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Abstract

We present an implementation of model checking for the
probabilistic π-calculus, a process algebra which supports
modelling of concurrency, mobility and discrete probabilis-
tic behaviour. Formal verification techniques for this cal-
culus have clear applications in several domains, includ-
ing mobile ad-hoc network protocols and random security
protocols. Despite this, no implementation of automated
verification exists. Building upon the (non-probabilistic) π-
calculus model checker MMC, we first show an automated
procedure for constructing the Markov decision process
representing a probabilistic π-calculus process. This can
then be verified using existing probabilistic model checkers
such as PRISM. Secondly, we demonstrate how for a large
class of systems a more efficient, compositional approach
can be applied, which uses our extension of MMC on each
parallel component of the system and then translates the re-
sults into a high-level model description for the PRISM tool.
The feasibility of our techniques is demonstrated through
three case studies from the π-calculus literature.

1 Introduction

The π-calculus [15] is a process algebra for modelling con-
currency and mobility. It is well suited to modelling, for
example, communication protocols for dynamic network
topologies and security protocols. For both classes of sys-
tems, probability is often also a key ingredient. Mobile ad-
hoc network protocols, for example, can exhibit stochas-
tic behaviour both in terms of communication failures and
random back-off procedures. Randomised security proto-
cols are used, for example, to tackle anonymity or contract-
signing [7]. The probabilistic π-calculus, which extends the
original process algebra with discrete probabilistic choice,

has been proposed as a formalism to model and reason
about such systems. The benefits for automatic formal veri-
fication and tool support in this context are clear: reasoning
correctly about the behaviour of such models, particularly
interactions between probabilistic and nondeterministic be-
haviour, is known to be non-trivial. Furthermore, the state
spaces of probabilistic models of realistic systems have a
tendency to grow extremely quickly, making manual verifi-
cation difficult or infeasible.

In this paper, we describe an implementation of prob-
abilistic model checking for models described in the sim-
ple probabilistic π-calculus: an extension of the π-calculus
which adds a discrete probabilistic choice operator in addi-
tion to the existing nondeterministic choice operator. This
probabilistic choice is blind, in the sense that each proba-
bility is associated with a silent τ action. This proves to be
sufficiently expressive for modelling the classes of system
we are interested in, whilst simplifying the semantics, and
thus verification, of the formalism.

Our approach is to adapt and reuse existing tools for ver-
ification of mobile systems and of probabilistic systems.
We first developed an extension of the tool MMC [26], a
logic programming based model checker for the π-calculus.
This extension, MMCsp, can derive the semantic model for
an arbitrary process in the (finite-control) probabilistic π-
calculus. The semantic model, which is given by a Markov
decision process (MDP), can then be analysed using stan-
dard tools, such as the probabilistic model checker PRISM
[11]. For efficiency reasons, however, we take a composi-
tional approach, applying MMCsp to each parallel compo-
nent of a system, processing the results to produce a high-
level description in the modelling language of PRISM and
then performing probabilistic verification. This avoids a po-
tential blow-up in the size of the intermediate MDP rep-
resentation and allows us to exploit the efficient symbolic
model construction and analysis techniques in PRISM. We
present experimental results to illustrate the performance of



our implementation on three π-calculus case studies.

Related work. Various tools exist for automatic verification
of the (non-probabilistic) π-calculus. The Mobility Work-
bench (MWB’99) [23] provides a bisimulation checker and
a π-µ-calculus model checker. MMC (Mobility Model
Checker) [26], a more recently developed tool, also sup-
ports the π-µ-calculus. The latter places particular empha-
sis on efficiency. and is built using logic programming tech-
nology. ProVerif [2] supports verification of the applied π-
calculus, a variant of the basic calculus. It is aimed primar-
ily at analysis of cryptographic protocols and is theorem-
prover based. Two alternative approaches are the PIPER
system [4], which verifies π-calculus processes augmented
with type signatures based on an extraction of sound models
using types and CCS processes, and [24, 22] which trans-
late a subset of the π-calculus to the language Promela for
model checking in the SPIN tool.

A number of existing papers have proposed probabilis-
tic extensions of the π-calculus. The first [10] extended the
asynchronous version of the calculus, which removes the
output prefix construct, meaning processes must terminate
immediately after sending output. In [5], a variant which
is essentially the same as that used in this paper was pre-
sented and probabilistic testing equivalences were defined
to reason about randomised security protocols. In [1], the
probabilistic π-calculus was used to formalise definitions
of anonymity. To our knowledge, this paper constitutes
the first attempt to implement automated verification in this
area.

Also related are stochastic variants of the π-calculus [20]
whose semantics are continuous-time Markov chains. A
number of associated discrete-event simulators for this for-
malism are available, (e.g. SPIM, BioSpi) but no model
checking tools. Both the stochastic π-calculus and proba-
bilistic model checking techniques have been applied suc-
cessfully to case studies in the field of systems biology. It
is hoped that the techniques proposed in this paper will also
prove to be valuable in this domain.

Structure. The remainder of this paper is structured as fol-
lows. Section 2 introduces and explains the simple proba-
bilistic π-calculus and its semantics. Sections 3 and 4 de-
scribe our extension of MMC for evaluating these seman-
tics and how the result of this can be processed into input
for the PRISM tool. Section 5 presents experimental results
and Section 6 concludes the paper.

