be the
finite set of simple constraints which hold in ν.

A clock region is a maximal set ζ ⊆ V , such that
SCC(ν)=SCC(ν′) for all ν, ν′ ∈ ζ. We write R for the set of
clock regions. Every clock region is an equivalence class of
the indistinguishability-by-clock-constraints relation, and vice
versa. Note that ν and ν′ are in the same clock region if and
only if the integer parts of the clocks and the partial orders of
the clocks, determined by their fractional parts, are the same
in ν and ν′. We write [ν] for the clock region of ν and, if
ζ=[ν], write ζ〈θ〉 for the clock region [ν〈θ〉].

A clock zone is a convex set of clock valuations, which is
a union of a set of clock regions. We write Z for the set of
clock zones. For any clock zone W and clock valuation ν, we
use the notation ν ∈W to denote that [ν] ∈W . A set of clock
valuations is a clock zone if and only if it is definable by a
clock constraint. For W ⊆ V , we write W for the smallest
closed set in V containing W . Observe that, for every clock
zone W , the set W is also a clock zone.

III. TIMED BRANCHING PROCESSES

Now we are in the position to formally introduce timed
branching processes.

Definition 4 (Timed Branching Processes): A (multitype)
Timed Branching Process (TBP) is a tuple
T = (C, Q,Act , Inv , E, δ, r), where:
• C is a finite set of bounded clocks,
• Q = {Λ1,Λ2, . . . ,Λn} is a finite set of types;
• Act is a finite set of actions;
• Inv : Q→ Z is the invariant condition;
• E : Q×Act → Z is the action enabledness function;
• δ : Q×Act → D(Θ(C)×Q∗) is the transition probability

function; and
• r : Q ∪ (Q×Act)→ R⊕ is the reward function.

When we consider a TBP as an input of an algorithm, its size
should be understood as the sum of the sizes of encodings of
Q, C, Inv , Act , E, and δ. For computational purposes, we
assume that all probabilities are rational, and their numerators
and denominators are all written in binary.

Informally, the behaviour of a TBP is as follows. A
configuration of a TBP, just like for BDPs, is a list of entities,
α, and time passes before an available action is triggered, after
which a discrete probabilistic transition occurs. Each entity is
equipped with a finite set of private clocks C. The state of
each entity can be represented as a tuple s = (q, ν) ∈ Q× V ,
where q is the type of this entity and ν the valuation of its
private clocks. As noted before, the values of all the clocks
are bounded from above by a constant K.3 For each such
a tuple, s = (q, ν), we let Type(s) = q and Valn(s) = ν.
During the delay, d, the reward obtained is the sum of the

3This assumption is very natural for models of biological systems. On the
other hand, it can be shown that TBPs with unbounded clock valuations can
be analysed by splitting each type into exponentially many, in the number of
clocks, new types.

rewards for each entity αi multiplied by the amount of time
that has passed, i.e. d ·

∑
i r(Type(αi)), plus the sum of all the

rewards for the actions performed at that time. Time passage is
available only if for all entities αi in α the invariant condition
Inv(Type(αi)) is satisfied while time elapses, and an action
a can be performed on entity αi after time d elapses only if
it is enabled after time elapse, i.e. if νi+d ∈ E(αi, a). Both
the time and the action are chosen nondeterministically. If the
action a is chosen to be performed on an entity of type q, the
set of new entities, β, and the rearrangement of their parent’s
clocks, θ, is chosen with a fixed probability δ[q, a](θ, β).
All entities on which an action was performed, are removed
from the current configuration and replaced with the set of
new entities they branched into (this set can be empty). The
valuation of the private clocks of the new entities in β is set
to the valuation of the private clocks of their parent at the
moment the branching took place after the rearrangement and
reset operator θ was applied to it. In general, a strategy can
specify multiple actions to be performed simultaneously on
any subset of the entities that are alive at a given moment of
time.

There are in fact two possible ways of defining the
semantics of TBPs. The just described behaviour corresponds
to synchronous semantics, where for each moment of time
we keep the list of all the entities alive at that time. (Of
course it suffices to keep track of the configuration only
for the time moments when a discrete action is performed
on at least one entity.) Moreover, the private clocks of all
the entities in such a model progress at the same pace
and are advanced by the same amount equal to the time
delay between consecutive configurations. To give a better
understanding of the synchronous semantics, we present
here an example run of the TBP from Figure 1. In this
example, X(t, p, g) denotes an entity of type X whose age,
its parent’s age age and its grandparent’s age are equal
to t, p, g, respectively. Moreover, →d=x represents a time
delay of x time units, and →X,Y corresponds to performing
discrete action X on the first entity and action Y on the
second one. If, e.g. X = ε then no action is performed on
the first entity at that moment of time. An example run that
starts with the initial population of one harmless bacterium
can look as follows: W (0, 0, 0) →d=4 W (4, 4, 4) →B

