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ABSTRACT

Unsupervised representation learning leverages large unlabeled datasets and is com-
petitive with supervised learning. But non-robust encoders may affect downstream
task robustness. Recently, robust representation encoders have become of interest.
Still, all prior work evaluates robustness using a downstream classification task. In-
stead, we propose a family of unsupervised robustness measures, which are model-
and task-agnostic and label-free. We benchmark state-of-the-art representation
encoders and show that none dominates the rest. We offer unsupervised extensions
to the FGSM and PGD attacks. When used in adversarial training, they improve
most unsupervised robustness measures, including certified robustness. We validate
our results against a linear probe and show that, for MOCOv2, adversarial training
results in 3 times higher certified accuracy, a 2-fold decrease in impersonation
attack success rate and considerable improvements in certified robustness.

1 INTRODUCTION

Unsupervised and self-supervised models extract useful representations without requiring labels.
They can learn patterns in the data and are competitive with supervised models for image classification
by leveraging large unlabeled datasets (Zbontar et al., 2021; Chen & He, 2021; He et al., 2020; Chen
et al., 2020b;d;c). Representation encoders do not use task-specific labels and can be employed for
various downstream tasks. Such reuse is attractive as large datasets can make them expensive to train.

Therefore, applications are often built on top of public domain representation encoders. However, lack
of robustness of the encoder can be propagated to the downstream task. Consider the impersonation
attack threat model in Fig. 1. An attacker tries to fool a classifier that uses a representation encoder.
The attacker has white-box access to the representation extractor (e.g. an open-source model) but
they do not have access to the classification model that uses the representations. By optimizing the
input to be similar to a benign input, but to have the representation of a different target input, the
attacker can fool the classifier. Even if the classifier is private, one can attack the combined system if
the public encoder conflates two different concepts onto similar representations. Hence, robustness
against such conflation is necessary to perform downstream inference on robust features.

We currently lack ways to evaluate robustness of representation encoders without specializing for
a particular task. While prior work has proposed improving the robustness of self-supervised
representation learning (Kim et al., 2020; Jiang et al., 2020; Ho & Vasconcelos, 2020; Chen et al.,
2020a; Cemgil et al., 2020; Fan et al., 2021; Alayrac et al., 2019; Carmon et al., 2020; Nguyen et al.,
2022), they all require labeled datasets to evaluate the robustness of the resulting models.

Instead, we offer encoder robustness evaluation without labels. This is task-agnostic, in contrast to
supervised assessment, as labels are (implicitly) associated with a specific task. Labels can also be
incomplete, misleading or stereotyping (Stock & Cisse, 2018; Steed & Caliskan, 2021; Birhane &
Prabhu, 2021), and can inadvertently impose biases in the robustness assessment. In this work, we
propose measures that do not require labels and methods for unsupervised adversarial training that
result in more robust models. To the best of our knowledge, this is the first work on unsupervised
robustness evaluation and we make the following contributions to address this problem:
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Figure 1: Impersonation attack threat model. The attacker has access only to the encoder on which
the classifier is built. By attacking the input to have a similar representation to a sample from the target
class, the attacker can fool the classifier without requiring any access to it. Cats who successfully
impersonate dogs under the MOCOv2 representation encoder and a linear probe classifier are shown.

1. Novel representational robustness measures based between clean and adversarial representa-
tion divergences, requiring no labels or assumptions about underlying decision boundaries.

2. A unifying framework for unsupervised adversarial attacks and training, which generalizes
the prior unsupervised adversarial training methods.

3. Evidence that even the most basic unsupervised adversarial attacks in the framework result
in more robust models relative to both supervised and unsupervised measures.

4. Probabilistic guarantees on the unsupervised robustness measures based on center smoothing.

2 RELATED WORK

Adversarial robustness of supervised learning Deep neural networks can have high accuracy on
clean samples while performing poorly under imperceptible perturbations (adversarial examples)
(Szegedy et al., 2014; Biggio et al., 2013). Adversarial examples can be viewed as spurious cor-
relations between labels and style (Zhang et al., 2022; Singla & Feizi, 2022) or shortcut solutions
(Robinson et al., 2021). Adversarial training, i.e. incorporating adversarial examples in the training
process, is a simple and widely used strategy against adversarial attacks (Goodfellow et al., 2015;
Madry et al., 2018; Shafahi et al., 2019; Bai et al., 2021).

Unsupervised representation learning Representation learning aims to extract useful features
from data. Unsupervised approaches are frequently used to leverage large unlabeled datasets. Siamese
networks map similar samples to similar representations (Bromley et al., 1993; Koch et al., 2015),
but may collapse to a constant representation. However, Chen & He (2021) showed that a simple
stop-grad can prevent such collapse. Contrastive learning was proposed to address the representational
collapse by introducing negative samples (Hadsell et al., 2006; Le-Khac et al., 2020). It can benefit
from pretext tasks (Xie et al., 2021; Bachman et al., 2019; Tian et al., 2020; Oord et al., 2018; Ozair
et al., 2020; McAllester & Stratos, 2020). Some methods that do not need negative samples are
VAEs (Kingma & Welling, 2014), generative models (Kingma et al., 2014; Goodfellow et al., 2014;
Donahue & Simonyan, 2020), or bootstrapping methods such as BYOL by Grill et al. (2020).

Robustness of unsupervised representation learning Most robustness work has focused on su-
pervised tasks, but there has been recent interest in unsupervised training for representation encoders.
Kim et al. (2020) and Jiang et al. (2020) propose generating instance-wise attacks by maximizing a
contrastive loss and using them for adversarial training. Fan et al. (2021) complement this by a high-
frequency view. Ho & Vasconcelos (2020) suggest attacking batches instead of individual samples.
KL-divergence can also be used as a loss (Alayrac et al., 2019) or as a regularizer (Nguyen et al.,
2022). Alternatively, a classifier can be trained on a small labeled dataset with adversarial training
applied to it (Carmon et al., 2020; Alayrac et al., 2019). For VAEs, Cemgil et al. (2020) generate
attacks by maximizing the Wasserstein distance to the clean representations in representation space.
Peychev et al. (2021) address robustness from the perspective of individual fairness: they certify
that samples close in a feature directions are close in representation space. However, their approach
is limited to invertible encoders. While these methods obtain robust unsupervised representation
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encoders, they all evaluate robustness on a single supervised classification task. To the best of our
knowledge, no prior work has proposed measures for robustness evaluation without labels.1

3 PROBLEM SETTING

Breakaway risk Overlap risk

✔

✔

✔

✔

✘

✘

Figure 2: Breakaway and overlap risks. Diver-
gences that increase the corresponding risks are in
red and those reducing them are in green.

Let f : X → R be a differentiable encoder
from X = [0, 1]n to a representation space R.
We require f to be white-box: we can query both
f(x) and df(x)

dx . R is endowed with a divergence
d(r, r′), a function that has the non-negativity
(d(r, r′) ≥ 0,∀r, r′ ∈ R) and identity of indis-
cernibles (d(r, r′) = 0 ⇔ r = r′) properties.
This includes metrics on R and statistical dis-
tances, e.g. the KL-divergence. D is a dataset of
iid samples from a distribution D over X.

Perturbations of the input x are denoted as x̂ =
x + δ, ‖δ‖∞ ≤ ε, with ε small enough so that
any x̂ is semantically indistinguishable from x.
We assume that it is desirable that f maps x̂
close to x, i.e. d(f(x), f(x̂)) should be “small”. We call this property unsupervised robustness. It
can also be referred to as smoothness (Bengio et al., 2013; Alayrac et al., 2019), although it is more
closely related with the concept of (Lipschitz) continuity.

It is not immediately obvious what value for d(f(x), f(x̂)) would be “small”. This is encoder- and
input-dependent, as some parts of the representation manifold can be more densely packed than others.
To circumvent this issue, we consider the breakaway risk, i.e. the probability that the worst-case
perturbation of x with maximum size ε is closer to a different sample x′ than it is to x:

P
x,x′∼D

[d(f(x̂), f(x′)) < d(f(x̂), f(x))] , x̂ ∈ arg sup
x̃∈B(x,ε)

d(f(x), f(x̃)). (1)

Another indication of the lack of unsupervised robustness is if f(B(x, ε)) and f(B(x′, ε)) overlap,
as then there exist perturbations δ, δ′ under which f does not distinguish between the two samples,
i.e. f(x+ δ) = f(x′ + δ′). We call this the overlap risk and define it as:

P
x,x′∼D

[d(f(x), f(a(x′, x))) < d(f(x), f(a(x, x′)))] , a(o, t) ∈ arg inf
x̃∈B(o,ε)

d(f(t), f(x̃)). (2)

The breakaway risk is based on the perturbation causing the largest divergence in R, while the overlap
risk measures if perturbations are sufficiently concentrated to be separated from other instances (see
Fig. 2). Labels are not required: the two risks are defined with respect to the local properties of the
representation manifold of f under D. In fact, we neither explicitly nor implicitly consider decision
boundaries or underlying classes, as we make no assumptions about the downstream task.