2 The simple probabilistic π-calculus

The π-calculus is a process algebra for modelling concur-
rency and mobility. Based on the process algebra CCS, a
key distinguishing feature of the calculus is that it uses a sin-
gle datatype, names, for both channels and variables, with

the consequence that it is possible to communicate channel
names between processes. We use a probabilistic extension
of the π-calculus called the simple probabilistic π-calculus
or πsp.

Syntax. We let N denote a countable set of names, ranged
over by x, xi, y, etc. Using P , Pi to range over terms and
α to denote an action, the syntax of the simple probabilistic
π-calculus is:

α ::= τ
∣∣ x(y)

∣∣ x̄y

P ::= 0
∣∣ α.P

∣∣ ∑
i∈I Pi

∣∣ ∑
i∈I piτ.Pi

∣∣
P | P

∣∣ νxP
∣∣ [x = y]P

∣∣ A(y1, . . . , yn)

where I is an index set, pi ∈ (0, 1] with
∑

i∈I pi = 1 and
A(x1, . . . , xn) is a process definition.

Intuitively, the operators of the calculus are described as
follows. The inactive process, denoted 0, can perform no
actions. The action-prefixed process α.P can perform ac-
tion α and then evolve into P , where α is one of three types:
x(y) inputs a name on x and stores it in y, x̄y outputs the
name y on x; and τ is the silent action representing internal
communication.

There are two types of choice: nondeterministic
∑

i∈I Pi

and probabilistic
∑

i∈I piτ.Pi. The former is standard in
the π-calculus (and indeed CCS). The latter is the only new
operator in this probabilistic extension of the π-calculus.
Notice that branches of the probabilistic choice operator are
always prefixed with τ actions, indicating that

∑
i∈I piτ.Pi

randomly selects an index i ∈ I with probability pi, per-
forms a τ action and then evolves as process Pi. This
restricted form of probabilistic choice is in practice suffi-
ciently expressive but simplifies semantics and analysis.

Parallel composition P1 | P2 means that processes
P1 and P2 can either proceed asynchronously or interact
though matching input/output actions. The restriction νxP ,
localises the scope of x in process P , i.e. x can be consid-
ered a new and unique name within P . The match con-
struction [x = y]P can evolve to process P only if the
names x and y are identical. Finally, A(y1, . . . , yn) is a
recursively defined process with a definition clause of the
form A(x1, . . . , xn) , P .

An occurrence of name y in process P is bound if it is in
a subexpression of P of the form x(y) (input-bound) or νy
(ν-bound); otherwise, it is free. The sets of free and bound
names of P are denoted by fn(P ) and bn(P ), respectively.

A substitution σ is a mapping from N to N . The sim-
plest substitutions are of the form {y/x} which map x to y
and all other names to themselves. We use the notation Pσ
to denote the term obtained from P by substituting names
according to σ. A substitution σ satisfies the match [x = y],
denoted σ |= [x = y] if σ(x) = σ(y). Satisfaction extends
to conjunctions of matches in the obvious way.

In order to facilitate model checking of probabilistic
π-calculus processes, we make two simple assumptions.



Firstly, we restrict our attention to the finite-control version
of the calculus, i.e. where recursion is not permitted within
parallel composition. This is necessary to ensure that the re-
sulting models are finite-state and is in fact also imposed by
the MMC π-calculus model checker, on which our work re-
lies. Secondly, we require that the systems to which we ap-
ply model checking are input-closed π-calculus processes,
meaning that they require no inputs from the environment.

Symbolic semantics. The operational semantics for proba-
bilistic extensions of the π-calculus are typically expressed
in terms of MDPs or, equivalently, probabilistic automata
[21], which allow both probabilistic and nondeterministic
behaviour. In this paper, we use a symbolic presentation
of the operational semantics [25]. This approach is in fact
quite common for the π-calculus and is particularly benefi-
cial in the context of automatic tool support, as is the case
here, or for development of bisimulation theories.

Consider the simple process a(x).x̄b which inputs a
name x on channel a and then uses x as a channel on which
to output the name b. A concrete approach to the seman-
tics can immediately establish the first step of this process,
i.e. that it inputs x on a. Subsequent behaviour, however,
is dependent on the actual input to x, and can only be de-
termined once the process is composed with another which
sends output on a. A symbolic approach allows the seman-
tics of a process to include variables (e.g. x) which can be
used in actions (e.g. x̄b). This allows a compositional ap-
proach to be adopted: given a parallel composition of sev-
eral processes, the semantics of each can be computed in
full separately, and then composed afterwards.

The symbolic semantics of the πsp calculus are ex-
pressed in terms of probabilistic symbolic transition graphs
(PSTGs). These are a simple probabilistic extension of the
symbolic transition graphs of [9], previously used for the
(non-probabilistic) π-calculus [12, 3, 13, 14] and for CCS
[9]. Alternatively, they can be seen as a symbolic extension
of Markov decision processes.

