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Abstract

Background and Aim: Monitoring physiological sig-
nals during sleep can have substantial impact on detecting
temporary intrusion of wakefulness, referred to as sleep
arousals, in order to improve the quality of sleep. To
overcome the problems associated with the cubersome vi-
sual inspection of these events by sleep experts, automated
sleep arousal recognition algorithms have been proposed.

Method: As part of the Physionet/Computing in Car-
diology Challenge 2018, this study proposes a deep en-
semble neural network architecture for automatic arousal
recognition from multi-modal sensor signals. Separate
branches of the neural network extract features from
electro-encephalography, electrooculography, electromyo-
gram, breathing patterns and oxygen saturation level; and
a final fully-connected neural network combines features
computed from the signal sources to estimate the proba-
bility of arousal in each region of interest. We investigate
the use of shared-parameter Siamese architectures for ef-
fective feature calibration. Namely, at each forward and
backward pass through the network we concatenate to the
input a user-specific template signal that is processed by
an identical copy of the network.

Result: The proposed architecture obtains a preliminary
AUPR score of 0.426 on the hidden test set of the official
phase of Physionet/CinC challenge 2018. A similar score
of 0.45 is obtained by means of 10-fold cross-validation on
the training set provided.

1. Introduction

Sleep research is important from both the clinical and
theoretical aspects. The quality of sleep in patients with
sleep disorders is degraded by the frequent occurrence of
sleep arousals, that is, temporary interruptions of wakeful-
ness into sleep or spontaneous increase of the vigilance
level [1]. Arousal stimulus may be associated with the
pathophysiology of several sleep disorders (e.g. Apnea,
snoring, periodic leg movement, rapid increase of elec-
tromyogram), or may be unrelated to the pathological fac-
tors (i.e. spontaneous arousal). Polysomnography (PSG)

is widely used in sleep laboratories to assess the structure
and physiological changes of sleep which makes it possible
for sleep experts to monitor electroencephalogram (EEG),
electromyogram (EMG), electrooculogram (EOG), elec-
trocardiogram (ECG), breathing patterns, and other signals
associated with chest, body and leg movements [2]. Gen-
erally the scoring of arousal is done manually by sleep ex-
perts by inspecting several epochs of PSG recordings. This
is, of course, a time-consuming and cumbersome task for
medical technologists. Further, the outcome of the sleep
scoring is crucially affected by the knowledge and experi-
ence of the human performing the scoring. As such, de-
velopment of an automated arousal detection system from
PSG, in the form of an efficient, fast and reliable algorithm,
may provide a powerful aid to clinical practitioners.

In this study, we aim to use the current gold-standard di-
agnostic methods from manually annotated sleep arousals
in PSG recordings to develop an automated sleep arousal
detection system from a large amount of data provided
by the Physionet/CinC challenge 2018 [3]. We design a
deep neural network (NN) architecture for multi-modal
sleep arousal detection from EEG, EOG, EMG, Airflow
and SaO2 signals. Namely, after pre-processing and data
augmentation routines are applied, an ensemble of Convo-
lutional Neural Networks (CNNs) automatically extracts
relevant features separately from each input sensor chan-
nel. The feature vectors are then concatenated together and
a sequence of fully-connected layers is used to estimate
sleep arousal. Importantly, the architecture relies on the
concept of shared-parameter Siamese networks to perform
automatic feature-calibration on-the-fly. Partial results on
the challenge test set provided an AUPR score of 0.426 for
the model discussed in this paper.

Related Works. Several automatic and semi-automatic
detection algorithms have been proposed using different
kinds of PSG signals as the input [4–8].

A computerized method to discriminate arousal seg-
ments was presented by De Carli et al. [4] which employs a
combined EEG and EMG analysis. Again, EEG and EMG,
pulse and SaO2 signals were used to introduce a data min-
ing approach, which uses meta-rule extraction to obtain
arousal episodes [6]. Olsen et al. [5] proposed an auto-



nomic arousal detection method based on feature learn-
ing and machine learning using the heart rate variability
(HRV) signal. The ECG signal was also used for obstruc-
tive sleep Apnea screening employing K-nearest neighbor-
hood and artificial neural networks as supervised classifi-
cation algorithms in [7]. In another study [8] a diagnostic
sleep Apnea system based on linear discriminant analysis
used a combination of features based on HRV and SaO2.

2. Materials and Methods

In this section we briefly review the characteristics of
the dataset provided by the challenge organisers, as well
as the methods employed in our challenge submissions.

2.1. Dataset

The dataset is split into a training and a test set. The
training set is composed of 994 PSG recordings (including
6 EEG channels, EOG, 3 EMG channels, respiratory sig-
nal, SaO2 and ECG), while 989 recordings are pro in the
test set provided by the Physionet/CinC challenge 2018.
The data was gathered from 1985 subjects who underwent
an overnight recording sessions in the Massachusetts Gen-
eral Hospital (MGH).