What if x and x′ are very similar? Perhaps we shouldn’t consider breakaway and overlap in such cases?
We argue against this. First, the probability of very similar pairs would be low in a sufficiently diverse
distribution D. Second, there is no clear notion of similarity on X without making assumptions about
the downstream tasks. Finally, even if x is very similar to x′, it should still be more similar to any x̂
as x and x̂ are defined to be visually indistinguishable. We call this the self-similarity assumption.

4 UNSUPERVISED ADVERSARIAL ATTACKS ON REPRESENTATION ENCODERS

It is not tractable to compute the supremum and infimum in Eqs. (1) and (2) exactly for a general f .
Instead, we can approximate them via constrained optimization in the form of adversarial attacks.
This section shows how to modify the FGSM and PGD supervised attacks for these objectives
(Secs. 4.1 and 4.2), as well as how to generalize these methods to arbitrary loss functions (Sec. 4.3).
The adversarial examples can also be used for adversarial training (Sec. 4.4).

1Concurrent work by Wang & Liu (2022) proposed RVCL: a method to evaluate robustness without labels.
However, it focuses on contrastive learning models while the methods here work with arbitrary encoders.
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4.1 UNSUPERVISED FAST GRADIENT SIGN METHOD (U-FGSM) ATTACK

The Fast Gradient Sign Method (FGSM) is a popular one-step method to generate adversarial
examples in the supervised setting (Goodfellow et al., 2015). Its untargeted mode perturbs the input
x by taking a step of size α ∈ R>0 in the direction of maximizing the classification loss Lcl relative
to the true label y. In targeted mode, it minimizes the loss of classifying x as a target class t 6= y:

x̂ = clip(x+ α sign(∇xLcl(f(x), y))) untargeted FGSM,

x̂→t = clip(x− α sign(∇xLcl(f(x), t))) targeted FGSM,

where clip(x) clips all values of x to be between 0 and 1.

Untargeted U-FGSM We can approximate the supremum in Eq. (1) by replacing Lcl with the
representation divergence d, using a small perturbation η ∈ Rn to ensure non-zero gradient:

x̂ = clip(x+ α sign(∇xd(f(x), f(x+ η)))).

Ho & Vasconcelos (2020) also propose an untargeted FGSM attack for the unsupervised setting,
which requires batches rather than single images and uses a specific loss function, and hence is an
instance of the L̄-FGSM attack in Sec. 4.3. The untargeted U-FGSM proposed here is independent
of the loss used for training, making it more versatile.

Targeted U-FGSM We can also perturb xi ∈ D so that its representation becomes close to f(xj)
for some xj ∈ D,xj 6= xi. Then a downstream model would struggle to distinguish between the
attacked input and the target xj . This approximates the infimum in Eq. (2):

x̂→ji = clip(xi − α sign(∇xi
d(f(xi), f(xj)))).

4.2 UNSUPERVISED PROJECTED GRADIENT DESCENT (U-PGD) ATTACK

PGD attack is the gold standard of supervised adversarial attacks (Madry et al., 2018). It comprises
iterating FGSM and projections onto B(x, ε), the `∞ ball of radius ε centered at x:

x̂0 = x̂→t0 = clip (x+ Un[−ε, ε]) randomized initialization,
x̂u+1 = clip(Πx,ε[x̂u + α sign(∇x̂uLcl(f(x̂u), y))]) untargeted PGD,

x̂→tu+1 = clip(Πx,ε[x̂
→t
u − α sign(∇x̂→t

u
Lcl(f(x̂→tu ), t))]) targeted PGD.

We can construct the unsupervised PGD (U-PGD) attacks similarly to the U-FGSM attack:

x̂0 = x̂→t0 = clip (x+ Un[−ε, ε]) randomized initialization,
x̂u+1 = clip(Πx,ε[x̂u + α sign(∇x̂ud(f(x̂u), f(x)))]) untargeted U-PGD,

x̂→tu+1 = clip(Πx,ε[x̂
→t
u − α sign(∇x̂→t

u
d(f(x̂→tu ), f(xj)))]) targeted U-PGD.

By replacing the randomized initialization with the η perturbation in the first iteration of the untargeted
case, one obtains an unsupervised version of the BIM attack (Kurakin et al., 2017). The adversarial
training methods proposed by Alayrac et al. (2019); Nguyen et al. (2022); Cemgil et al. (2020) can
be considered as using U-PGD attacks with specific divergence choices (see App. A.1).

4.3 LOSS-BASED ATTACKS

In both their supervised and unsupervised variants, FGSM and PGD attacks work by perturbing the
input in order to maximize or minimize the divergence d. By considering arbitrary differentiable loss
functions instead, we can define a more general class of loss-based attacks.

Instance-wise loss-based attacks (L-FGSM, L-PGD) Given an instance x ∈ X and a loss
function L : (X → R)×X → R, the L-FGSM attack takes a step in the direction maximizing L:

x̂ = clip (x+ α sign (∇xL(f, x))) .

4



Similarly, for a loss function L : (X → R) ×X ×X → R taking a representation encoder, a
sample, and the previous iteration of the attack, the loss-based PGD attack is defined as:

x̂0 = clip (x+ Un[−ε, ε]) ,
x̂u+1 = clip (Πx,ε [x̂u + α sign(∇x̂u

L(f, x, x̂u)]) .

If we do not use random initialization for the attack, we get the L-BIM attack.

The supervised and unsupervised FGSM and PGD attacks are special cases of the L-FGSM and
L-PGD attacks. Furthermore, prior unsupervised adversarial training methods can also be represented
as L-PGD attacks (Kim et al., 2020; Jiang et al., 2020). A full description is provided in App. A.1.

Batch-wise loss-based attacks (L̄-FGSM, L̄-PGD) Attacking whole batches instead of single
inputs can account for interactions between the individual inputs in a batch. The above attacks can be
naturally extended to work over batches by independently attacking all inputs fromX = [x1, . . . , xN ].
This can be done with a more general loss function L̄ : (X → R) ×XN → R. The batch-wise
loss-based FGSM attack L̄-FGSM is provided in Eq. (3) with L̄-PGD and L̄-BIM defined similarly.

X̂ = clip
(
X + α sign

(
∇XL̄(f,X)

))
. (3)

Any instance-wise loss-based attack can be trivially represented as a batch-wise attack. Additionally,
prior unsupervised adversarial training methods can also be represented as L̄-FGSM and L̄-PGD
attacks (Ho & Vasconcelos, 2020; Fan et al., 2021; Jiang et al., 2020) (see App. A.2).

4.4 ADVERSARIAL TRAINING FOR UNSUPERVISED LEARNING

Adversarial training is a min-max problem minimizing a loss relative to a worst-case perturbation
that maximizes it (Goodfellow et al., 2015). As the worst-case perturbation cannot be computed
exactly (similarly to Eqs. (1) and (2)), adversarial attacks are usually used to approximate it. Any
of the aforementioned attacks can be used for the inner optimization for adversarial training. Prior
works use divergence-based (Alayrac et al., 2019; Cemgil et al., 2020; Nguyen et al., 2022) and
loss-based attacks (Kim et al., 2020; Jiang et al., 2020; Ho & Vasconcelos, 2020; Fan et al., 2021).
These methods tend to depend on complex loss functions and might work only for certain models.
Therefore, we propose using targeted or untargeted U-PGD, as well as L̄-PGD with the loss used for
training. They are simple to implement and can be applied to any representation learning model.

5 ROBUSTNESS ASSESSMENT WITH NO LABELS

The success of a supervised attack is clear-cut: whether the predicted class is different from the one of
the clean sample. In the unsupervised case, however, it is not clear when an adversarial attack results
in a representation that is “too far” from the clean one. In this section, we propose using quantiles to
quantify distances and discuss estimating the breakaway and overlap risks (Eqs. (1) and (2)).

Universal quantiles for untargeted attacks For untargeted attacks, we propose measuring
d(f(x̂), f(x)) relative to the distribution of divergences between representations of samples from D.
In particular, we suggest reporting the quantile q = Px′,x′′∼D [d(f(x′), f(x′′)) ≤ d(f(x̂), f(x))] .
This measure is independent of downstream tasks and depends only on the properties of the encoder
and D. We can use it to compare different models, as it is agnostic to the different representation
magnitudes models may have. In practice, the quantile values can be estimated from the dataset D.

Relative quantiles for targeted attacks Nothing prevents universal quantiles to be applied to
targeted attacks. However, considering that targeted attacks try to “impersonate” a particular target
sample, we propose using relative quantiles to assess their success. We assess the attack as the
distance d(f(x̂→ji ), f(xj)) induced by the attack relative to d(f(xi), f(xj)), the original distance
between the clean sample and the target. The relative quantile for a targeted attack x̂→ji is then the
ratio d(f(x̂→ji ), f(xj))/d(f(xi), f(xj)).

Quantiles are a good way to assess the success of individual attacks or to compare different models.
However, they do not take into account the local properties of the representation manifold, i.e. that
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some regions of R might be more densely populated than others. The breakaway and overlap risk
metrics were defined with this exact purpose. Hence, we propose estimating them.

Estimating the breakaway risk While the supremum in Eq. (1) cannot be computed explicitly, it
can be approximated using the untargeted U-FGSM and U-PGD attacks. Therefore, we can compute
a Monte Carlo estimate of Eq. (1) by sampling pairs (x, x′) from the dataset D and performing an
untargeted attack on x, for example with U-PGD.

