PDMC 2005 Preliminary Version

D1vSPIN
A SPIN compatible distributed model checker

— Work in progress —

M. Leucker® M. Weber® V. Forejt¢ J. Barnat®

& Institut fur Informatik, Technical University of Munich, Germany
Martin.Leucker@in.tum.de

b Lehrstuhl fir Informatik II, RWTH Aachen University, Germany
michaelw@i2.informatik.rwth-aachen.de

¢ Faculty of Informatics, Masaryk University in Brno, Czech Republic
{xforejt,barnat}@fi.muni.cz

Abstract

This paper describes the design and implementation ideas of an extension of the
parallel and distributed model checker DIVINE to a SPIN compatible distributed
model checker DIVSPIN. The goal of DIvSPIN is to serve as user-friendly, ready-
to-use system that takes up the recent theoretical and practical developments in
the area of distributed model checkers and combines them with well settled opera-
tional procedures of sequential model checkers to show the benefits of parallel model
checking for typical verification tasks. For this project, the research teams located
at Masaryk University Brno, Czech Republic, RWTH Aachen University, and TU
Munich, Germany join their efforts.

1 Introduction

SPIN is a sequential model checking tool used by thousands of people world-
wide. PROMELA, the modeling language of SPIN, combines syntactic con-
structs from several popular languages, and became de facto standard specifi-
cation language extensively used in sequential enumerative verification. How-
ever, when verification engineers find themselves in the situation of needing
resources beyond the capabilities of a single computer, PROMELA models can-
not be verified.

In recent years, research has been conducted in model checking algorithms
which utilize the combined resources of parallel or distributed computers to
further push the borders of still tractable systems. Nevertheless, most of the
so-far developed algorithms have been implemented as research prototypes

This is a preliminary version. The final version will be published in
FElectronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

LEUCKER ET AL.

- - -
cAT—— f—— f——
. v . :
- - -
coA— o— ——
user Parsecs cluster

Fig. 1. Using DIvSPIN

which are often not publicly available, usually undocumented, without user
interface, unstable (in the sense of “prone to change”), and not optimized.
These tools are mainly research vehicles, and as such not ready for widespread
use by third parties.

Additionally, deployment of tools running on parallel computers is more
demanding than for sequential tools. We cite high entrance costs for hardware
acquisition, complex software installation procedures, but also ensuing main-
tenance costs. As a consequence, hardly any benchmark results of parallel
and/or distributed model checking algorithms can be compared fairly, since
the hardware employed for benchmarks varies from a few workstations also
being used for regular tasks, to medium-sized dedicated clusters.

Recently, the DIVINE project, a distributed counterpart of standard se-
quential tools, has been started trying to bring advantages of distributed veri-
fication to the public. Unfortunately, DIVINE neither provides a user-friendly
interface nor a widely used specification language, which are real obstacles for
users that are accustomed to e. g., PROMELA and SPIN’s graphical interface.

The goal of the DIVSPIN project is to create a ready-to-use, large-scale
distributed model checking tool directed at a significant part of the user base
of verification tools, as well as providing hardware to run on. In particular,
the goal of the project is to allow typical users of sequential model checking
tools to easily access DIVINE through a user-friendly interface without the
necessity of transforming PROMELA model into DIVINE native language.

2 Overview of DivSPIN

D1vSPIN is distributed model checker running on a dedicated cluster, cur-
rently the Parsecs cluster located at RWTH Aachen University. The standard
setup is shown in Figure [D1vSPIN accepts specifications in PROMELA,
SPIN’s input language, and is able to check never claims and LTL proper-
ties. When checking LTL properties, the user can choose among several (dis-
tributed) model checking algorithms. DIVSPIN is started and controlled via
a web interface, to ensure that the user has a minimum of software to install
and maintain.