B(0, 4, 4),W (0, 4, 4) →d=2 B(2, 6, 6),W (2, 6, 6) →ε,A

B(2, 6, 6), B(0, 2, 6) →d=1 B(3, 7, 7), B(1, 3, 7) →A,ε

ε ·B(1, 3, 7)→d=3 B(4, 6, 10)→A ε and the process stays in
ε from that point on. Assuming that the strategy used by the
the controller was pure, the probability of this particular run
occurring is 3

4 .
Using the synchronous semantics it is easy to keep track

of the size of the population and its age distribution at any
moment of time, so for instance it is easy to express formally
a property that the population becomes extinct before time T .
Moreover, this semantics would be necessary if the objective of
the controller was, e.g. optimisation of the number of different
types of entities at a given moment of time. However, for
the objectives studied in this paper, this is not necessary and
simpler asynchronous semantics is sufficient. This alternative
approach is to allow the entities to perform time delays
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of unequal lengths. In this model, the entities at the i-th
consecutive configuration of the system are exactly the i-th
generation of the branching process, i.e. all of these entities
have exactly i − 1 ancestors. Because of the differences in
the lifespan of their ancestors, such a representation of the
state of the system can lead to a situation where two entities
are in the same configuration, although one of them will die
before the other one was born. However, as we will prove
later, for any TBP and any of the objectives studied in this
paper there exists a static and memoryless strategy that is
(ε-)optimal. This means that for any entity at any given time
there exists an optimal action that does not depend on the
future nor the past of any other entity in the system (and in fact
it does not even depend on the past of this entity). Hence, the
optimal value of any of these objectives, when starting with
the same initial population, is the same in both semantics.
At the same time, the asynchronous semantics has a big
advantage over the synchronous semantics, because it allows
us to represent the semantics of a TBP as a BDP (instead of
MDP), which simplifies greatly the notation. Furthermore, we
will be able to apply region abstraction and boundary region
abstraction directly to this BDP in order to obtain a finite
BDP (with the number of types being exponential in the size
of the original TBP). This allow us to use directly all the
computational complexity results established for finite BDPs,
which streamlines the proofs. To give a better understanding of
the asynchronous semantics, we present now a run of the TBP
from Figure 1, which directly corresponds to the run we gave
for the synchronous semantics. Here →d=x,d=y represents a
time delay of x time unit for the first entity and y time
units for the second one. W (0, 0, 0) →d=4 W (4, 4, 4) →B

B(0, 4, 4),W (0, 4, 4) →d=3,d=2 B(3, 7, 7),W (2, 6, 6) →A,A

ε ·B(0, 2, 6)→d=4 B(4, 6, 10)→A ε and the process stays in
ε from that point on. Again, assuming that the strategy used
was pure, the probability of this particular run occurring is
exactly the same as before, i.e. 3

4 .
Now formally, the (asynchronous) semantics of a TBP is

given by a BDP which has both an (uncountably) infinite
number of states and an (uncountably) infinite number of
transitions. An action in this semantics will be represented
as a pair a = (d, c) ∈ R⊕ × Act, where d is the time delay
to be performed before executing action c on this entity. For
an action a = (d, c) ∈ R⊕ × Act, we let Delay(a) = d and
Action(a) = c.

Definition 5 (Timed Branching Processes (Semantics)):
Let T = (C, Q,Act , Inv , E, δ, r) be a TBP. The semantics of
T is the BDP [[T ]] = (Q′, A′, p′, r′) where
• Q′ ⊆ Q × V is a set of types such that for any s ∈ Q′

we have Valn(s) ∈ Inv(Type(s));
• A′ = R⊕ ×Act is the set of timed actions;
• p′ : Q′ × A′ → D(Q′∗) is the probabilistic transition

function such that p′(s, a) = µ if and only if the follow-
ing holds: ν+d ∈ Inv(Type(s)) for all d ∈ [0,Delay(a)];
(ν+Delay(a)) ∈ E(Type(s),Action(a)); and all β ∈ Q∗:

µ(β⊗ν′) =
∑

θ∈Θ(C) s.t.
ν′=(ν+Delay(a))〈θ〉

δ[Type(s),Action(a)](θ, β);

• r′ : Q′×A′→R⊕ is the reward function where

r′(s, a)=r(Type(s)) · Delay(a) + r(Type(s),Action(s)).