Nearest neighbour accuracy As the breakaway risk can be very small for robust encoders we
propose also reporting the fraction of samples in D′ ⊆ D whose untargeted attacks x̂ would have
their nearest clean neighbour in D being their corresponding clean samples x. That is:

1

|D′|
∑
x∈D′

1 [@x′ ∈ D,x′ 6= x, s.t. d(f(x′), f(x̂)) < d(f(x), f(x̂))] . (4)

Estimating the overlap risk The infimums in Eq. (2) can be estimated with an unsupervised
targeted attack. Hence, an estimate of Eq. (2) can be computed by sampling pairs (xi, xj) from the
dataset D and computing the targeted attacks x̂→ji and x̂→ij . The overlap risk estimate is then the
fraction of pairs for which d(f(xi), f(x̂→ij )) < d(f(xi), f(x̂→ji )).

Adversarial margin In Eq. (2) one takes into account only whether overlap occurs but not the
magnitude of the violation. Therefore, we also propose looking at the margin between the two
attacked representations, normalized by the divergence between the clean samples:

d(f(xi), f(x̂→ij ))− d(f(xi), f(x̂→ji ))

d(f(xi), f(xj))
,

for randomly selected pairs (xi, xj) from D. If overlap occurs, this ratio would be negative, with
more negative values pointing to stronger violations. The overlap risk is therefore equivalent to the
probability of occurrence of a negative adversarial margin.

Certified unsupervised robustness The present work depends on gradient-based attacks, which
can be fooled by gradient masking (Athalye et al., 2018; Uesato et al., 2018). Hence, we also assess
the certified robustness of the encoder. By using center smoothing (Kumar & Goldstein, 2021) we
can compute a probabilistic guarantee on the radius of the `2-ball in R that contains at least half of
the probability mass of f(x+ N(0, σ2)). The smaller this radius is, the closer f maps similar inputs.
Hence, this is a probabilistically certified alternative to assessing robustness via untargeted attacks. In
order to compare certified radius values in R across models we report them as universal quantiles.

6 EXPERIMENTS

We assess the robustness of state-of-the-art representation encoders against the unsupervised attacks
and robustness measures outlined in Secs. 4 and 5. We consider the ResNet50-based self-supervised
learning models MOCOv2 (200 epochs) (He et al., 2020; Chen et al., 2020d), MOCO with non-
semantic negatives (+Patch, k=16384, α=3) (Ge et al., 2021), PixPro (400 epochs) (Xie et al., 2021),
AMDIM (Medium) (Bachman et al., 2019), SimCLRv2 (depth 50, width 1x, without selective kernels)
(Chen et al., 2020c), and SimSiam (100 epochs, batch size 256) (Chen & He, 2021). To compare the
self-supervised and the supervised methods, we also evaluate the penultimate layer of ResNet50 (He
et al., 2016). We assess the effect of using different unsupervised attacks by fine-tuning MOCOv2
with the untargeted U-PGD, targeted U-PGD, as well as with L̄-PGD using MOCOv2’s contrastive
loss, as proposed in Sec. 4.4. See App. C.1 for details and pseudocode. Additionally, in App. B we
evaluate the transformer-based models MAE (He et al., 2022) and MOCOv3 (Chen et al., 2021) as
well as adversarially fine-tuned versions of MOCOv3 using the same three attacks as for MOCOv2.

The unsupervised evaluation uses the PASS dataset as it does not contain people and identifiable
information and has proper licensing (Asano et al., 2021). ImageNet (Russakovsky et al., 2015) is
used for accuracy benchmarking and the adversarial fine-tuning of MOCO, as to be consistent with
how the model was trained. Assira (Elson et al., 2007) is used for the impersonation attacks.
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Table 1: Standard and lowpass accuracy of linear probes of ResNet50-based encoders.

PixPro AMDIM SimCLR SimSiam Nonsem MOCOv2 TAR UNTAR
Standard 74% 58% 62% 67% 63% 50% 67% 60% 60% 57%
Lowpass 68% 50% 53% 60% 56% 47% 62% 59% 58% 55%

Accuracy
Adversarially fine-tuned MOCOv2Standard ResNet-based unsupervised modelsResNet50

L!−PGD

Table 2: Robustness of ResNet50 and ResNet50-based unsupervised encoders without unsupervised
adversarial training. Arrows show if larger or smaller values are better.

ResNet50 PixPro AMDIM SimCLR SimSiam Nonsem MOCOv2
5 iter. ↑ 66.38% 80.51% 80.82% 75.04% 73.25% 61.54% 65.64%

10 iter. ↑ 52.68% 67.91% 70.26% 65.77% 65.94% 46.52% 52.08%
50 iter. ↑ 27.42% 37.57% 44.28% 36.38% 28.13% 22.23% 20.51%

5 iter. ↑ 69.27% 83.06% 85.59% 78.02% 78.11% 64.28% 68.68%
10 iter. ↑ 55.63% 71.18% 75.93% 69.01% 70.45% 48.57% 55.02%
50 iter. ↑ 27.92% 38.07% 47.28% 38.60% 30.33% 22.32% 21.88%

5 iter. ↓ 98.70% 14.35% 81.30% 43.65% 72.55% 46.80% 65.10%
10 iter. ↓ 99.90% 85.60% 98.50% 99.40% 98.60% 98.10% 99.00%
50 iter. ↓ 99.90% 99.90% 99.90% 99.90% 99.90% 99.90% 99.90%

5 iter. ↓ 99.40% 11.25% 92.10% 48.30% 65.65% 43.20% 69.25%
10 iter. ↓ 99.90% 77.50% 98.90% 98.70% 98.00% 96.65% 98.80%
50 iter. ↓ 99.90% 99.90% 99.90% 99.90% 99.90% 99.90% 99.90%

0.120% 0.190% 0.414% 0.039% 0.146% 0.211% 0.254%
0.00% 0.00% 0.10% 0.10% 0.00% 0.00% 0.00%

92.48% 39.65% 34.30% 45.61% 40.72% 93.46% 91.80%
-18.57% 4.08% 2.72% 1.23% 1.60% -27.18% -16.50%
38.89% 54.06% 68.32% 53.96% 61.70% 54.70% 56.31%

Breakaway risk ↓
Nearest neighbor acc. ↑

Overlap risk ↓
Med. adversarial margin ↑

Avg. Certified Radius ↑

Ta
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We report median universal and relative quantiles for the `2 divergence for respectively untargeted
and targeted U-PGD attacks with ε = 0.05 and ε = 0.10. In App. B we also report the median `∞
divergence and cosine similarity. We also estimate the breakaway risk, nearest neighbour accuracy,
overlap risk and adversarial margin, and certified unsupervised robustness, as described in Sec. 5.

As customary, we measure the quality of the representations with the top-1 and top-5 accuracy of a
linear probe. We also report the accuracy on samples without high-frequency components, as models
might be overly reliant on the high-frequency features in the data (Wang et al., 2020). Additionally,
we assess the certified robustness via randomized smoothing (Cohen et al., 2019) and report the
resulting Average Certified Radius (Zhai et al., 2020).

In line with the impersonation threat model, we also evaluate to what extent attacking a representation
encoder can fool a private downstream classifier. Pairs of cats and dogs from the Assira dataset (Elson
et al., 2007) are attacked with targeted U-PGD so that the representation of one is close to the other.
We report the percentage of impersonations that successfully fool the linear probe.

All implementation details for these experiments can be found in App. C.

7 RESULTS

In this section, we present the results of the experiments on ResNet50 and the ResNet50-based
unsupervised encoders. We defer the results for transformer architectures to App. B.

There is no “most robust” standard model. Amongst the standard unsupervised models, none
dominates on all unsupervised robustness measures (see Tab. 2). AMDIM is least susceptible to
targeted U-PGD attacks and has the highest average certified radius but has the worst untargeted
U-PGD, breakaway risk and nearest neighbor accuracy. PixPro significantly outperforms the other
models on untargeted attacks. AMDIM and PixPro also have the lowest overlap risk and largest
median adversarial margin. At the same time, the model with the lowest breakaway risk is SimCLR.
While either AMDIM or PixPro scores the best at most measures, they both have significantly higher
breakaway risk than SimCLR. Therefore, no model is a clear choice for the “most robust model”.

7



Unsupervised robustness measures reveal significant differences among standard models.
The gap between the best and worst performing unsupervised models for the six measures based on
targeted U-PGD attacks is between 19% and 27%. The gap reaches almost 81% for the untargeted
case (PixPro vs AMDIM, 5 it.), demonstrating that standard models on both extremes do exist.
AMDIM has 10.5 times higher breakaway risk than SimCLR while at the same time 2.7 times lower
overlap risk than MOCOv2. Observing values on both extremes of all unsupervised robustness metrics
testifies to them being useful for differentiating between the different models. Additionally, AMDIM
having the highest breakaway risk and lowest overlap risk indicates that unsupervised robustness is a
multifaceted problem and that models should be evaluated against an array of measures.

Table 3: Robustness of MOCOv2 and its adversarially
fine-tuned versions. Arrows show if larger or smaller
values are better.