Probabilistic symbolic transition graphs. Let N be a
countable set of names and P be a πsp process. The prob-
abilistic symbolic transition graph (PSTG) for P is a tuple
(S, sinit , T ) where:

• S is the set of symbolic states, each of which is a term
of the simple probabilistic π-calculus;

• sinit ∈ S, the initial state, is the term P ;

• T ⊆ S × Cond × Act × Dist(S) is the set of prob-
abilistic symbolic transitions and is given by the rules
in Figure 1.

In the above,

• Cond denotes the set of all conditions on N , where a
condition is a finite conjunction of matches over N (or
true);

• Act is a set of actions of four basic types: τ , x(y), x̄y
and x̄(y), where x, y ∈ N ;

• Dist(S) denotes the set of all probability distributions
over the set S.

We use the notation Q
M,α−−−→ {pi : Qi}i for the probabilis-

tic symbolic transition (Q,M,α, µ) ∈ T where µ(R) =∑
Qi=R pi for any πsp term R. We abbreviate Q

M,α−−−→ {1 :

Q′} to Q
M,α−−−→ Q′.

A symbolic state Q encodes a set of πsp terms. More
specifically, it encodes the set of terms derivable from Q by
substitutions applied to its input-bound names. For exam-
ple the symbolic state Q = a(x).x̄b represents the terms
Q{z/x} for any name z. Of the four action types in Act the
first three types are described in the previous section. The
fourth x̄(y) denotes output of a bound name and is used by
the rules OPEN and CLOSE to extend the scope of the bound
variable y.

A transition Q
M,α−−−→ {pi : Qi}i represents the fact, that

under any substitution σ satisfying M , the process term Qσ
can perform action α and then with probability pi evolve
as process Qiσ. Formally, we have the following Lemma
which relates the symbolic (PSTG) and concrete (MDP) se-
mantics of πsp. This corresponds to Lemma 2.4 in [13] for
the (non-probabilistic) π-calculus and can be proved in sim-
ilar fashion.

Lemma 1. Let P be a πsp term.

(a) If P
M,α−−−→ {pi : Pi}i, then for any substitution σ such

that σ � M with bn(α)∩(fn(P )∪n(σ)) = ∅, Pσ
ασ−−→

{pi : Piσ}i.

(b) If Pσ
α−→ {pi : Pi}i, then P

M,β−−−→ {pi : P ′
i}i where

σ |= M , α = βσ and Pi = P ′
iσ.

3 Generating PSTGs using MMC

In this section we describe the automatic generation of
the probabilistic symbolic transition graph (PSTG) for an
arbitrary process expressed in the simple probabilistic π-
calculus. This is achieved with an extension of the (non-
probabilistic) π-calculus model checker MMC [26], which
from this point on we refer to as MMCsp.

MMCsp is based on only a subset of MMC’s function-
ality: essentially the capability to construct the full set of
reachable states of a process. The restrictions placed on
the syntax of the calculus are the same that we impose, as



PRE
α.P

α−→ {1 : P}
PROB

(
∑

i piτ.Pi)
τ−→ {pi : Pi}i

SUM
Pj

M,α−−−→ {pjk
: Pjk

}jk(∑
i∈I Pi

) M,α−−−→ {pjk
: Pjk

}jk

j ∈ I

PAR
P

M,α−−−→ {pi : Pi}i

P | Q M,α−−−→ {pi : (Pi | Q)}i

bn(α) ∩ fn(Q) = ∅ COM
P

M,y(z)−−−−→ {1 : P} Q
N,x̄v−−−→ {1 : Q}

P | Q [x=y]∧M∧N,τ−−−−−−−−−→ {1 : P{v/z} | Q}

RES
P

M,α−−−→ {pi : Pi}i

νxP
νxM,α−−−−→ {pi : νxPi}i

x 6∈ n(α) CLOSE
P

M,y(z)−−−−→ {1 : P} Q
N,x̄(v)−−−−→ {1 : Q}

P | Q [x=y]∧M∧N,τ−−−−−−−−−→ {1 : νv(P{v/z} | Q)}

OPEN
P

M,ȳx−−−→ {1 : P}

νxP
νxM,ȳ(x)−−−−−−→ {1 : P}

x 6= y MATCH
P

M,α−−−→ {pi : Pi}i

[x = y]P
[x=y]∧M,α−−−−−−−→ {pi : Pi}i

{x, y} ∩ bn(α) = ∅

IDE
P{y1, . . . , yn/x1, . . . , xn}

M,α−−−→ {pi : Pi}i

A(y1, . . . , yn)
M,α−−−→ {pi : Pi}i

A(x1, . . . , xn) , P

νx true = true
νx[x = x] = true
νx[x = y] = false (where x 6= y)
νx[y = z] = [y = z] (where x 6= y 6= z)
νx(M ∧N) = νxM ∧ νxN

Figure 1. The symbolic semantics for πsp, including (inset) application of operator νx to conditions

described in Section 2. MMC works by (and derives its ef-
ficiency from) exploiting the similarity between the way in
which resolution-based logic programming techniques han-
dle variables and the way in which the symbolic semantics
of the π-calculus handle names [26]. It is implemented in
the logic programming system XSB, which is a dialect of
Prolog.

With π-calculus names represented by XSB variables,
the symbolic semantics of the calculus can be directly en-
coded into XSB rules. This has several benefits: firstly it
gives a clear and intuitive implementation; secondly, and
more importantly, this encoding is provably correct [26].