IV. ABSTRACTIONS OF TIMED BRANCHING PROCESSES

In this section we generalise the notion of Region Abstrac-
tion [12] and Boundary Region Abstraction [15] to the context
of TBPs, and discuss properties of these abstractions.

A. Region Abstraction

Let us again fix a finite set of clocks C and an upper
bound on their value K ∈ N; this defines the set of possible
valuations of clocks, V . For ζ, ζ ′ ∈ R, where R is the set of
all regions of V , we say that clock region ζ ′ is in the future
of clock region ζ, or that ζ is in the past of ζ ′, if there are
ν ∈ ζ, ν′ ∈ ζ ′ and delay d ∈ R⊕ such that ν′ = ν+d; we then
write ζ −→∗ ζ ′. We say that ζ ′ is the time successor of ζ if
ζ −→∗ ζ ′, ζ 6=ζ ′, and ζ −→∗ ζ ′′ −→∗ ζ ′ implies ζ ′′=ζ or ζ ′′=ζ ′

and write ζ −→ ζ ′ and ζ ′ ←− ζ. Time successor definition is
extended to n-th time successor in a natural way: we say that
ζ ′ is the n-th successor of ζ, and write ζ −→+n ζ

′, if there is
a sequence of regions 〈ζ1, ζ2, . . . , ζn〉 such that ζ1=ζ, ζn=ζ ′

and ζi −→ ζi+1 for every 1≤i<n.
Definition 6: (Region Abstraction of a TBP) Let T =

(C, Q,Act , Inv , E, δ, r) be a TBP. The region abstraction of
T is the finite BDP TRA = (QRA, ARA, pRA, rRA) where:
• QRA ⊆ Q × R is a set of types such that for any

(q, ζ) ∈ QRA we have ζ ⊆ Inv(q);
• ARA ⊆ N×Act is the set of actions, such that if

(n, a) ∈ ARA then n ≤ (2·|C|)K where K is the upper
bound on the value of clocks;

• pRA : QRA×ARA → D(QRA
∗) is the probabilistic transition

function such that for (q, ζ) ∈ QRA and (n, a) ∈ ARA we
have pRA((q, ζ), (n, a)) = µ if and only if the following
holds: ζ −→+n ζn; ζn ⊆ E(q, a); and for all β ∈ Q∗:

µ(β ⊗ ζ ′) =
∑

θ∈Θ(C)∧ζn〈θ〉=ζ′
δ[q, a](θ, β).

• the reward function rRA : QRA × ARA → N is such that
rR((q, ζ), (n, a)) = n.

From the results of Alur and Dill [16] the following
proposition follows.

Proposition 1: . The size of TRA is exponential in the size
of T .

B. Boundary Region Abstraction

We say that a clock region ζ is thin if [ν] 6= [ν+ε] for
every ν ∈ ζ and ε>0 and thick otherwise. We write RThin
and RThick for the sets of thin and thick regions, respectively.
Observe that if ζ ∈ RThick then, for any ν ∈ ζ, there exists
ε > 0, such that [ν] = [ν+ε] and the time successor of a thin
region is thick, and vice versa.

For any ν ∈ V , b ∈ JKKN and c ∈ C we define
time(ν, (b, c)) def= b−ν(c) if ν(c)≤b, and time(ν, (b, c)) def= 0
if ν(c)>b. Intuitively, time(ν, (b, c)) returns the amount of
time that must elapse in ν before the clock c reaches the
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integer value b. Observe that, for every ζ ′ ∈ RThin, there exists
b ∈ JKKN and c ∈ C, such that, for every ζ ∈ R in the past
of ζ ′, we have that ν ∈ ζ implies ν+(b−ν(c)) ∈ ζ ′; and we
write ζ →b,c ζ

′. We say ν is in the closure of ζ, if ν ∈ ζ.
The boundary region abstraction is motivated by the follow-

ing. Consider an action a ∈ Act , an entity (q, ν), and ζ −→∗ ζ ′
such that ν ∈ ζ and action q is enable in clock region of ζ ′,
i.e. ζ ′ ⊆ E(q, a).