MOCOv2 TAR UNTAR
5 iter. ↑ 65.64% 92.97% 94.00% 95.41%

10 iter. ↑ 52.08% 87.38% 88.86% 91.57%
50 iter. ↑ 20.51% 62.79% 64.83% 71.65%

5 iter. ↑ 68.68% 93.01% 93.92% 95.24%
10 iter. ↑ 55.02% 87.23% 88.59% 91.11%
50 iter. ↑ 21.88% 59.67% 61.21% 68.19%

5 iter. ↓ 65.10% 0.00% 0.00% 0.00%
10 iter. ↓ 99.00% 0.00% 0.00% 0.00%
50 iter. ↓ 99.90% 75.35% 30.35% 3.40%

5 iter. ↓ 69.25% 0.00% 0.00% 0.00%
10 iter. ↓ 98.80% 0.01% 0.00% 0.00%
50 iter. ↓ 99.90% 91.65% 65.30% 18.40%

0.254% 0.049% 0.001% 0.000%
0.00% 17.00% 35.60% 64.40%

91.80% 0.00% 0.00% 0.00%
-16.50% 61.54% 67.50% 76.00%
56.31% 73.00% 75.20% 77.55%

Ta
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ɛ = 0.05

ɛ = 0.10

Med. adversarial margin ↑
Avg. Certified Radius ↑

U
nt

ar
. U
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D ɛ = 0.05

ɛ = 0.10

Breakaway risk ↓
Nearest neighbor acc. ↑

Overlap risk ↓

L!−PGD

Unsupervised adversarial training
boosts robustness across all measures.
Across every single unsupervised measure,
the worst adversarially trained model
performs better than the best standard
model (Tabs. 2 and 3). Comparing the
adversarially trained models with MOCOv2,
we observe a significant improvement
across the board (Tab. 3). They are also
more certifiably robust (Fig. 4). However,
the added robustness comes at the price of
reduced accuracy (7% to 10%, Tab. 1), as
is typical for adversarial training (Zhang
et al., 2019; Tsipras et al., 2019). This
gap can likely be reduced by fine-tuning
the trade-off between the adversarial and
standard objectives and by having separate
batch normalization parameters for standard
and adversarial samples (Kim et al., 2020;
Ho & Vasconcelos, 2020). Adversarial
training also reduces the impersonation rate
of a downstream classifier at 5 iterations by a half relative to MOCOv2 (Tab. 4). For 50 iterations,
the rate is similar to MOCOv2 but the attacked images of the adversarially trained models have
stronger semantically meaningful distortions, which can be detected by a human auditor (see App. D
for examples). These results are for only 10 iterations of fine-tuning of a standard-trained encoder.
Further impersonation rate reduction can likely be achieved with adversarial training applied to the
whole 200 epochs of training.

Table 4: Impersonation attack success rate on
MOCOv2 and its label-free adversarially fine-
tuned versions for different attack iterations.

Iterations MOCOv2 TAR UNTAR
3 iter. 34.20% 18.91% 15.67% 15.20%

10 iter. 62.78% 60.15% 56.27% 54.59%
50 iter. 76.43% 76.22% 71.79% 71.89%

L!−PGD

Unsupervised adversarial training results in cer-
tifiably more robust classifiers. Fig. 3 shows how
the randomized smoothened linear probes of the ad-
versarially trained models uniformly outperform MO-
COv2. The difference is especially evident for large
radii: 3 times higher certified accuracy when consid-
ering perturbations with radius of 0.935. These re-
sults demonstrate that unsupervised adversarial train-
ing boosts the downstream certified accuracy.

Adversarially trained models have better consistency between standard and low-pass accuracy.
The difference between standard and low-pass accuracy for the adversarially trained models is between
1.7% and 2.1%, compared to 2.2% to 9.7% for the standard models (Tab. 1). This could be in part due
to the lower accuracy of the adversarially trained models. However, compared with PixPro, AMDIM
and SimSiam, which have similar accuracy but larger gaps, indicate that the lower accuracy cannot
fully explain the lower gap. Therefore, this suggests that unsupervised adversarial training can help
with learning the robust low-frequency features and rejecting high-frequency non-semantic ones.

L̄-PGD is the overall most robust model, albeit with lower accuracy. L̄-PGD dominates across
all unsupervised robustness measures. These results support the findings of prior work on unsuper-

8



0.0 0.2 0.4 0.6 0.8 1.0
Input radius

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ce
rti

fie
d 

ac
cu

ra
cy

MOCOv2
MOCOv2 TAR
MOCOv2 UNTAR
MOCOv2 -PGD

Figure 3: Certified accuracy of randomized
smoothed MOCOv2 and its adversarially trained
variants on ImageNet. The adversarially trained
models are uniformly more robust.
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Figure 4: Certified robustness of MOCOv2 on
PASS using center smoothing. The certified rep-
resentation radius is represented as percentile of
the distribution of clean representation distances.

vised adversarial training using batch loss optimization (Ho & Vasconcelos, 2020; Fan et al., 2021;
Jiang et al., 2020). However, L̄-PGD also has lower certified accuracy for small radius values and the
lowest supervised accuracy of the three models, as expected due to the accuracy-robustness trade-off.
Still, the differences between the three models are small, and hence all three adversarial training
methods can improve the robustness of unsupervised representation learning models.

8 DISCUSSION, LIMITATIONS AND CONCLUSION

Unsupervised task-independent adversarial training with simple extensions to classic adversarial
attacks can improve the robustness of encoders used for multiple downstream tasks, especially when
released publicly. That is why we will release the adversarially fine-tuned versions of MOCOv2
and MOCOv3, which can be used as more robust drop-in replacements for applications built on top
of these two models. We showed how to assess the robustness of such encoders without resorting
to labeled datasets or proxy tasks. However, there is no single “unsupervised robustness measure”:
models can have drastically different performance across the different metrics. Still, unsupervised
robustness is a stronger requirement than classification robustness as it requires not only the output
but also an intermediate state of the model to not be sensitive to small perturbations. Hence, we
recommend unsupervised assessment and adversarial training to also be applied to supervised tasks.

We do not compare with the prior methods in Sec. 2 as different base models, datasets and objective
functions hinder a fair comparison. Moreover, the methods we propose generalize the previous works,
hence this paper strengthens their conclusions rather than claiming improvement over them.

This work is not an exhaustive exploration of unsupervised attacks, robustness measures and defences.
We adversarially fine-tuned only two models, one based on ResNet50 and one transformer-based
(in App. B); assessing how these techniques work on other architectures is further required. There
are many other areas warranting further investigation, such as non-gradient based attacks, measures
which better predict the robustness of downstream tasks, certified defences, as well as studying the
accuracy-robustness trade-off for representation learning. Still, we believe that robustness evaluation
of representation learning models is necessary for a comprehensive assessment of their performance
and robustness. This is especially important for encoders used for applications susceptible to
impersonation attacks. Therefore, we recommend reporting unsupervised robustness measures
together with standard and low-pass linear probe accuracy when proposing new unsupervised and
supervised learning models. We hope that this paper illustrates the breadth of opportunities for
robustness evaluation in representation space and inspires further work on it.
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This work discusses adversarial vulnerabilities in unsupervised models and therefore exposes potential
attack vectors for malicious actors. However, it also proposes defence strategies in the form of
adversarial training which can alleviate the problem, as well as measures to assess how vulnerable
representation learning models are. Therefore, we believe that it would empower the developers of
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work inspires further research into unsupervised robustness, which can contribute to more robust and
secure machine learning systems.
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used for the adversarial training, as well as all the robustness evaluation implementations, together
with documentation on their use. We also release the weights of the models and linear probes. The
code reproducing all the experiments in this paper is provided as well. The details are available here.
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A EXAMPLES OF LOSS-BASED ATTACKS

In this appendix we demonstrate how various supervised and unsupervised attacks can be represented
as loss-based attacks. This generalizes the unifying view presented by Madry et al. (2018) by
incorporating also unsupervised attacks. We also illustrate the resulting structure of which attacks
are generalizations of other attacks in Fig. 5. In the following, π(x) is the true class of the instance
x, π̄(x) is any other class, σ(x) is a function that returns a sample from D such that σ(x) 6= x, and
κ(x) provides a different view of x, e.g. a different augmentation.

A.1 EXAMPLES OF INSTANCE-WISE LOSS-BASED ATTACKS (L-FGSM, L-PGD, L-BIM)

• The supervised FGSM and PGD attacks can be considered as special cases of the unsuper-
vised L-FGSM and L-PGD, where f is a classifier rather than an encoder and we use a
classification loss:

– Untargeted FGSM attack: L-FGSM with L(f, x) = Lcl(f(x), π(x)),
– Targeted FGSM attack: L-FGSM with L(f, x) = −Lcl(f(x), π̄(x)),
– Untargeted PGD attack: L-PGD with L(f, x, x̂u) = Lcl(f(x̂u), π(x)),
– Targeted PGD attack: L-PGD with L(f, x, x̂u) = −Lcl(f(x̂u), π̄(x)).

• The U-LGSM and U-PGD attacks can be represented as L-FGSM and L-PGD attacks
where the loss is the divergence d:

– Untargeted U-FGSM attack: L-FGSM with L(f, x) = d(f(x), f(x+ η)),
– Targeted U-FGSM attack: L-FGSM with L(f, x) = −d(f(x), f(σ(x))),
– Untargeted U-PGD attack: L-PGD with L(f, x, x̂u) = d(f(x̂u), f(x)),
– Targeted U-PGD attack: L-PGD with L(f, x, x̂u) = −d(f(x̂u), f(σ(x))).