2.2. Arousal annotations.

Arousal annotations were provided by the challenge
organisers for all the samples included in the training
set. According to the American Sleep Disorders Associ-
ation (ASDA), alternations in EEG and EMG activities are
the most significant indicators for arousal detection [9].
Furthermore, the American Academy of Sleep Medicine
(AASM) defines the electroencephalographic arousal as an
abrupt shift in electroencephalogram (EEG) frequency in-
cluding alpha, theta, and/or frequencies greater than 16 Hz,
lasting at least 3 seconds and with at least 10 seconds of
previous stable sleep [2]. Another marker of arousal is ev-
ident due to the episodes of arterial oxygen desaturation
during room air breathing [8]. A PSG recording for an
exemplary subject marked with the onset of arousal anno-
tated by expert sleep technologists at the MGH hospital is
depicted in Figure 1.

2.3. Network Architecture

In this subsection we describe the NN model employed
for the challenge, as well as signal pre-processing and in-
put preparation.

Pre-processing. We investigate the use of a pre-processing
step only for EEG channels, while the other signals are fed
into the NN directly as they are provided in the dataset. For
what it concerns EEG pre-processing, first we employ a 6th
order band pass filter in the [0.5− 45] Hz frequency range.
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Figure 1. Example of a Polysomnography (PSG) record-
ing during 30 seconds of sleep. The first 6 channels indi-
cate EEG recordings, [F3-M2,F4-M1,C3-M2,C4-M1,O1-
M2,O2-M1] and the 7th channel is electrooculography
(EOG) signal named E1-M2 according to 10-20 standard
system of EEG Placement. The rest represent electromyo-
graphy (EMG), Abdomen respiration, chest respiration,
airflow, oxygen saturation (SaO2) and the electrocardio-
graphy (ECG), respectively. The black line at 15 second
represents the onset of arousal according to the annotation
provided by PhysioNet/CinC Challenge 2018

Afterwards, we apply an automatic algorithm to remove
candidate movement artefacts. Briefly, in this algorithm
the amplitude distribution of segments with the length of
8 seconds was calculated. We then recognise movement
artifacts as the epochs above the 95th percentile of the am-
plitude distribution and accordingly discard them [10].
Windowing. We segment each signal in 30 seconds time
windows with 50% overlap, further sub-sampling all the
signals to 50 Hz and standardising them to zero mean
and unit standard deviation. At each prediction step the
NN processes a full time window at once giving a unique
arousal score for the whole window. The results for adja-
cent overlapping slices of windows are then averaged to-
gether.
Data Augmentation. We heavily rely upon data augmen-
tation both at training and testing time. We do this by ran-
domly cropping each time window to a fixed size of 1400
consecutive time samples (i.e. 28 seconds at 50 Hz). This
has the effect of reducing the dimensionality of the NN in-
put space (hence reducing number of weights that need to
be learnt), as well as to increase the effective size of the
training set available. At training time data augmentation
is done on-the-fly, making sure that every batch of data has
as many aroused samples as non-aroused ones. This has



L. 1 L. 2 L. 3 L. 4 L. 5 L. 6
Conv. Filters 8 8 8 16 32 32
Conv. Kernel 16 16 16 32 32 64
Max-pooling 7 3 7 3 7 3

Table 1. CNN for feature embedding of EEG, EOG, EMG
and airflow signals. 33% dropout is used between layers.
A CNN is trained for each of the input signals, and the
outputs are concatenated together.

the effect of re-balancing the dataset and forces the NN
to give the same a-priori importance to both classes. If
the non-aroused class were overrepresented in the dataset,
the NN would give it preference, hence negatively affect-
ing the final Area Under the Precison-Recall curve (AUPR)
score.

At test time, 10 rounds of data augmentation are applied
to each time window and the final prediction is taken as the
mean value of those, in an effort to average out the stochas-
ticity that arises from signal cropping.
Architecture. The overall architecture is composed of an
ensemble of NNs, where each NN is separately respon-
sible for embedding each specific channel into a lower-
dimensional vector space, i.e. the feature space, then
merged together and fed through a Siamese architecture
[11]. For most of the channels (that is EEG, EOG, EMG
and airflow channels) the embedding is obtained by pro-
cessing the inputs with a CNN model, whose architecture
is described in Table 1. This is a 6 layers one-dimensional
CNN architecture, where we use Parametric ReLU nodes
as activation functions [12], with three fully-connected
layers stacked on top (of 256, 128 and 128 units each).
On the other hand, the SaO2 signal is processed by means
of only four fully-connected layers (of 512, 256, 64 and
64 units each). The rationale for this is that the latter did
not benefit from feature embedding, as it is mostly a base-
line type of signal. Feature vectors obtained for each input
signal are then concatenated together into a single over-
all feature vector. We build a shared-parameter Siamese
NN on top of the latter, in order to achieve effective user-
specific feature calibration [13]. This is done by making
exact copies of the NNs described above, and applying
them to specific templates extracted for each user. We
empirically find good performances by selecting two tem-
plates for each user (see Section 3), by randomly looking
at input samples close in time to the one currently under
analysis.