• If ζ ′ ∈ RThick, then there are infinitely many d ∈ R⊕
such that ν+d ∈ ζ ′. However, amongst all such d’s,
for one of the boundaries of ζ ′, the closer ν+d is
to this boundary, the ‘better’ the timed action (d, a)
becomes for the controller’s objective. However, since
ζ ′ is a thick region, the set {d ∈ R⊕ | ν+d ∈ ζ ′} is an
open interval, and hence does not contain its boundary
values. Observe that the infimum equals binf−ν(cinf) where
ζ →binf,cinf ζinf → ζ ′ and the supremum equals bsup−ν(csup)
where ζ →bsup,csup ζsup ← ζ ′. In the boundary region
abstraction we include these ‘best’ timed actions through
the actions (binf, cinf, a, ζ

′) and (bsup, csup, a, ζ
′).

• If ζ ′ ∈ RThin, then there exists a unique d ∈ R⊕ such
that (`, ν+d) ∈ ζ ′. Moreover since ζ ′ is a thin region,
there exists a clock c ∈ C and a number b ∈ N such
that ζ →b,c ζ

′ and d = b−ν(c). In the boundary region
abstraction we summarise this ‘best’ timed action from
region ζ via region ζ ′ through the action (b, c, a, ζ ′).

Based on this intuition the boundary region abstraction (BRA)
is defined as follows.

Definition 7: (Boundary Region Abstraction of a TBP) Let
T = (C, Q,Act , Inv , E, δ, r) be a TBP. The boundary region
abstraction of T is a (potentially infinite) BDP TBRA =
(QBRA, ABRA, pBRA, rBRA) where:

• QBRA ⊆ Q × V × R is a set of types such that for any
(q, ν, ζ) ∈ QBRA we have ζ ⊆ Inv(q) and ν ∈ ζ.

• ABRA ⊆ JKKN×C×Act×R is the set of boundary timed
actions;

• pBRA : QBRA × ABRA → D(QBRA
∗) is the

probabilistic transition function such that for
(q, ν, ζ) ∈ QBRA and (b, c, a, ζa) ∈ ABRA we have
that pBRA((q, ν, ζ), (b, c, a, ζa)) = µ if and only if for all
β ∈ Q∗:

µ(β⊗ν′⊗ζ ′) =
∑

θ∈Θ(C)∧νa〈θ〉=ν′∧ζa〈θ〉=ζ′
δ[`, a](θ, β)

where νa = ν+time(ν, (b, c)), ζa ⊆ E(q, a) and one of
the following conditions holds:

– ζ →b,c ζa
– ζ →b,c ζinf → ζa for some ζinf

– ζ →b,c ζsup ← ζa for some ζsup.
• rBRA((q, t, ν, ζ), (b, c, a, ζa)) = r(q) · time(ν, (b, c)) +
r(q, a).

Although the boundary region abstraction TBRA is not a finite
branching process, for any initial configuration α ∈ Q∗BRA of
finite length one can restrict attention to a finite branching
process due to the following observation.

Lemma 2: In boundary region abstraction TBRA of a TBP
T , the set of types of population originating from a fixed type
q ∈ QBRA is finite.

Proof: For a clock valuation ν we define its fractional
signature HνI to be the sequence (f0, f1, . . . , fm), such that
f0 = 0, fi < fj if i < j, for all i, j ≤ m, and f1, f2, . . . , fm
are all the non-zero fractional parts of clock values in the clock
valuation ν. In other words, for every i ≥ 1, there is a clock
c, such that *ν(c)+ = fi, and for every clock c ∈ C, there
is i ≤ m, such that *ν(c)+ = fi. Let (f0, f1, . . . , fm) be the
fractional signature HνI.

For a nonnegative integer k ≤ m we define the k-shift of a
fractional signature (f0, f1, . . . , fm) as the fractional signature
(f ′k, f

′
k+1, . . . , f

′
m, f

′
0, . . . , f

′
k−1) such that for all non-negative

integers i ≤ m we have f ′i = *fi + 1 − fk+. We say that
a fractional signature (f ′0, f

′
1, . . . , f

′
n) is a subsequence of

another fractional signature (f0, f1, . . . , fm) if n ≤ m and
for all nonnegative integers i < n we have f ′i ≤ f ′i+1; and
for every nonnegative integer i ≤ n there exists a nonnegative
integer j ≤ m such that f ′i = fj . Since taking boundary
moves either result in a subsequence of fractional signature
(potentially in the case of clock resets) or in a k-shift of the
fractional signature, the following proposition is immediate.

Proposition 3: In a boundary region abstraction TBRA if an
entity (q′, ν′, ζ ′) ∈ QBRA is reachable from a configuration
(q, ν, ζ) ∈ SBRA, then fractional signature of ν′ is a k-shift of
a subsequence of the fractional signature of ν.

The proof of the lemma follows from this proposition as
the set Q and R are finite sets, and the set of k-shifts of
subsequences of the fractional signatures of a valuation is
finite.