Our implementation, MMCsp, is a direct extension of
this approach. We have a straightforward encoding of
the syntax of πsp into the language of XSB, with πsp

names and process identifiers represented by XSB vari-
ables and constants, respectively. We then adapt MMC’s
predicate trans to represent the symbolic semantics of
πsp. Letting function fρ denote the one-to-one mapping
of πsp conditions, actions and processes from XSB syn-
tax to πsp syntax, then a tuple trans(P, PSteps, M)
in XSB, where PSteps is a list of compound structures
psteps(pi, act, Pi), represents the symbolic probabilis-
tic transition:

fρ(P)
fρ(M),fρ(act)−−−−−−−−→ {pi : fρ(Pi)}i

The full definition of this encoding (the syntax of πsp

and the function fρ) can be found in the technical re-
port version of this paper [16]. To relate this to the orig-
inal version of MMC, observe that a tuple trans(P,
[psteps(1, act, Q)], M) is equivalent to the defi-
nition trans(P, act, M, Q) in [26]. The soundness
and completeness of the encoding can be established by in-
duction on the length of derivations of a query answer of
trans and a symbolic transition in πsp, respectively. The
proof details are similar to Theorem 2 and 3 in [26].

Finally, we add an extra XSB predicate stg(P), which
uses query-evaluation on trans to derive the PSTG of pro-
cess P and output it in a simple textual format. This is effec-
tively a depth-first traversal of the PSTG and enumeration of
all states and probabilistic symbolic transitions found. This
is also included in [16]. In Figure 2, we show the applica-
tion of MMCsp to the simple πsp process Toss:

Toss(x) , x(y).(pτ.ȳhead.0 + (1− p)τ.ȳtail.0)

which receives a name y on channel x and then sends out,
on channel y, either head or tail, with probability p or 1−p,
respectively. In the output of the tool, lines starting #i show
the πsp term for the ith state, lines starting *j and ’k enu-
merate transitions and the individual edges of transitions,
respectively. All bound names are given unique names (e.g.
h417) and displayed on lines beginning >. All free names

used are listed at the end of the PSTG.



def(toss(X),
pref(in(X, Y),
prob_choice([pref(tau(p), pref(out(Y, head), zero)),
pref(tau(1-p), pref(out(Y, tail), zero))]))).

| ?- stg(toss(try)).
#1: proc(toss(try))

*1: 1 ==
#2: prob_choice([pref(tau(p),pref(out(_h417,head),

zero)),pref(tau(1-p),pref(out(_h417,tail),zero))])
>1: _h417
’1: -- ’1’:in(try,_h417) --> 2

*2: 2 ==
#3: pref(out(_h417,head),zero)
’2: -- ’p’:tau --> 3
#4: pref(out(_h417,tail),zero)
’3: -- ’1 - p’:tau --> 4

*3: 3 ==
#5: zero
’4: -- ’1’:out(_h417,head) --> 5

*4: 4 ==
’5: -- ’1’:out(_h417,tail) --> 5
[1: try] [2: head] [3: tail]

+++ Statistics of toss(try) +++
Nodes: 5, Edges: 5, P-Steps: 4 Free Names: 3, Bound Names: 1

Figure 2. Sample output from MMCsp

4 Translating PSTGs into PRISM

The scheme described in the previous section can be used to
translate an arbitrary process described in the simple prob-
abilistic π-calculus into its probabilistic symbolic transition
graph (PSTG). Since for an input-closed πsp term its PSTG
and concrete semantics (MDP) coincide, one can directly
map the PSTG into PRISM to enable model checking of the
πsp term. For efficiency, however, we adopt where possible
a compositional approach.

More specifically, in the case where systems are of the
form P = νx1 . . . νxk(P1| . . . |Pn) and each Pi contains
no instances of the ν operator, the basic idea is compute the
PSTG for each subprocess Pi, as described in the previous
section, map each PSTG to a PRISM module, and then use
PRISM to construct the semantics of P through the paral-
lel composition of these modules. At the level of PSTGs,
our restricted form ensures that there are no bound output
transitions from each Pi.

The overall process structure we impose (a parallel com-
position of a set of processes, optionally enclosed inside a
restriction of one or more names) is actually fairly typical:
systems are generally modelled as a parallel composition of
multiple components and, since we assume that P is input-
closed, it is likely that free names used as channels between
processes will be restricted in this way. Furthermore, in
most cases a process can be rearranged to a structurally
congruent process which is of the correct form, by push-
ing ν operators to the outside. We have, for example, that
P1|νxP2 and νx(P1|P2) are structurally congruent under
the assumption that x does not occur in P1. The only class
of processes which cannot be renamed in this way are those

that include ν inside recursion. In this case, the process can
in principle generate an infinite number of new names. This
can be resolved in the context of a parallel composition with
other processes, and therefore in such cases we can resort to
the basic approach: use MMCsp to construct the PSTG for
the full system and import this directly into PRISM.