Finally, three fully-connected layers (of 1024, 512 and
256 units each) merge together the calibrated features in a
non-linear fashion and provide the final prediction on the
arousal level through a final soft-max activation function.
Implementation and Training. We train the overall NN
architecture end-to-end relying on the Adam optimiser
[14]. Training is performed for a maximum of 50 epochs,

and we use early-stopping if the AUPR (which is the rank-
ing score used in the challenge) on the validation set does
not improve for 10 consecutive epochs. We finally use the
model that obtained the best AUPR score on the validation
set, among those explored by the optimisation algorithm
throughout the learning process.

For the final entry we use 85% of the dataset for train-
ing and the rest for validation, while for cross-validation
results we use 80% for training, 10% for validation and
10% for testing. We implement the model in Keras [15]
using Tensorflow backend [16]1. Training is done on an
NVIDIA Tesla K80 GPU, with training time of about 22
hours.

3. Experimental Results

Table 2 lists a comparison of cross-validation results ob-
tained on the training set provided by the challenge organ-
isers. Namely, we compare single-modal classification re-
sults with multi-modal ones, and analyse how the AUPR
is affected by the number of Siamese copies of the net-
work, that is, 0-Siamese (i.e. a standard non-Siamese ar-
chitecture), 1-Siamese (i.e. a standard Siamese architec-
ture where two copies of the same network exist) and 2-
Siamese (i.e. a variation on a standard Siamese network,
in which we consider 3 copies of the same network) net-
works. Because of the challenge computation time con-
straints, we have limited our analysis to 5 channels only,
namely: (i) C3-M2 (central) EEG; (ii) E1-M2 EOG; (iii)
Abdominal EMG; (iv) Airflow; and (v) Oxygen Saturation
level (SaO2). In fact, the multi-modal model is trained
only on these 5 channels. We leave for future work an in-
vestigation of how to include the remaining channels into
the proposed neural network architecture.

We observe how increasing the number of Siamese
copies of the network generally increases the AUPR as
well. In fact, the increase is higher when comparing 0-
Siamese to 1-Siamese than when comparing 1-Siamese to
2-Siamese. Though the trend possibly persists when in-
creasing the number of Siamese copies to a number n > 2,
such an analysis was not considered for our challenge sub-
mission. Notice how different sensors have different first-
odrer contributions to the final AUPR score. In fact, the
2-Siamese network built using only Abdominal EMG sig-
nal obtains already ≈ 84% of the AUPR obtained by the
multi-modal model; with Airflow be the second most im-
portant channel and EEG be the least relevant one. These
scores however are relative to the particular architecture
employed and do not necessarily generalise to different
ones.

The preliminary result that the 2-Siamese multi-modal
network obtains in the challenge test set is an AUPR of
0.426.

1An implementation can be found at https://github.com/
andreapatane/SiameseNet-PhNet2018Challenge.

https://github.com/andreapatane/SiameseNet-PhNet2018Challenge
https://github.com/andreapatane/SiameseNet-PhNet2018Challenge


C3-M2 E1-M2 ABD AIR SaO2 Multi
EEG EOG EMG Flow modal

0 0.90 0.16 0.29 0.25 0.15 0.34
1 0.13 0.20 0.35 0.27 0.20 0.40
2 0.16 0.22 0.38 0.27 0.23 0.45

Table 2. Average AUPR score for cross validation re-
sults on single-modal and multi-modal arousal classifica-
tion. Different rows corresponds to the number of Siamese
copies of the network.

4. Discussion and Conclusions

In this work we have presented a neural network archi-
tecture for multi-modal sleep arousal detection. This was
built by training an ensemble of CNNs for feature space
embedding, and relying on a shared-parameter Siamese
like architecture to effectively enable feature-level calibra-
tion. While working directly on raw data for the other sen-
sor channels, for EEG processing we crucially relied on
a frequency-based pre-processing of the signal, which al-
lowed us to take direct advantage of the relationship that
exists between frequency shift of EEG and sleep arousal.

By means of cross-validation, we have empirically
shown the advantages of the Siamese architecture com-
pared to the standard one in the problem faced here, and
evaluated first order effects of how single sensors con-
tribute to the final model. The presented model obtains
a preliminary AUPR score of 0.426 in the hidden test set
of the Physionet/CinC Challenge 2018.

Future work will investigate the inclusion of the remain-
ing sensor channels into the network architecture, as well
as the development of CNNs specifically tailored for each
different sensor signal. Finally, empirical results discussed
here suggest that further improvements can potentially be
obtained by generalising the standard Siamese architecture
and exploring different strategies for template generation,
which will be investigated as future work.
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