Definition 8: (Boundary Region Abstraction for Fixed
Initial Population) The reachable branching-process of a
boundary region abstraction TBRA = (QBRA, ABRA, pBRA, rBRA)
from a configuration α ∈ Q∗BRA, is the finite BDP
T αBRA = (QαBRA, ABRA, pBRA, rBRA), where QαBRA ⊆ QBRA is a
finite set of types such that (q, ν, ζ) ∈ QBRA if HνI is a k-shift
of a subsequence of HνiI where αi = (qi, νi, ζi) for some
i ≤ |α|.
The following result is a slight modification of Proposition 1.

Proposition 4: The size of T αBRA is exponential in the size
of T and α.

V. RESULTS

We omit subscripts B, e.g. in StatesB, ΣB, etc., when the
corresponding BDP is clear by context.

A. Expected Total Reward

For a given BDP B and N ≥ 0 we define TotalN (π),
the cumulative reward of a run π after N steps, as
TotalN (π) =

∑N−1
i=0 Reward(πS(i), πA(i+1)). For a

configuration α ∈ States, and a strategy σ ∈ Σ, let
ETotalN (B, α, σ) be the N -step expected total reward defined
as ETotalN (B, α, σ) = EσB,α

{
TotalN

}
and the expected total

reward be ETotal(B, α, σ) = limN→∞ ETotalN (B, α, σ). This
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last value can potentially be ∞. It is straightforward to show
that if σ is static and memoryless then for any α ∈ States:

ETotalN (B, α, σ) =
|α|∑
i=1

ETotalN (B, αi, σ)

and by taking the limit as N goes to infinity we also get

ETotal∗(B, α, σ) =
|α|∑
i=1

ETotal∗(B, α, σ).

For each starting state α, we would like to compute the
optimal expected reward over all strategies of a TBP start-
ing at α, denoted by ETotal∗(B, α), i.e. ETotal∗(B, α) =
supσ∈ΣB ETotal(B, α, σ).

a) Optimality Equations: For a BDP B we define the
following (uncountable) set of equations EETot(B).
• X (α) = 0 if α = ε, and
• X (α) = sup

γ∈Actions(α)

{
Rwd(α, γ) +

∑
β∈States

Prob(α, γ)(β) ·

X (β)
}

, otherwise. Here Rwd(α, γ) is a shorthand for∑|α|
i=1 r(Type(αi)) ·Delay(γi) + r(Type(αi),Action(γi)).

We can represent this equation system as x = Φ(x) where
x : States → R∞⊕ and Φ : (States → R∞⊕ ) → (States → R∞⊕ )
is an operator that is easily defined by the right-hand sides
(RHS) of equation system EETot(B).
• Φ(x)(α) = 0 if α = ε, and
• Φ(x)(α) = sup

γ∈Actions(α)

{
Rwd(α, γ)+

∑
β∈States

Prob(α, γ)(β)·

x(β)
}

, otherwise.
We say that a function x : States→ R∞⊕ is a solution of the

optimality equations EETot(B), and we write x |= EETot(B), if
x is a fixed point of Φ. We can define a partial order on these
functions as follows: x ≤ y iff x(α) ≤ y(α) for all α ∈ States.
The bottom element in this order is 0, where 0(α) = 0 for all
α. Now, from Knaster-Tarski theorem, we know that Φ has a
least fixed point and in fact the following holds.

Theorem 5: If x∗ is the least fixed point of Φ then x∗(α) =
ETotal∗(B, α) for every α ∈ States.

Furthermore, this least fixed point can be defined in a more
constructive way.

Theorem 6: The least fixed point of Φ is equal to
limN→∞ ΦN (0), where ΦN (0) is equal to the N -th
application of the operator Φ to 0.

Using these two theorems we can show the following.
Corollary 7: For any α ∈ States, ETotal∗(B, α) =∑|α|
i=1 ETotal∗(B, αi).

b) Finite BDPs.: Although [11] does not deal with
BDPs directly, rather with so-called 1-exit Recursive Simple
Stochastic Games with positive rewards, there is a tight
connection between these two models. As pointed out in
that paper, the results presented there hold for Branching
Markov Decision Processes with nonnegative rewards, which
is essentially the same model as BDPs with the expected total
reward objective studied in this section.