There are two principal challenges regarding the transla-
tion of a set of PSTGs into PRISM: (1) mapping the name
datatype into PRISM’s basic type system; and (2) mapping
binary (CCS-style) communication of names over channels
to PRISM’s multi-way (CSP-style) synchronisation without
value passing. In brief, (1) is handled by enumerating the
set of all free names (which is known since the system is
input-closed), assigning each an (identically named) integer
constant to represent it, and (2) is handled by introducing a
synchronous action label for each required combination of
process sender/receiver pair, channel and name. Communi-
cation of names between processes is handled by including
in each process with bound input variable x, an identically
named local (integer) variable used to represent a name.

Before discussing the details of this compositional trans-
lation, we give both an overview of the PRISM syntax and
semantics and a simple example which illustrates the key
aspects of the translation.

PRISM semantics. A PRISM model comprises a set of n
modules, the state of each being given by a set of finite-
ranging local variables. The global state of the model is
determined by the union of all local variables, which we
denote V . The behaviour of each module is defined by a set
of guarded commands of the form:

[act ] guard → p1 : u1 + · · ·+ pm : um;

where act is an (optional) action label, guard is a predicate
over V , pi ∈ (0, 1] and ui are updates of the form:

(x′1 = ui,1) & . . . & (x′k = ui,k)

where ui,j is a function over V . Intuitively, in global state
s of the PRISM model, a command in a module is available
if s |= guard . If a command is executed, the module will,
with probability pi update its local variables according to
the update ui, by setting the value of each local variable
xj to ui,j(s). In practice (see for example Figure 3), we
omit probabilities equal to one and update-components of
the form (x′ = x).

The semantics of the whole PRISM model is the parallel
composition of all modules using the standard CSP parallel
composition (i.e. modules synchronise over all their com-
mon actions). The full semantics of the PRISM language
can be found at [19].

Example. Consider the following parallel composition of
two processes:



• Q , νa (Q1 | Q2)

• Q1 , νc νd
(

1
2τ.āc.c(v).0 + 1

2τ.ād.d(w).0
)

• Q2 , νb
(
a(x).b̄x.0

∣∣ b(y).ȳe.0
)

Process Q1 includes two names c and d, available only
within the scope of Q1, representing private channels. It
makes a random choice, outputting with equal probability
either the name c or d on channel a. It then attempts to
receive an input on the corresponding channel (c or d, re-
spectively) and terminates. Process Q2 is the parallel com-
position of two subprocesses which communicate over a
channel b. The first subprocess inputs a name on channel
a (which will be one of the two private channels from Q1)
and re-outputs it on channel b. The second subprocess in-
puts on channel b and then outputs e on whichever channel
it received.

Noting that c and d do not occur in Q2 and that b does not
occur in Q1, we can rewrite Q as the structurally congruent
process P , defined as follows:

• P , νa νb νc νd (P1 | P2 | P3)

• P1 , 1
2τ.āc.c(v).0 + 1

2τ.ād.d(w).0

• P2 , a(x).b̄x.0

• P3 , b(y).ȳe.0

The corresponding PSTGs are:

• P1 : P1,1
τ •

1
2 //

1
2

  @
@@

@@
@@

@ P1,2
āc //P1,4

c(v) //P1,6

P1,3
ād //P1,5

d(w)
<<yyyyyyy

• P2 : P2,1
a(x) //P2,2

b̄x //P2,3

• P3 : P3,1
b(y) //P3,2

ȳe //P3,3

In the above we omit probabilities that are 1 and conditions
true. The PSTGs for P1, P2 and P3 have the sets of bound
names {v, w}, {x} and {y}, respectively, and the total set
of free names is {a, b, c, d, e}. The resulting PRISM model
is shown in Figure 3. This example will be referred to in the
full explanation of the translation given below.

Formal translation. We assume that the set of all names in
the system is N , which is partitioned into disjoint subsets:
Nf , the set of all free names, and Nb,1, . . . ,Nb,n, the sets
of input-bound names for processes P1, . . . , Pn.

For clarity, we will retain wherever possible identical
notation between the πsp terms and the resulting PRISM
language description. Thus, each of the n subprocesses

1. const int a = 1; const int b = 2; const int c = 3;
2. const int d = 4; const int e = 5;
3. module P1

4. s1 : [1..6] init 1;
5. v : [0..5] init 0;
6. w : [0..5] init 0;
7. [] (s1 = 1) → 0.5 : (s′

1 = 2) + 0.5 : (s′
1 = 3);

8. [a P1 P2 c] (s1 = 2) → (s′
1 = 4);

9. [a P1 P2 d] (s1 = 3) → (s′
1 = 5);

10. [c P3 P1 e] (s1 = 4) → (s′
1 = 6); & (v ′ = e)

11. [d P3 P1 e] (s1 = 5) → (s′
1 = 6); & (w ′ = e)

12. endmodule
13. module P2

14. s2 : [1..3] init 1
15. x : [0..5] init 0;
16. [a P1 P2 c] (s2 = 1) → (s′

2 = 2) & (x ′ = c);
17. [a P1 P2 d] (s2 = 1) → (s′

2 = 2) & (x ′ = d);
18. [b P2 P3 x ] (s2 = 2) → (s′

2 = 3);
19. endmodule
20. module P3

21. s3 : [1..2] init 1
22. y : [0..5] init 0;
23. [b P2 P3 x ] (s3 = 1) → (s′

3 = 2) & (y′ = x);
24. [c P3 P1 e] (s3 = 2) & (y = c) → (s′

3 = 3);
25. [d P3 P1 e] (s3 = 2) & (y = d) → (s′

3 = 3);
26. endmodule

Figure 3. PRISM code for the example

(or PSTGs) Pi becomes a PRISM module Pi and the (fi-
nite) set of πsp terms Si = {Qi,1, . . . , Qi,ki} that consti-
tute the states of the PSTG become a set of integer indices
Qi,1, Qi,2, . . . uniquely representing each one.