In a typical scenario, user proceeds as follows. First, a user specifies a
2

LEUCKER ET AL.

model using his or her favorite editor. Furthermore, he or she formulates
properties to be checked. For verification, the user selects DIVSPIN’s web
page. Both model and property can be either uploaded from a file or typed
directly into a text field. Then the user defines a verification job, henceforward
called task. Therefore the user chooses to constrain the hardware used for the
task or leave the decision to the system. Additionally, the she selects among
several model checking algorithms to be used. More specifically, the user
can choose several algorithms and select to stop if either the first or all have
terminated. This allows comparison of different algorithms. Then the task
is either executed immediately or it is submitted to a queue of waiting tasks
depending on user specification and available hardware resources. During the
verification task, DIVSPIN reacts with status messages. Besides the web
interface, a stand-alone interface, and an Eclipse plug-in are conceivable.

For the technical side, DIVSPIN relies heavily on DIVINE. The DiVINE
framework, described in the next section, is the back-end providing model
checking algorithms. New components to be developed for DIVSPIN are the
Promela front-end and the web interface, both described in more detail in the
next sections.

3 The Core of DivSPIN — DiVinE

The DIVINE project was started in order to support developers of distributed
enumerative model checking algorithms, enable detailed, unified, and credible
comparison of these algorithms, and make distributed verification available to
the public. The project consists of two parts, the DIVINE library and the
DiVINE toolset. The purpose of the library is to provide potential program-
mers with those necessary parts of the implementation that are common to all
distributed algorithms and thus make the development of a distributed algo-
rithm easier. The set of the algorithms that are implemented on the base of the
library forms the toolset. Algorithms in the toolset have common interface,
accept the same inputs, and are easily compared. This makes the DIVINE
project an optimal platform for experimental evaluation of new research ideas
related to parallel and distributed model checking [BBCS05.Div].

4 Promela Frontend

As already stated in the introduction, our choice of PROMELA as model-
ing language was driven by the wish to stay compatible to SPIN and enable
SPIN’s user base to change tools without effort if there is need. To inter-
face with DIVINE, we need to obtain the meaning of PROMELA programs in
form of state space models. Unfortunately, no complete formal semantics for
PROMELA is available. Prior work [HN96//Wei97/Bev97] on this topic turned
out to be incomplete, partly outdated, and even wrong in some places. In
order to put our work on a formal basis, we decided to rigorously formalize

3

LEUCKER ET AL.

PROMELA, and then derive an interpreter from this specification. Generally,
our main source of information were the informal description in [Hol03, ch. 7],
with resorting to experimentation with SPIN to clear up ambiguities. Our
requirements for PROMELA semantics are guided by pragmatism. We would
like to have a simple and complete formal model, which incidentally should
be effortless to implement, even with good performance in practice. Also, we
need to take into account requirements imposed by our main interest, dis-
tributed model checking algorithms. For example, it must be possible to take
snapshots of an interpreter’s state, and restart the computation on another
computer solely from this snapshot.

We have chosen a two-tier approach employing a compiler from PROMELA
to a simple byte-code language, and a tiny virtual machine (VM) which in-
terprets the compiler’s output. The current implementation consists of about
3,100 lines of C code, and another 1,100 lines for testing and measuring pur-
poses (interactive simulation, depth-/breadth-first search, hash tables).

Only the VM will be embedded into DivSPIN, thus implementational
complexity is splitted into two parts. As additional benefit, implementation
of VM and compiler could be carried out in parallel, based on our formal
specification, allowing rapid development. It turned out that the compiler is
straight-forward to implement as well, using standard text-book techniques.

As major selling points of the VM-based approach we see the reduced com-
plexity in semantic specification and implementation, and good performance
results. Measurements showed that our VM generates state spaces fast enough
that it will not be a dominating factor in DIVSPIN, and it is even in the same
range as SPIN’s state space generation. Note, that we deliberately kept actual
model checking separate from the VM, as this is part of DIVINE’s duties.

Generated states are almost equal in size to states generated by SPIN,
with differences of a few bytes per states due to additional book keeping of
our VM. A state contains all information necessary to restart the VM for
further state generation, as requested above. States are represented as opaque
byte sequences, thus eliminating any overhead usually imposed by converting
them into a format suitable for network transmission.