Theorem 8 (Expected Total Reward [11]): The supremum
expected total reward for a finite BDP B can be computed
exactly (this value is always rational or ∞) in PTIME, and
there always exists an optimal static and memoryless strategy.

c) Timed Branching Processes.: Let T be a TBP and TBRA

be its boundary region abstraction. To map a state of a TBP
to the corresponding state in the boundary region graph we
define the operator L·M as follows: for α ∈ States[[T ]] we define
LαM ∈ StatesTBRA to be the configuration such that LαMi =
(Type(αi),Valn(αi), [Valn(αi)]).

We show in Theorem 9 that the problem of computing
expected total reward of a TBP T can be reduced to a similar
problem on the corresponding boundary region abstraction.
Although boundary region graph TBRA is not a finite BDP, we
showed in Lemma 2 that for a population α ∈ States of fixed
(finite) size the resulting BDP T αBRA has finitely many types.

Theorem 9: For every configuration α ∈ States[[T ]] we have
that ETotal∗([[T ]], α) = ETotal∗(TBRA, LαM). Moreover, for an
arbitrary ε > 0, we can construct an ε-optimal static and
memoryless strategy for TBP [[T ]] from any optimal static and
memoryless strategy for its boundary region abstraction TBRA.

Proof (sketch): In order to prove ETotal∗([[T ]], α) =
ETotal∗(TBRA, LαM), we show that for the operators Φ[[T ]] and
ΦTBRA , corresponding to BDPs [[T ]] and TBRA, respectively,
ΦN[[T ]](0)(α) = ΦNTBRA

(0)(LαM) holds for all N . First, we
prove it for a single entity α = (q, ν) and then use the
fact that ΦN[[T ]](0)(α) =

∑
i ΦNTBRA

(0)(αi) and ΦN[[T ]](0)(α) =∑
i ΦNTBRA

(0)(αi) holds all N and all α; these proofs are by
induction on N . Finally, ETotal∗([[T ]], α) = ETotal∗(TBRA, LαM)
follows as a direct consequence of Theorems 5 and 6.

For the second part, let us recall that a static and memoryless
strategy can essentially be interpreted as a function, σ : Q→
A, from types to actions. From Theorem 8 we know that
there exists an optimal static and memoryless strategy in TBRA

and let σTBRA : QBRA → ABRA be such a strategy. Because
σTBRA is optimal we know that ETotal(TBRA, LαM, σTBRA) =
ETotal∗(TBRA, LαM) = ETotal∗([[T ]], α). Let η > 0 be a constant
to be fixed later. We define a corresponding to σTBRA static and
memoryless strategy ση[[T ]] : (Q × V ) → (R⊕ × Act) in [[T ]]
as follows: ση[[T ]](q, ν) = (t, a) if σTBRA(q, ν, [ν]) = (b, c, a, ζ)
and t is such that ν + t ∈ ζ and

r(q)·t−r(q, a) ≥ (1−η)·
(
r(q)·time(ν, (b, c))−r(q, a)

)
(1)

Such a t can always be chosen. Observe that there are
many such strategies for every σTBRA and η, and let ση[[T ]]
be one of them. We first prove by induction on N using
inequality (1) that for a single entity α = (q, ν) we have
ETotalN ([[T ]], α, ση[[T ]]) ≥ (1 − η) · ETotalN (TBRA, LαM, σTBRA).
For general α ∈ States we can do the following:
ETotalN ([[T ]], α, ση[[T ]]) =

∑|α|
i=0 ETotalN ([[T ]], αi, σ

η
[[T ]]) ≥∑|α|

i=0(1 − η) · ETotalN (TBRA, LαMi, σTBRA) = (1 − η) ·
ETotalN (TBRA, LαM, σTBRA). Taking the limit as N tends to ∞
we get that

ETotal([[T ]], α, ση[[T ]]) ≥ (1− η) · ETotal(TBRA, LαM, σTBRA).

Now, if ETotal∗([[T ]], α) = 0 or ETotal∗([[T ]], α) = ∞ then
by setting, e.g. η = 1

2 we get that ETotal([[T ]], α, ση[[T ]]) ≥ 0
in the former and ETotal([[T ]], α, ση[[T ]]) ≥ ∞ in the latter, so
in fact we obtain an optimal strategy ση[[T ]] in both of these
cases. Otherwise, if ETotal∗([[T ]], α) is finite and strictly
positive, we set η = ε/ETotal∗([[T ]], α) and obtain that
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ETotal([[T ]], α, ση[[T ]]) ≥ (1 − η) · ETotal(TBRA, LαM, σTBRA) =
(1− ε/ETotal∗([[T ]], α)) · ETotal∗([[T ]], α) =
ETotal∗([[T ]], α)− ε. Hence, ση[[T ]] is ε-optimal.