Module Pi has |Nb,i| + 1 local variables: its local
state (i.e. state of corresponding PSTG) is represented by
variable si, with range 1, . . . , |Si|, and each bound name
xi,j ∈ Nb,i has a corresponding variable xi,j with range
0, . . . , |Nf |. The model also includes Nf integer constants,
one for each free name in the system, which are assigned
(in some arbitrary order) distinct, consecutive non-zero val-
ues. If the value of variable xi,j is equal to one of the these
constants, then the corresponding bound name has been as-
signed the appropriate free name (by an input action). If
xi,j=0, no input to the bound name has occurred yet.

In this way, the conditions which label transitions of
PSTGs can be translated directly into PRISM. For exam-
ple, let condition M be (x=a)∧(y=b) where x, y are bound
names and a, b free names. The translation into PRISM is
identical: (x=a)∧(y=b), where x, y are integer variables
and a, b integer constants.

For each symbolic probabilistic transition Qi
M,α−−−→ {p1 :

Ri,1, . . . , pm : Ri,m} in the PSTG for Pi, we will include a
set of corresponding PRISM commands in the module Pi.
We consider each type of transition separately, beginning
with the case where α = τ .
Case 1 (internal action). For a transition:

Qi
M,τ−−−→ {p1 : Ri,1, . . . , pm : Ri,m}

we add the command:

[] (si=Qi) & M → p1 :(s ′i=Qi,1) + · · ·+ pm :(s ′i=Qi,m);



See Figure 3 line 7 for an example. This type of transition
is in fact the only one which can actually include multiple
probabilistic choices. The remaining types of transitions

(input and output) are always of the form Qi
M,α−−−→ Ri (this

fact can be derived easily from the semantics in Figure 1).
Case 2 (output on free name). For a transition:

Qi
M,x̄y−−−→ Ri where x ∈ Nf

we add, for each j ∈ {1, ..., n}\{i}, the command:

[x Pi Pj y] (si=Qi) & M → (s ′i=Ri);

The channel x, sender Pi, receiver Pj and sent name y are
all encoded in the action label. See Figure 3 lines 8 and 18
for examples of sending free and bound names y, respec-
tively.
Case 3 (output on bound name). For a transition:

Qi
M,x̄y−−−→ Ri where x ∈ Nb,i

we add, for each a ∈ Nf and j ∈ {1, ..., n}\{i}:

[a Pi Pj y] (si=Qi) & M & (x=a) → (s ′i=Ri);

This is similar to Case 2 except that we include a command
for each possible value a of x. See for example lines 24 and
25 of Figure 3.
Case 4 (input on free name). For a transition:

Qi
M,x(z)−−−−→ Ri where x ∈ Nf

we add, for each y ∈ N\Nb,i and j ∈ {1, ..., n}\{i}:

[x Pi Pj y] (si=Qi) & M → (s ′i=Ri) & (z′=y);

For input actions, we add a line for each possible received
name y. The assignment (z′=y) models the update of the
bound name z to y. See for example lines 16 and 17 of
Figure 3 which match the output commands from lines 8
and 9.
Case 5 (input on bound name). For a transition:

Qi
M,x(z)−−−−→ Ri where x ∈ Nb,i

we add, for a ∈ Nf , y ∈ N\Nb,i and j ∈ {1, ..., n}\{i}:

[a Pi Pj y] (si=Qi) & M & (x=a) → (s ′i=Ri) & (z′=y);

Case 5 combines elements of Cases 3 and 4: we add a com-
mand for each possible pairing of channel a that x may rep-
resent and name y that may be received.

Finally, we need to remove some spurious commands
added in Cases 4 and 5, since they correspond to input ac-
tions which will never occur. More precisely, for each mod-
ule Pj we identify action labels x Pi Pj y which appear on

a command in module Pj but which do not appear in any of
the commands in module Pi. Commands with such action
labels are removed from Pj .

Correctness of the translation. By assumption the
πsp term being translated is of the form P =
νx1 . . . νxk(P1| . . . |Pn). The first step in the proof is to
show that any term in the derivation tree of P is of the form
νx1 . . . νxk(Q1σ1 | · · · |Qnσn) where, for any 1≤j≤n,
Qj is a state of the PSTG for the process Pj and σj is a
substitution from the bound names of Pj to the free names
of P . The proof is by induction of the transition rules (con-
crete) and using Lemma 1.

We now show that the translation is correct by con-
structing a mapping between such πsp terms and the states
of the PRISM model and demonstrating that, for any πsp

term in the derivation tree of P , there is a transition in
the (concrete) semantics if and only if the correspond-
ing PRISM state has a transition. For any πsp term
νx1 . . . νxk(Q1σ1 | · · · |Qnσn) the state in the PRISM
model is constructed as follows: for any 1 ≤ j ≤ n, the
values of the variables of module Pj are given by sj =
Qj , xj,1 = ij,1, . . . , xj,kj = ij,kj where if σ(xj,l) = z ∈
Nf , then ij,l is the integer constant corresponding to the
free variable z and otherwise (i.e. σ(xj,l) = xj,l) ij,l equals
0.