• Untargeted U-PGD with the Kullback-Leibler divergence corresponds to the adversarial
example generation process of UAT-OT (Alayrac et al., 2019) which is based on the Virtual
Adversarial Training method for semi-supervised adversarial learning (Miyato et al., 2019).
Untargeted U-PGD with the Kullback-Leibler also corresponds to the robustness regularizer
proposed by Nguyen et al. (2022).

• Cemgil et al. (2020) propose an unsupervised attack for Variational Auto-Encoders (VAEs)
(Kingma & Welling, 2014) based on the Wasserstein distance. It can be represented as the
untargeted U-PGD attack with the Wasserstein distance, or equivalently, as the L-PGD
attack with the loss

L(f, x, x̂u) = W (N([f(x)]µ, I[f(x)]σ), N[(f(x̂u)]µ, I[f(x̂u)]σ)) ,

where W is the Wasserstein distance, N is the normal distribution, I is the identity matrix
and the subscripts µ and σ designate the respective outputs of the VAE encoder f .

• The instance-wise unsupervised adversarial attack proposed by Kim et al. (2020) is equiva-
lent to L-PGD with the contrastive loss

L(f, x, x̂u) = − log
exp

(
f(x̂u)>f(κ(x))/T

)
exp (f(x̂u)>f(κ(x))/T ) + exp (f(x̂u)>f(σ(x))/T )

,

where T is a temperature parameter. This loss encourages that the cosine similarity between
the adversarial example and another view of the same sample is small relative to the cosine
similarity between the adversarial example and another sample from D.

• Using the NT-Xent loss with L-PGD results in the attack used for the Adversarial-to-
Standard adversarial contrastive learning proposed by Jiang et al. (2020).

A.2 EXAMPLES OF BATCH-WISE LOSS-BASED ATTACKS (L̄-FGSM, L̄-PGD, L̄-BIM)

• Any L-FGSM attack with loss L is trivially an L̄-FGSM attack by taking N = 1 and
considering the loss function L̄ = L.

• Similarly, any L-PGD attack is trivially an L̄-PGD attack.
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Figure 5: The hierarchy of supervised and unsupervised attacks.

• The adversarial attack proposed by Ho & Vasconcelos (2020) is equivalent to L̄-FGSM
with the contrastive loss

L̄(f,X) =

N∑
i=1

− log
exp(f(xi)

>f(κ(xi))/T )∑N
j=1 exp(f(xj)>f(κ(xi))/T )

.

Here adversarial examples are selected to jointly maximize the contrastive loss.
• The adversarial training of AdvCL generates adversarial attacks by maximizing a multi-view

contrastive loss computed over the adversarial example, two views of x and its high-
frequency component HighPass(x) (Fan et al., 2021). It corresponds to L̄-PGD with the
loss

L(f,X, X̂u) =
1

N

N∑
i=1

L′ (κ1(xi), κ2(xi), x̂i,u,HighPass(xi); f,X) ,

L′(z1, . . . , zm; f,X) = −
m∑
i=1

m∑
j=1
j 6=i

log
exp(sim(f(zi), f(zj))/T )∑

zk∈X
∑
κ∈{κ1,κ2} exp(sim(f(zi), f(κ(zk)))/T )

,

with sim(·, ·) being the cosine similarity.
• Using the NT-Xent loss and the L̄-PGD attack on a pair of views of x is identical to the

Adversarial-to-Adversarial and Dual Stream adversarial contrastive learning methods by
Jiang et al. (2020).

B EXTENDED RESULTS

This appendix presents more comprehensive experimental results in Tabs. 5 and 6 and Figs. 6 to 9.

In addition to the ResNet50-based models discussed in Secs. 6 and 7, we also present results from two
models with transformer architectures (Vaswani et al., 2017). MAE uses masked autoencoders (He
et al., 2022) and we use its ViT-Large variant. MOCOv3 is a modification of MOCOv2 to work with
a transformer backbone (ViT-Small) (Chen et al., 2021). We apply the three unsupervised adversarial
fine-tuning techniques from the main text to MOCOv3 to compare how they transfer to transformer
architectures. We use the exact same attack types and parameter values as for MOCOv2.

For all models, we present top-1 and top-5 accuracy for both the standard and the lowpass settings in
Tabs. 5 and 6. We report the results for the `2- and `∞-induced divergence in representation space,
at iterations 5, 10, 30 and 50 for U-PGD attacks with both ε = 0.05 and ε = 0.10. The attacks are
performed with the `2-induced divergence and α = 0.001. These are reported as universal quantiles
for the untargeted attacks and relative quantiles for the targeted attacks. We also report the breakaway
and overlap risks, as well as the nearest neighbor accuracy, median adversarial margin, average
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Table 5: Extended results for ResNet50-based models and adversarially fine-tuned MOCOv2. Arrows
show if larger or smaller values are better.

PixPro AMDIM SimCLR SimSiam Nonsem MOCOv2 TAR UNTAR
74.1% 58.0% 62.3% 67.2% 62.7% 49.7% 67.4% 60.2% 59.9% 57.2%
91.0% 80.5% 82.2% 86.6% 85.2% 73.5% 87.7% 82.4% 82.2% 80.0%
67.7% 50.0% 52.7% 59.7% 56.3% 47.3% 62.2% 58.6% 58.2% 55.4%
86.4% 73.3% 73.9% 81.2% 80.2% 71.2% 84.0% 81.2% 80.7% 78.4%

5 iter. ↑ 66.4% 80.5% 80.8% 75.0% 73.3% 61.5% 65.6% 93.0% 94.0% 95.4%
10 iter. ↑ 52.7% 67.9% 70.3% 65.8% 65.9% 46.5% 52.1% 87.4% 88.9% 91.6%
30 iter. ↑ 33.5% 45.6% 52.5% 45.3% 44.1% 28.3% 29.3% 72.4% 74.3% 79.9%
50 iter. ↑ 27.4% 37.6% 44.3% 36.4% 28.1% 22.2% 20.5% 62.8% 64.8% 71.6%

5 iter. ↑ 70.3% 85.5% 62.0% 89.4% 76.0% 62.2% 65.2% 93.3% 94.3% 95.6%
10 iter. ↑ 52.3% 69.4% 46.8% 76.7% 66.9% 46.0% 52.3% 87.8% 89.3% 91.9%
30 iter. ↑ 31.3% 39.9% 29.4% 43.4% 45.7% 27.3% 29.2% 72.5% 74.9% 80.2%
50 iter. ↑ 24.5% 30.7% 24.2% 32.7% 28.4% 21.1% 20.5% 62.9% 65.2% 72.0%

5 iter. ↓ 0.77 0.89 0.49 0.40 0.09 0.98 0.57 0.29 0.29 0.32
10 iter. ↓ 0.86 0.92 0.59 0.57 0.18 0.99 0.75 0.34 0.34 0.36
30 iter. ↓ 0.95 0.97 0.78 0.83 0.74 1.00 0.93 0.51 0.50 0.47
50 iter. ↓ 0.97 0.98 0.84 0.90 0.91 1.00 0.97 0.64 0.62 0.56

5 iter. ↑ 69.3% 83.1% 85.6% 78.0% 78.1% 64.3% 68.7% 93.0% 93.9% 95.2%
10 iter. ↑ 55.6% 71.2% 75.9% 69.0% 70.4% 48.6% 55.0% 87.2% 88.6% 91.1%
30 iter. ↑ 34.7% 47.2% 56.4% 48.6% 48.0% 29.0% 31.4% 70.9% 72.5% 77.9%
50 iter. ↑ 27.9% 38.1% 47.3% 38.6% 30.3% 22.3% 21.9% 59.7% 61.2% 68.2%

5 iter. ↑ 74.3% 89.0% 68.0% 90.9% 78.6% 65.8% 68.8% 93.1% 94.1% 95.3%
10 iter. ↑ 58.0% 74.2% 54.0% 80.5% 69.4% 48.3% 55.4% 87.3% 88.9% 91.2%
30 iter. ↑ 34.5% 42.1% 30.7% 48.6% 48.0% 28.0% 31.4% 70.9% 72.8% 78.2%
50 iter. ↑ 27.0% 31.2% 24.0% 35.3% 29.8% 21.2% 22.1% 60.3% 62.1% 68.2%

5 iter. ↓ 0.74 0.88 0.41 0.36 0.09 0.98 0.53 0.29 0.30 0.32
10 iter. ↓ 0.84 0.92 0.50 0.52 0.17 0.99 0.72 0.34 0.35 0.36
30 iter. ↓ 0.94 0.97 0.71 0.80 0.68 1.00 0.92 0.54 0.53 0.49
50 iter. ↓ 0.96 0.98 0.80 0.88 0.90 1.00 0.96 0.69 0.67 0.61

5 iter. ↓ 98.7% 14.4% 81.3% 43.7% 72.6% 46.8% 65.1% 0.0% 0.0% 0.0%
10 iter. ↓ 99.9% 85.6% 98.5% 99.4% 98.6% 98.1% 99.0% 0.0% 0.0% 0.0%
30 iter. ↓ 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 9.8% 0.7% 0.0%
50 iter. ↓ 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 75.4% 30.4% 3.4%