B. Extinction Probability

For a given BDP B and N ≥ 0, we define XPN (π), the
indictor function of extinction within N steps of a run π as

XPN (π) =

{
1 if πS(i) = ε for some i ≤ N
0 otherwise

For a configuration α ∈ States, and a strategy σ ∈ Σ, let
XPN (B, α, σ) be the N -step extinction probability defined
as XPN (B, α, σ) = EσB,α

{
XPN

}
and the extinction proba-

bility be defined as XP(B, α, σ) = limN→∞ XPN (B, α, σ).
For each starting state α, we would like to compute the
optimal extinction probability over all strategies of a TBP
starting at α, denoted by XP∗(B, α), i.e. XP∗(B, α) =
supσ∈ΣB XP(B, α, σ).

a) Optimality Equations: For a BDP B we define the
following (uncountable) set of equations EXP(B):
• X (α) = 1 if α = ε, and
• X (α) = sup

γ∈Actions(α)

∑
β∈States

Prob(α, γ)(β) · X (β), other-

wise.
We can represent this equation system as x = Ψ(x) where

x : States → R∞⊕ and Ψ : (States → R∞⊕ ) → (States → R∞⊕ )
is an operator that is easily defined by the right-hand sides
(RHS) of equation system EXP(B).
• Ψ(x)(α) = 1 if α = ε, and
• Ψ(x)(α) = sup

γ∈Actions(α)

{ ∑
β∈States

Prob(α, γ)(β) · x(β)
}

,

otherwise.
Just like for the expected total reward objective, we know

that this equation system has a least fixed point and the
following analogous theorems hold.

Theorem 10: If x∗ is the least fixed point of Ψ then
x∗(α) = XP∗(B, α) for every α ∈ States.

Theorem 11: The least fixed point of Ψ is equal to
limN→∞ΨN (0).

Corollary 12: For any α ∈ States we have XP∗(B, α) =∏|α|
i=1 XP∗(B, αi).

b) Finite BDPs.:
Theorem 13 (Finite BDPs[9], [10]): The problem of de-

ciding whether the supremum probability of extinction of a
given population is ≥ p is in PSPACE. Deciding whether this
value is 0, 1 or in between is in PTIME. Moreover, there
always exists an optimal static and memoryless strategy that
maximises the probability of extinction.

c) Timed Branching Processes.: Let T be a TBP and
TRA be its region abstraction. To map a state of a TBP to the
corresponding state in the region graph we define the operator
[·] as follows: for α ∈ States[[T ]] we define [α] ∈ StatesTRA to
be the configuration such that [α]i = (Type(αi), [Valn(αi)]).

We show in Theorem 14 that the problem of computing
the extinction probability of a TBP T can be reduced to the
same problem for its corresponding region abstraction (a finite
BDP). This reduction is simpler than showing this for the

boundary region abstraction that we used for the expected total
reward objective (for which this simpler region abstraction
does not work).

Theorem 14: For every configuration α ∈ States[[T ]] we
have that XP∗([[T ]], α) = XP∗(TRA, [α]). Moreover, an optimal
static and memoryless strategy in TRA gives an optimal static
and memoryless strategy for its TBP [[T ]].

C. Time-Bounded Extinction Probability.

For a given TBP T = (C, Q,Act , Inv , E, δ, r), an initial
configuration α ∈ States[[T ]] the time-bounded extinction
probability is the supremum probability of extinction of
the entire population within T ∈ N units of time. This
problem is a variant of the extinction probability and can
be solved by slightly modifying the TBP T to the TBP
T ′ = (C′, Q′,Act ′, Inv ′, E′, δ′, r′), where:
• C′ = C ∪ {c?} (where c? 6∈ C) is a finite set of bounded

clocks with the bound K ′ = max {K,T};
• Q′ = Q ∪ {?} (where ? 6∈ Q) is a finite set of types;
• Act ′ = Act ∪ {a?} (where a? 6∈ Act) is a finite set of

actions;
• Inv ′ : Q′ → Z ′ (here Z ′ is the set of zones on C′) is the

invariant condition such that
– Inv ′(Λ) = Inv(Λ) ∩ {ν(c?) ≤ T} if Λ 6= ?, and
– Inv ′(Λ) = ∅ otherwise;

• E′ : Q′×Act ′ → Z ′ is the action enabledness function
such that

– E′(Λ, a) = E(Λ, a) if Λ 6= ? and a 6= a?,
– E′(Λ, a) = {ν : ν(c?) = T} if a = a?;

• δ′ : Q′×Act ′ → D(Θ(C)×Q′∗) is the transition proba-
bility function such that

– δ′(Λ, a) = δ(Λ, a) if Λ 6= ? and a 6= a?, otherwise
– δ′(Λ, a)(θ, ?) = 1 s.t. θ ≡ 0;

and
• r′ : Q′ ∪ (Q′ ×Act ′)→ R⊕ is the reward function such

that:
– r′(Λ) = r(Λ) if Λ 6= ?, and r′(?) = 0,
– r′(Λ, a) = r(Λ, a) if Λ 6= ?, and a 6= a?,
– r′(Λ, a) = 0 otherwise.