Next consider any πsp term P ′ in the derivation tree and
transition:

Q = νx1 . . . νxk(Q1σ1 | · · · |Qnσn) τ−→ {pm : Rm}m.

From the transition rules and the conditions we have im-
posed on the structure of πsp terms, there are the following
two cases to consider.

Silent actions. Qjσj
τ−→ {pm : Rj

mσj}m, 1 ≤ j ≤ n, and
Rm = νx1 . . . νxk(Q1σ1 | . . . |Rj

mσj | . . . |Qnσn). From

Lemma 1(b), we have Qj
Mj ,τ−−−→ {pm : Rj

m} and σj |=
Mj , and hence by construction in the module Pj there is a
command of the form

[] (sj=Qj ) & Mj → p1 :(s ′j=Rj
1) + · · ·+ pm :(s ′j=Rj

m);

Finally, since σj |= Mj and by definition of the map-
ping between πsp terms and PRISM, it follows that the
PRISM state corresponding to Q satisfies the guard (sj =
Qj) &Mj and that the transition is preserved in the transla-
tion.

Communication. Qjσj
x(z)−−−→ Rjσj , Qlσl

x̄y−→ Rlσl, 1 ≤
j 6= l ≤ n, a = τ and {pm : Rm}m = {1 : R} where R =
νx1 . . . νxk(Q1σ1 | . . . |Rjσj{y/z} | . . . |Rlσl | . . . |Qnσn).

Now, from Lemma 1(b) we have Qj
Mj ,x(z)−−−−−→ Rj and

Ql
Ml,x̄y−−−−→ Rl, σj |= Mj and σl |= Ml. Considering the



case when x is a free name (the case when x is bound
follows similarly), since y ∈ N\Nb,j in the modules Pj

and Pl we have the commands

[x Pl Pj y] (sj=Qj ) & Mj → (s ′j=Rj) & (z′=y);
[x Pl Pj y] (sl=Ql) & Mk → (s ′l=Rl);

respectively. Since σj |= Mj and σl |= Ml, it follows that
the guards (sj=Qj ) & Mj and (sl=Ql) & Mk hold in
the PRISM state encoding Q. Finally, since the encoding
of Rjσj{y/z} can be obtained from the encoding of Rjσj

by setting the variable z to value y, it follows that that the
transition is preserved by the translation.

To complete the proof it remains to show that any transition
of the PRISM model is matched by a transition in the corre-
sponding πsp term. The result follows in a similar manner
to the above using Lemma 1(a) instead of Lemma 1(b).

Optimisations. The translation from PSTGs to PRISM
code described in this section can be optimised to reduce the
size of the generated code and the resulting model. The ba-
sic idea is to compute an over-approximation of the possible
values that each PSTG’s bound name can take and, thus, the
channels it can send out on and the values that can be sent
on those channels. With this information, we can decrease
the range of the PRISM local variables corresponding to
each bound name and remove unnecessary commands cor-
responding to combinations of channel, value and processes
that can never occur. The over-approximation is computed
iteratively, starting with an empty set of possible values for
each bound name, and at each step adding any name that
can be received upon any channel that can be used to assign
to the bound name. The iterations required is bounded by
the number of processes n. For clarity of presentation, the
example in Figure 3 has been reduced in this way.

Properties. Simple probabilistic reachability properties,
such as the maximum probability of failure or the mini-
mum probability of message delivery, can be encoded sim-
ply through the availability or absence of actions, as such
properties are preserved in the translation to PRISM. For
example, in the case of system failure, one would mod-
ify the original π-calculus description by adding to any π-
calculus process term representing system failure the pos-
sibility to output on a new distinct channel/action to allow
one to identify the PRISM states representing system fail-
ure as those states where this new action is available. Once
these states have been identified, one can construct a PCTL
formula which when verified will return either the maxi-
mum or minimum probability of reaching this set of states,
that is calculate the maximum or minimum of system fail-
ure. More general temporal properties, for example that a
certain sequence of actions is performed, could be encoded
through the addition of a test/watchdog process [8]. Model

checking for specification formalisms more specifically tai-
lored to the mobile aspects of the π-calculus, such as spatial
logic, will be an area of future work.

5 Implementation and results

Our implementation of model checking for the simple prob-
abilistic π-calculus is fully automated and comprises three
parts: (1) MMCsp, an extension of MMC (as described in
Section 3), which constructs the probabilistic symbolic tran-
sition graphs (PSTGs) for one or more πsp processes, (2)
the translator from PSTGs to PRISM code (as described in
Section 4), implemented in Java, and (3) the probabilistic
model checker PRISM [11] which builds the MDP from
part (2) and performs verification of PCTL properties. We
based our implementation on MMC 1.0 and PRISM 3.1.