5 iter. ↓ 74.1% 25.0% 76.4% 64.2% 43.8% 51.7% 62.3% 0.0% 0.0% 0.0%
10 iter. ↓ 99.3% 72.7% 95.7% 89.9% 96.8% 97.7% 98.7% 0.0% 0.0% 0.0%
30 iter. ↓ 99.9% 97.4% 99.9% 99.8% 99.9% 99.9% 99.9% 15.1% 2.0% 0.1%
50 iter. ↓ 99.9% 98.7% 99.9% 99.9% 99.9% 99.9% 99.9% 73.0% 39.0% 5.7%

5 iter. ↑ 0.72 0.88 0.44 0.63 0.30 0.97 0.49 0.98 0.98 0.99
10 iter. ↑ 0.64 0.78 0.32 0.52 0.16 0.91 0.31 0.93 0.95 0.97
30 iter. ↑ 0.56 0.62 0.11 0.40 0.08 0.78 0.18 0.69 0.75 0.85
50 iter. ↑ 0.52 0.56 0.04 0.36 0.06 0.73 0.15 0.52 0.59 0.72

5 iter. ↓ 99.4% 11.3% 92.1% 48.3% 65.7% 43.2% 69.3% 0.0% 0.0% 0.0%
10 iter. ↓ 99.9% 77.5% 98.9% 98.7% 98.0% 96.6% 98.8% 0.0% 0.0% 0.0%
30 iter. ↓ 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 30.6% 6.1% 0.4%
50 iter. ↓ 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 91.7% 65.3% 18.4%

5 iter. ↓ 78.6% 24.6% 87.1% 67.1% 43.8% 49.1% 63.6% 0.0% 0.0% 0.0%
10 iter. ↓ 99.0% 69.6% 97.3% 89.5% 95.6% 96.0% 98.0% 0.0% 0.0% 0.0%
30 iter. ↓ 99.9% 97.4% 99.9% 99.8% 99.9% 99.9% 99.9% 37.7% 11.2% 1.0%
50 iter. ↓ 99.9% 98.9% 99.9% 99.9% 99.9% 99.9% 99.9% 90.2% 66.6% 23.7%

5 iter. ↑ 0.68 0.89 0.37 0.54 0.21 0.96 0.41 0.94 0.95 0.98
10 iter. ↑ 0.62 0.79 0.27 0.45 0.08 0.91 0.26 0.88 0.90 0.95
30 iter. ↑ 0.54 0.62 0.08 0.35 0.03 0.77 0.15 0.57 0.64 0.78
50 iter. ↑ 0.52 0.55 0.00 0.32 0.02 0.71 0.13 0.39 0.45 0.60

0.120% 0.190% 0.414% 0.039% 0.146% 0.211% 0.254% 0.049% 0.001% 0.000%
0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 17.0% 35.6% 64.4%

92.5% 39.6% 34.3% 45.6% 40.7% 93.5% 91.8% 0.0% 0.0% 0.0%
-18.6% 4.1% 2.7% 1.2% 1.6% -27.2% -16.5% 61.5% 67.5% 76.0%
38.9% 54.1% 68.3% 54.0% 61.7% 54.7% 56.3% 73.0% 75.2% 77.5%

3 iter. ↓ 41.5% 43.0% 23.2% 40.0% 21.0% 48.7% 34.2% 18.9% 15.7% 15.2%
10 iter. ↓ 76.5% 71.3% 71.9% 74.5% 52.4% 75.5% 62.8% 60.1% 56.3% 54.6%
30 iter. ↓ 87.1% 83.3% 88.9% 85.6% 76.3% 83.9% 74.4% 75.1% 69.5% 70.0%
50 iter. ↓ 89.9% 86.7% 91.0% 88.6% 80.6% 85.6% 76.4% 76.2% 71.8% 71.9%
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Table 6: Extended results for transformer-based models and adversarially fine-tuned MOCOv3.
Arrows show if larger or smaller values are better.

MAE MOCOv3 TAR UNTAR
71.8% 68.6% 67.9% 66.5% 65.3%
88.9% 87.7% 87.5% 86.6% 85.8%
66.2% 63.4% 64.2% 63.3% 62.6%
85.1% 83.8% 84.7% 84.0% 83.4%

5 iter. ↑ 80.6% 72.0% 86.2% 87.1% 89.8%
10 iter. ↑ 66.3% 63.2% 77.3% 79.3% 82.3%
30 iter. ↑ 42.2% 31.0% 50.6% 49.9% 47.6%
50 iter. ↑ 33.7% 20.3% 31.3% 30.6% 26.2%

5 iter. ↑ 72.4% 72.6% 87.9% 89.0% 90.5%
10 iter. ↑ 54.4% 62.4% 78.5% 81.2% 82.8%
30 iter. ↑ 27.6% 30.6% 52.3% 51.3% 48.3%
50 iter. ↑ 20.0% 19.7% 32.1% 30.4% 26.2%

5 iter. ↓ 0.99 0.26 0.06 0.06 0.06
10 iter. ↓ 0.99 0.44 0.14 0.14 0.15
30 iter. ↓ 1.00 0.91 0.65 0.70 0.76
50 iter. ↓ 1.00 0.96 0.89 0.91 0.94

5 iter. ↑ 83.6% 76.1% 87.2% 89.2% 91.2%
10 iter. ↑ 71.7% 66.9% 78.8% 81.0% 83.4%
30 iter. ↑ 44.7% 33.7% 51.5% 47.9% 46.1%
50 iter. ↑ 33.7% 21.4% 30.5% 27.9% 24.2%

5 iter. ↑ 76.4% 76.1% 88.7% 90.2% 91.8%
10 iter. ↑ 60.6% 64.9% 80.2% 82.2% 84.0%
30 iter. ↑ 29.5% 33.0% 53.1% 48.0% 47.0%
50 iter. ↑ 20.3% 20.7% 31.2% 27.8% 24.7%

5 iter. ↓ 0.99 0.26 0.06 0.06 0.07
10 iter. ↓ 0.99 0.42 0.14 0.16 0.17
30 iter. ↓ 1.00 0.90 0.63 0.77 0.80
50 iter. ↓ 1.00 0.96 0.90 0.94 0.95

5 iter. ↓ 3.2% 91.1% 1.9% 0.4% 0.1%
10 iter. ↓ 68.7% 99.0% 36.0% 4.9% 0.5%
30 iter. ↓ 99.9% 99.8% 99.3% 98.7% 96.5%
50 iter. ↓ 99.9% 99.9% 99.8% 99.9% 99.9%

5 iter. ↓ 8.7% 88.2% 1.7% 0.4% 0.1%
10 iter. ↓ 40.3% 99.0% 35.9% 4.1% 0.7%
30 iter. ↓ 99.9% 99.9% 99.1% 98.3% 95.5%
50 iter. ↓ 99.9% 99.9% 99.9% 99.9% 99.9%

5 iter. ↑ 0.99 0.22 0.72 0.74 0.80
10 iter. ↑ 0.98 0.12 0.47 0.56 0.68
30 iter. ↑ 0.26 0.07 0.16 0.10 0.16
50 iter. ↑ -0.12 0.06 0.12 0.05 0.08

5 iter. ↓ 58.9% 91.6% 3.4% 0.8% 0.1%
10 iter. ↓ 99.9% 99.0% 43.7% 9.5% 1.0%
30 iter. ↓ 99.9% 99.8% 99.5% 99.3% 98.9%
50 iter. ↓ 99.9% 99.9% 99.9% 99.9% 99.9%

5 iter. ↓ 50.5% 92.3% 3.4% 0.8% 0.2%
10 iter. ↓ 99.5% 99.2% 42.8% 8.7% 1.4%
30 iter. ↓ 99.9% 99.9% 99.4% 99.2% 98.4%
50 iter. ↓ 99.9% 99.9% 99.9% 99.9% 99.9%

5 iter. ↑ 0.99 0.16 0.66 0.71 0.78
10 iter. ↑ 0.94 0.08 0.40 0.49 0.62
30 iter. ↑ -0.06 0.03 0.13 0.08 0.12
50 iter. ↑ -0.23 0.02 0.10 0.04 0.06

0.238% 0.230% 0.406% 0.401% 0.285%
0.0% 0.0% 0.0% 0.0% 0.0%

19.8% 62.8% 9.6% 5.7% 4.4%
11.1% -3.4% 18.0% 19.6% 26.6%
42.8% 13.2% 31.4% 30.6% 38.5%

3 iter. ↓ 12.5% 21.0% 38.3% 29.7% 22.7%
10 iter. ↓ 43.2% 52.4% 77.5% 75.1% 76.0%
30 iter. ↓ 74.6% 82.7% 93.4% 93.1% 92.9%
50 iter. ↓ 83.9% 90.2% 95.6% 95.4% 95.4%