The TBP T ′ is similar to T , however it has one special
clock c? that is never reset. Every type in T ′ has invariant
declaring that the value of clock c? should not exceed T .
Moreover T ′ has a degenerate type ? which spawns itself
after T time units with probability 1 while resetting all the
clocks, and hence never goes extinct. Every type can make a
transition to the degenerate type ? when the value of clock c?

is equal to T . Hence after T time units, all the types present
in the population can either reproduce within 0 time-units or
make a transition to type ?. It is straightforward to verify
that the supremum time-bounded extinction probability in T
for some initial configuration is equal to supremum extinction
probability in T ′.

D. Complexity results

We showed in the previous subsections how to reduce,
using region abstraction or boundary region abstraction, the
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problem of computing the optimal probability of extinction,
time-bounded probability of extinction and total expected
reward for TBPs to the respective problems for finite-type
BDPs with the number of types exponential in the size of
the TBP. Furthermore, it follows from Corollaries 7 and 12,
that it suffices to compute the optimal expected total reward
and optimal probability of extinction for initial populations
consisting of just a single entity, because the optimal value for
any other initial configuration can be easily computed based
on them. This gives us the following computational complexity
upper bounds for the decision problems for TBPs.

Theorem 15: For a given TBP T , its arbitrary entity with all
clocks set to zero as the initial configuration and an arbitrary
p ∈ Q the following holds. (We assume that the length of the
input is |T | + the number of bits required to represent the
numerator and denominator of p.)

1) There exists an optimal static and memoryless strategy
that maximises the probability of extinction of the initial
population. Deciding whether this optimal value is ≥ p
is in EXPSPACE and whether it is 0, 1 or in between is
in EXPTIME.

2) For the time-bounded probability of extinction with time
bound T (given in binary) we have the following. We can
transform TBP T in polynomial time into TBP T ′, such
that the optimal probability of exaction in T ′ is the same
as the optimal time-bounded probability of extinction in
T with time bound T . The problem of deciding whether
this optimal value is ≥ p is in EXPSPACE and whether it
is 0, 1 or in between is in EXPTIME. Furthermore, there
exists an optimal static and memoryless strategy in T ′
that maximises this value. (On the other hand, it can
happen that all optimal strategies for this objective in T
are not memoryless, but this is not important, because
in the end we focus only on T ′.)

3) There exists an optimal static and memoryless strategy
that maximises the total expected reward before extinc-
tion of the initial population. The optimal value can
be computed exactly (or decided whether it is ∞) in
EXPTIME.

Proof:

1) After the region abstraction is applied to T , the claim
follows from Theorem 14 and Theorem 13.

2) The construction given in Section V-C, transforms TBP
T into TBP T ′ with one extra clock and T being the
upper bound on this clock’s value, for which the optimal
probability of extinction of the initial population in T ′ is
the same as the optimal time-bounded, with time bound
T , probability of extinction of the same initial population
in T . Since the size of the region graph (which is a BDP)
of T ′ is O(T ) times larger than the region graph of T ,
it follows again from Theorem 13 that deciding whether
the optimal time-bounded probability of extinction with
time bound T (given in binary) is ≥ p is in EXPSPACE.

3) After the boundary region abstraction is applied to T ,
the claim follows from Theorem 9 and Theorem 8.

It follows from results [17] for Probabilistic Timed Automata
that all these problems are EXPTIME-hard, hence in fact the
last one is EXPTIME-complete. Moreover, it follows from [18]
that if all entities have just one private clock, the computational
complexity remains the same as for BDPs without any clocks.

Finally, in order to approximate within i bits of precision the
value of the optimal (time-bounded) extinction probability for
a given T , initial population α (and time bound T ), one can
perform a binary search in the interval of all possible values
of this quantity, i.e. [0,1]. First, we would ask whether the
optimal value is ≥ 1

2 , if it is smaller we would ask whether
it is ≥ 1

4 and otherwise we would ask whether it is ≥ 3
4 , etc.

After i such questions, we get to know the i most significant
bits of this optimal value.
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