5 The Web Interface

D1vSPIN’s web user interface offers an easy way to initiate and control the
verification task. The user interface is a web page viewable with common
browsers, which remote controls verification tools running on a dedicated
cluster through a server process running on its master node (cf. fig.). It
is attractive for potential users because they avoid installing (and keeping up-
to-date) any verification tools themselves, which proved to be a non-trivial
task in the past due to the often prototypical nature of these tools. Besides
keeping software dependencies down, users can always work with the latest
and most featureful tool version without additional effort, because it is the

4

LEUCKER ET AL.

cluster operators’ responsibility to update their software. Instead, only a web
browser is needed on the client side.

The client part of the interface hides all technical details related to initia-
tion of a distributed computation. Users can submit multiple verification jobs
to the cluster, track and manipulate their status until completion, and finally
retrieve results. Since it is the server part of the interface that is responsi-
ble for submitting and monitoring jobs to its associated cluster, the user can
safely disconnect while his jobs are being processed. The server is capable of
informing the user about the status of running jobs, for example by e-mail.
If the user remains connected while verification jobs are processed, she can
watch various computation statistics such as the current memory load, the
number of states discovered so far, lengths of waiting queues, etc. The in-
terface is also expected to maintain a history of the user’s sessions including
examined models, verified properties, and finished tasks. The user also has
the possibility to set his or her personal preferences which include preferred
hardware to be used, preferred algorithms to be used, etc.

The web interface will be implemented with standard web application soft-
ware, using a servlet container like Apache Tomcat [TA.IP]. User requests for
verification tasks or their manipulation arrive at the server solely in form
of HTTP requests, thus side-stepping potential problems with networks re-
stricted by firewalls. The servlet container handles these requests and triggers
corresponding actions to control the cluster. Feedback to users is provided in
form of web pages. Detailed information of verification runs, like state spaces
or error trails, can be downloaded as well for later use.

In order to provide a more GUI-like user experience, standard JavaScript
resp. ECMAScript [ECMAQ9] is used to update web pages which display
statistics about running and finished jobs, etc.

6 Current State

A first version of the DIVINE library [Div] is available. We have a working
and stable C implementation of the virtual machine part for our PROMELA
frontend, and first steps of interfacing it with DIVINE have already been ac-
complished successfully. The accompanying compiler is implemented in Java,
and complete enough to compile most examples coming with the official SPIN
distribution, but before production use it needs a thorough code review to as-
sure correct implementation of our specification. Eventually, we plan to make
both VM and compiler available publically.

The biggest part of remaining work needs to go into the web interface for
cluster control, which is currently under development. On the hardware side,
the Parsecs cluster at RWTH Aachen University is available for use.

5

LEUCKER ET AL.
References

[BBCSOE)] J. Barnat, L. Brim, I Cerni, and P. Simecek. DiVinE -
Distributed Verification Environment. Submitted to PDMC’05’s short
presentations., 2005.

[Bev97] W. Bevier. Towards an operational semantics of PROMELA in ACL2.
In Proceedings of the 3rd International SPIN Workshop, April 1997.

[Div] DiVinE. http://anna.fi.muni.cz/divine.

[ECMA99] European Computer Manufacturers
Association. ECMA-262: ECMAScript language specification. Available
at http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM, December 1999.

[HN96] Gerard J. Holzmann and V. Natarajan. Outline for an operational-
semantics definition of PROMELA. Technical report, Bell Laboratories,
July 1996.

[Hol03] Gerald J. Holzmann. The SPIN model checker: primer and reference
manual. Addison-Wesley, Boston, MA 02116, September 2003.

[TAJP] The Apache Jarkata Project. Apache Jakarta Tomcat.
http://jakarta.apache.org/tomcat/.

[Wei97] Carsten Weise. An incremental formal semantics for PROMELA. In
Proceedings of the 3rd International SPIN Workshop, 1997.

http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://jakarta.apache.org/tomcat/

	Introduction
	Overview of DivSPIN
	The Core of DivSPIN -- DiVinE
	Promela Frontend
	The Web Interface
	Current State
	References