Transformer models Adversarially fine-tuned MOCOv3

Top-1 accuracy ↑
Top-5 accuracy ↑

Lowpass Top-1 accuracy ↑
Lowpass Top-5 accuracy ↑

ℓ₂
 d

is
ta

nc
e

ℓ ∞
 d

is
ta

nc
e

C
os

in
e

si
m

ila
rit

y

Ta
rg

et
ed

 U
-P

G
D

 a
tta

ck

ℓ ∞
 d

is
ta

nc
e

C
os

in
e

si
m

ila
rit

y

ɛ 
= 

0.
05

ɛ 
= 

0.
10

ℓ₂
 d

is
ta

nc
e

Impersonation 
rate

ℓ₂
 d

is
ta

nc
e

ℓ ∞
 d

is
ta

nc
e

C
os

in
e

si
m

ila
rit

y
ℓ₂

 d
is

ta
nc

e

Breakaway risk ↓
Nearest neighbor accuracy ↑

Overlap risk ↓
Median adversarial margin ↑

Average Certified Radius ↑

U
na

rg
et

ed
 U

-P
G

D
 a

tta
ck

ɛ 
= 

0.
05

ɛ 
= 

0.
10

C
os

in
e

si
m

ila
rit

y
ℓ ∞

 d
is

ta
nc

e

L!−PGD

18



0.0 0.2 0.4 0.6 0.8 1.0
Input radius

0.0

0.1

0.2

0.3

0.4
Ce

rti
fie

d 
ac

cu
ra

cy

ResNet50
MOCOv2
MOCOv3
PixPro
AMDIM

MAE
SimCLR
SimSiam
MOCO-Nonsem

Figure 6: Certified accuracy of the standard mod-
els on ImageNet.
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Figure 7: Certified robustness of the standard
models on PASS using center smoothing. The
distribution of certified radii in R reported as
percentile of the distribution of clean representa-
tion distances is shown. Smaller values indicate
higher unsupervised robustness.
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Figure 8: Certified accuracy of MOCOv3 and
its adversarially trained variants on ImageNet
computed via randomized smoothing. The adver-
sarially trained models are uniformly certifiably
more robust for almost all radius values.
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Figure 9: Certified robustness of MOCOv3 on
PASS using center smoothing. The distribution
of certified radii in R reported as a percentile
of the distribution of clean representation dis-
tances is shown. Smaller values indicate higher
unsupervised robustness.

certified radius and impersonation rates as in the main text. Figs. 6 to 8 show the certified robustness
and accuracy of the models which were omitted from the main text.

Some of the models, including MOCOv2, are trained with a contrastive objective based on the cosine
similarity. Therefore, using the Euclidean distances as the divergence in representation space could
be considered an unfair comparison as the adversarially trained models are optimized for it while
the standard models are optimized for the cosine similarity. Therefore, for targeted attacks, we also
report the median cosine similarity between the representations of the adversarial examples and the
representations of the target samples. Higher values mean that the attack is more successful and that
the model is less robust. For the untargeted attacks, we report the median cosine similarity between
the representations of the adversarial examples and the representations of the original samples. Hence,
higher values mean that the attack is less successful and the model is more robust. The results in
Tabs. 5 and 6 show that adversarial training with the `2-induced divergence leads also to improvements
when measuring the cosine similarity: the divergence that the standard models are trained for but
the adversarial ones are not. This evidence supports our claim that the improvements we see from
unsupervised adversarial fine-tuning are not due to our choice of divergence.
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Amongst the standard models, MAE outperforms the ResNet50-based models on most measures.
It has the highest accuracy of all models trained in the unsupervised regime, i.e. excluding the
supervised ResNet50. MAE also has some of the best robustness against targeted U-PGD attacks and
is competitive to PixPro for the untargeted case. It attains the lowest breakaway and overlap risks
among all standard models as well as the largest median adversarial margin and is most robust to
impersonation attacks.

MOCOv3 scores rather poorly in comparison across most measures though. Hence, the robustness
of MAE cannot be solely attributed to the transformer backbone. This complements the observed
variation in robustness performance among the ResNet50 models and provides further evidence that
it is the objective function, rather than the backbone architecture, that determines robustness.

The three adversarially trained MOCOv3 models witness a lower accuracy penalty than the corre-
sponding MOCOv2 models: between 0.2% and 3.3% for the clean and between -0.9% and 0.8% for
the lowpass accuracy for MOCOv3 compared with correspondingly 5.3%-10.2% and 2.8%-6.8% for
MOCOv2. In fact, the adversarially trained MOCOv3 TAR model has a higher lowpass accuracy
than the standard MOCOv3. Unsupervised adversarial training also leads to a uniformly better ro-
bustness against targeted and untargeted U-PGD attacks, albeit with a lower improvement compared
to MOCOv2. We similarly witness large improvements in the overlap risk and median adversarial
margin measures. The average certified radius and the certified accuracy (Fig. 8) are also significantly
improved by adversarial training. Fig. 9 shows that the adversarially trained models are also more
certifiably robust than the baseline MOCOv3.

However, the three adversarially trained models actually fare worse than the baseline MOCOv3 for
breakaway risk and are less robust to impersonation attacks. The impersonation attacks are also less
semantic in nature than the ones for the MOCOv2 adversarially trained models (Figs. 16 to 18 vs
Figs. 21 to 23). This could also be due to the learning rate being too low, rather than due to transformer
models being inherently more difficult to adversarially fine-tune in an unsupervised setting. The
lower accuracy gap and the lower robustness further indicate that the adversarial training might not
have been as “aggressive” for MOCOv3 as it was for MOCOv2. Still, while the improvements for
MOCOv3 are not as drastic as for MOCOv2, unsupervised adversarial training does improve most
robustness measures. The lower effectiveness for MOCOv3 of unsupervised adversarial training,
especially in its role as a defence against impersonation attacks, is an avenue for future work that
should examine whether there are fundamental differences between unsupervised adversarial training
of CNN and Transformer models.

C TRAINING AND EVALUATION DETAILS

This section provides further details on the unsupervised adversarial training and the evaluation
metrics implementations.

C.1 UNSUPERVISED ADVERSARIAL TRAINING FOR MOCOV2

The three variants for the adversarially trained MOCOv2 are obtained by using a modification of
the official MOCO source code. We perform fine-tuning by resuming the training procedure for
additional 10 epochs but with the modified training loop. The unsupervised adversarial examples
are concatenated to the model’s q-inputs and the k-inputs are correspondingly duplicated as shown
in List. 1. For L̄-PGD we use InfoNCE (Oord et al., 2018), the loss that MOCOv2 is trained with.
All parameters, including the learning rate and its decay are as used for the original training and as
reported by He et al. (2020). We only reduced the batch size from 256 to 192 in order to be able to
train on four GeForce RTX 2080 Ti GPUs.

Listing 1: Pseudocode of adversarial fine-tuning for MoCo (modified from (He et al., 2020)).
# f_q, f_k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature

f_k.params = f_q.params # initialize
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for x in loader: # load a minibatch x with N samples
x_q = aug(x) # a randomly augmented version
x_k = aug(x) # another randomly augmented version

# perform the attack
switch attack_type:

case targeted:
target_representation = roll(f_q(x_k), shifts=1)
x_adv = targeted_upgd(x_q, target_representation)

case untargeted:
x_adv = untargeted_upgd(x_q)

case loss:
x_adv = batch_loss_upgd(f_q, x_q, f_k, x_k, queue, m, t)

# get the representations
q_clean = f_q.forward(x_q) # queries: NxC
q_adv = f_q.forward(x_adv) # adversarial: NxC
q = cat([q_clean, q_adv], dim=0)
k = f_k.forward(x_k) # keys: NxC
k = k.detach() # no gradient to keys

# positive logits: 2Nx1
l_pos = bmm(q.view(2*N,1,C), cat([k, k], dim=0).view(2*N,C,1))
# negative logits: 2NxK
l_neg = mm(q.view(2*N,C), queue.view(C,K))
# logits: 2Nx(1+K)
logits = cat([l_pos, l_neg], dim=1)
# contrastive loss
labels = zeros(2N) # positives are the 0-th
loss = CrossEntropyLoss(logits/t, labels)
# SGD update: query network
loss.backward()
update(f_q.params)
# momentum update: key network
f_k.params = m*f_k.params+(1-m)*f_q.params
# update dictionary
enqueue(queue, k) # enqueue the current minibatch
dequeue(queue) # dequeue the earliest minibatch

C.2 UNSUPERVISED ADVERSARIAL TRAINING FOR MOCOV3

Similarly to MOCOv2, the three variants for the adversarially trained MOCOv3 are obtained by using
a modification of the official MOCOv3 source code. We perform fine-tuning by resuming the training
procedure for additional 10 epochs but with the modified training loop. The unsupervised adversarial
examples are added to the contrastive loss as shown in List. 2. All parameters, are as used for the
original training and as reported by Chen et al. (2021). We only increased the learning rate from
1.5× 10−4 to 1.5× 10−3 and reduced the batch size from 256 to 192 in order to be able to train on
four GeForce RTX 2080 Ti GPUs.