Firstly, we consider the dining cryptographers protocol
(DCP) [6], Chaum’s randomised solution to the classic
anonymity problem in which a group of N parties collec-
tively establish whether either one of the group or an inde-
pendent party has to make a payment. If the former, this is
achieved without any of the N−1 non-paying parties know-
ing the identity of the paying one. This was previously
modelled in the probabilistic π-calculus in [1]. To check
anonymity, we compute the probability of reaching each
of the possible outcomes of the protocol (from the point
of view of an individual party) and establish that they are
identical.

Secondly, we study the partial secret exchange (PSE) al-
gorithm of [7] for anonymous contract signing between two
parties. A probabilistic π-calculus model of PSE was given
in [5]. The protocol was independently analysed in PRISM
[17], where a potential flaw of the protocol was identified, in
that one party always has an advantage over the other. Sev-
eral modifications to the protocol were proposed and shown
to have lower probability this occurring. We used a πsp

model of both the original and modified versions to demon-
strate the same flaw.

Thirdly, we constructed a πsp model of mobile commu-
nication network (MCN), based on the (non-probabilistic)
π-calculus model in [18]. The system comprises N base
stations with fixed communication links to a mobile switch-
ing centre and a mobile station which can be connected to
each of the base stations via radio links. The mobile station
roams between the base stations. When it changes base sta-
tion, the mobile communication network acts as an interme-
diate party, controlling the handover protocol and exchange
of communication links between stations. This case study
was analysed using MMC in [26]. In both this and the origi-
nal paper, though, the occurrence of a failure during the han-
dover protocol was modelled as a nondeterministic choice.
We are able to model this correctly, as a random event. We
check the probability of a handover operation completing



Model N States Transitions MTBDD Construction time (sec.) Model checking
nodes PSTGs PRISM MDP time (sec.)

5 160,543 592,397 58,641 10.9 0.81 0.77 2.49
6 1,475,401 6,520,558 100,290 13.1 0.91 1.43 7.82

DCP 7 13,221,889 68,121,834 154,500 15.2 1.17 2.62 21.3
8 116,192,457 683,937,352 221,170 18.1 1.21 4.72 55.2
9 1,005,495,499 6,657,256,911 463,425 19.1 1.37 19.3 732.9
3 9,321 32,052 37,008 4.86 0.75 1.60 1.89

PSE 4 89,025 419,172 103,779 6.60 0.91 3.95 4.47
5 837,361 5,028,700 173,644 8.12 1.20 8.47 11.5
3 9,328 32,059 37,251 5.29 0.75 2.38 2.16

PSE3 4 89,040 419,187 104,267 6.69 0.96 4.19 13.8
5 837,392 5,028,731 175,212 7.82 1.13 7.58 52.4

MCN 2 609 950 58,430 4.33 2.49 4.8 1.17
3 3,611 5,811 216,477 5.89 3.11 22.4 5.24

Table 1. Performance of probabilistic model checking πsp on three case studies

successfully, within a given number of communications.

Table 1 shows the performance of our implementation
on the three case studies. Experiments were run on a 2 GHz
PC with 512 MB RAM running Linux. For the DCP model,
we varied the number of parties N ; for the PSE model, we
considered two variants (the original protocol EGL and the
modified version EGL3 from [17]) and varied the size of
contract N . For the MCN model, we varied the number
of base stations N . The table shows the size of the result-
ing MDPs (number of states/transitions) and corresponding
storage in PRISM (MTBDD nodes, where 1 node uses 20
bytes). We also give the time required for each stage of
the process, i.e. constructing the PSTGs (using MMCsp),
the PRISM code (using the translator) and the MDP (us-
ing PRISM). Finally, we give the time to check a single
(quantitative) PCTL property for each using PRISM (with
the MTBDD engine).

The results are very encouraging. We see that our tech-
niques are scalable to the construction and analysis of πsp

models with extremely large state spaces. Furthermore the
times required for all stages of the process are relatively
small. The MCN case study, although smallest in terms of
state space, is perhaps the best example of the applicabil-
ity of this implementation since it fully exploits the mobile
aspects of the calculus. The most obvious area for improve-
ment in our results concerns MTBDD sizes. As is often the
case with automatically generated code, the PRISM mod-
els resulting from our technique do not always exhibit the
kind of structure and regularity that can be exploited by
PRISM’s symbolic implementation. We are confident that
performance can be improved in this area.

6 Conclusions

In this paper we have demonstrated the feasibility of im-
plementing model checking for the probabilistic π-calculus.
The variant of the calculus (with blind probabilistic choice)
to which our techniques are applicable has proved to be
expressive enough for the appropriate application domains
(probabilistic algorithms for security and dynamic commu-
nication protocols with failures and/or randomisation) and
yet amenable to analysis with extensions and adaptions of
existing verification tools. Furthermore we have shown,
through its application to several large examples, the effi-
ciency of the approach.

We would like to extend this work in several directions.
For convenience of modelling, we plan to add support for
polyadic communication over channels. We also hope to
add support for more flexible property specifications us-
ing watchdog processes and to extend our approach to the
stochastic π-calculus. Finally, we will investigate ways
to further improve the efficiency of our implementation,
in particular, with regards to the automatically generated
PRISM code. Possibilities include optimisations to reduce
the resulting symbolic (MTBDD) storage in PRISM and
bisimulation minimisation techniques.
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