Listing 2: Pseudocode of adversarial fune-tuning for MOCOv3.
# f_base: base encoder network
# f_predictor: predictor network
# m: momentum

f_momentum.params = f_q.params # initialize momentum encoder

for x in loader: # load a minibatch x with N samples
x_0 = aug(x) # a randomly augmented version
x_1 = aug(x) # another randomly augmented version
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# perform the attack
switch attack_type:

case targeted:
target_representation = roll(f_predictor(f_base(x_1)), shifts=1)
x_adv = targeted_upgd(x_0, target_representation)

case untargeted:
x_adv = untargeted_upgd(x_0)

case loss:
x_adv = batch_loss_upgd(f_base, f_predictor, x_0, x_1)

# update the momentum encoder
f_momentum.params = f_momentum.params * m + f_base.params * (1-m)

# get the base representations
q_0 = f_predictor.forward(f_base.forward(x_0)) # x_0 reps: NxC
q_1 = f_predictor.forward(f_base.forward(x_1)) # x_1 reps: NxC
q_adv = f_predictor.forward(f_base.forward(x_adv)) # attacked reps: NxC

# get the momentum representations
k_0 = f_momentum.forward(x_0) # x_0 reps: NxC
k_1 = f_momentum.forward(x_1) # x_1 reps: NxC
k_adv = f_momentum.forward(x_adv) # attacked reps: NxC

# compute the loss
loss = contrastive_loss(q_0, k_1) + contrastive_loss(q_1, k_0) + \

contrastive_loss(q_adv, k_1) + contrastive_loss(q_1, k_adv)

# parameter update: query network
loss.backward()
update(f_q.params)

C.3 LINEAR PROBES

As part of the evaluation we train three linear probes for each model.

• Standard linear probe: for computing the top-1 and top-5 accuracy on clean samples, as
well as for the impersonation attack evaluation.

• Lowpass linear probe: for computing the top-1 and top-5 accuracy on samples with
removed high-frequency components. We use the implementation of Wang et al. (2020)
and keep only the Fourier components that are within a radius of 50 from the center of the
Fourier-transformed image.

• Gaussian noise linear probe: trained on samples with added Gaussian noise for computing
the certified accuracy as randomized smoothing results in a more robust model when the
base model is trained with aggressive Gaussian noise (Lecuyer et al., 2019). Therefore, we
add Gaussian noise with σ = 0.25 to all inputs.

All linear probes are trained with the train set of ImageNet Large Scale Visual Recognition Challenge
2012 (Russakovsky et al., 2015) and are evaluated on its test set. For training we use modification of
the MOCO linear probe evaluation code for 25 epochs. The starting learning rate is 30.0 with 10-fold
reductions applied at epochs 15 and 20.

For fairness of the comparison, we use the same implementation to evaluate all models. Therefore,
there might be differences between the accuracy values reported by us and the ones reported in the
original publications of the respective models.
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C.4 COMPUTING THE DISTRIBUTION OF INTER-REPRESENTATIONAL DIVERGENCES

The distribution of `2 and `∞-induced divergences between the representations of clean samples
of PASS (Asano et al., 2021) is needed for computing the universal and relative quantiles. Due to
computational restrictions, we compute the representations of 10,000 samples and the divergences
between all pairs of them in order to construct the empirical estimate of the distribution of inter-
representational divergences. We observe that 10,000 samples are more than sufficient for the
empirical estimate of the distribution to converge.

C.5 ADVERSARIAL ATTACKS

In Tabs. 2, 3, 5 and 6 we report U-PGD attacks performed with d(x, x′) = ‖x− x′‖2 and α = 0.001.
We report median values over the same 1000 samples from PASS (Asano et al., 2021). The median
universal quantile is reported for targeted attacks and the median relative quantile is reported for
targeted attacks as explained in Sec. 5. In Tabs. 2 and 3 we report only the resulting `2 quantiles,
while in the extended results (Tabs. 5 and 6) we also show the `∞ quantiles and cosine similarities.

C.6 BREAKAWAY RISK AND NEAREST NEIGHBOR ACCURACY

The breakaway risk and nearest neighbor accuracy are also computed by attacking the same 1000
samples from PASS (D′) and computing their divergences with all other samples from PASS (D).
Our empirical estimate is then :

p̂breakaway =
1

|D′|(|D| − 1)

∑
xi∈D′

∑
xj∈D/{xi}

1 [d(f(x̂i), f(xj)) < d(f(x̂i), f(xi))] ,

where x̂i is the untargeted U-PGD attack with d(x, x′) = ‖x− x′‖2, ε = 0.05 and α = 0.001 for 25
iterations.

C.7 OVERLAP RISK AND MEDIAN ADVERSARIAL MARGIN

The overlap risk and median adversarial margin are computed over 1000 pairs of samples from PASS
(D′). Each element of the pair is attacked to have a representation similar to the other element.

p̂overlap =
1

|D′|
∑

(x,x′)∈D′

1

[
d(f(xi), f(x̂→ij )) < d(f(xi), f(x̂→ji ))

]
,

where x̂→ji is the targeted U-PGD attack on xi towards xj with d(x, x′) = ‖x− x′‖2, ε = 0.05 and
α = 0.001 for 10 iterations.

C.8 CERTIFIED ACCURACY

We use the randomized smoothing implementation by Cohen et al. (2019). We evaluate the Gaussian
noise linear probe (see App. C.3) over 200 samples from the ImageNet test set (Russakovsky et al.,
2015). We use σ = 0.25, N0 = 100, N = 100, 000 and an error probability α = 0.001, as originally
used by Cohen et al. (2019). Figs. 3 and 8 show the resulting certified accuracy for MOCOv2,
MOCOv3, and their unsupervised adversarially trained versions. Fig. 6 shows the certified accuracy
for the other models. These plots show the fraction of samples which are correctly classified and
which certifiably have the same classification within a given `2 radius of the input space.

Tabs. 5 and 6 also show the Average Certified Radius for all models. The Average Certified Radius
was proposed by Zhai et al. (2020) as a way to summarize the certified accuracy vs radius plots with
a single number representing the average certified radius for the correctly classified samples.

C.9 CERTIFIED ROBUSTNESS

The certified robustness evaluation in Figs. 4 and 8 was done with the center smoothing implemen-
tation by Kumar & Goldstein (2021). We evaluate the models over the same 200 samples from the
ImageNet test set (Russakovsky et al., 2015). We use σ = 0.25, N0 = 10, 000, N = 100, 000 and
error probabilities α1 = 0.005, α2 = 0.005, as originally proposed by Kumar & Goldstein (2021).

23

https://github.com/locuslab/smoothing
https://github.com/aounon/center-smoothing
https://github.com/aounon/center-smoothing


C.10 IMPERSONATION ATTACKS

The impersonation attack evaluation is performed using targeted U-PGD attacks. We use the Assira
dataset that contains 25,000 images, equally split between cats and dogs (Elson et al., 2007). When
evaluating a model, we consider only the subset of images that the standard linear probe (see App. C.3)
for the given model classifies correctly. Then, we construct pairs of an image of a cat and an image of
a dog. We perform two attacks: attacking the cat to have a representation as close as possible to that
of the dog and vice-versa. The attacked images are then classified with the clean linear probe. The
success rate of cats impersonating dogs and dogs impersonating cats are computed separately and
then averaged to account for possible class-based differences. Note that the linear probe is not used
for constructing the attack, i.e. we indeed fool it without accessing it. App. D shows examples of the
impersonation attacks for all models.

D IMPERSONATION ATTACKS

This appendix showcases samples of the impersonation attacks on the models discussed in the
paper. The first and third row in each sample are the original images of cats and dogs respectively.
The second row is the result when each cat image is attacked to have a representation close to the
representation of the corresponding dog image. The fourth row is the opposite: the dog image attacked
to have a representation close to the representation of the cat image. The attack used was targeted
U-PGD with d(r, r′) = ‖r − r′‖2 for 50 iterations with ε = 0.10 and α = 0.01. The samples shown
differ from model to model as we restrict the evaluation to the samples that are correctly predicted by
the given model, see App. C.10 for details.

A key observation is that the perturbations necessary to fool the standard models visually appear as
noise (Figs. 10 to 15). However, the perturbations applied to the three adversarially trained MOCOv2
models (Figs. 16 to 18) are more “semantic” in nature, and in some cases even resemble features of
the target class. Still, this is not the case when comparing the impersonation attacks on MOCOv3
(Fig. 20) with the attacks on the adversarially trained versions (Figs. 21 to 23).

Figure 10: Impersonation attack samples for ResNet50 (He et al., 2016).
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Figure 11: Impersonation attack samples for MOCO with non-semantic negatives (Ge et al., 2021).

Figure 12: Impersonation attack samples for PixPro (Xie et al., 2021).

Figure 13: Impersonation attack samples for SimCLRv2 (Chen et al., 2020c).
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Figure 14: Impersonation attack samples for SimSiam (Chen & He, 2021).

Figure 15: Impersonation attack samples for MOCOv2 (He et al., 2020; Chen et al., 2020d).

Figure 16: Impersonation attack samples for MOCOv2 TAR.
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Figure 17: Impersonation attack samples for MOCOv2 UNTAR.

Figure 18: Impersonation attack samples for MOCOv2 LOSS.

Figure 19: Impersonation attack samples for MAE (He et al., 2022).
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Figure 20: Impersonation attack samples for MOCOv3 (Chen et al., 2021).

Figure 21: Impersonation attack samples for MOCOv3 TAR.
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Figure 22: Impersonation attack samples for MOCOv3 UNTAR.

Figure 23: Impersonation attack samples for MOCOv3 LOSS.
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