
Graphical modelling for simulation and formal
analysis of wireless network protocols

A. Fehnker1, M. Fruth2, and A. K. McIver3

1 National ICT Australia, Sydney, Australia;? ansgar@nicta.com
2 Computing Laboratory, Oxford University UK; ?? m.fruth@comlab.ox.ac.uk

3 Dept. Computer Science, Macquarie University, NSW 2109 Australia, and National
ICT Australia; anabel@ics.mq.edu.au

Abstract. It is well-known that the performance of wireless protocols
depends on the quality of the wireless links, which in turn is affected by
the network topology. The aim of this paper is to investigate the use of
probabilistic model checking in the analysis of performance of wireless
protocols, using a probabilistic abstraction of wireless unreliability.
Our main contributions are first, to show how to formalise wireless link
unreliability via probabilistic behaviour derived from the current best
analytic models [12], and second, to show how such formal models can be
generated automatically from a graphical representation of the network,
and analysed with the PRISM model checker.
We also introduce CaVi, a graphical specification tool, which reduces
the specification task to the design of the network layout, and provides
a uniform design interface linking model checking with simulation. We
illustrate our techniques with a randomised gossiping protocol.

Keywords: Graphical modelling, simulation, lossy communica-
tion channels, probabilistic model checking, wireless networks.

1 Introduction

Wireless networks comprise devices with limited computing power together with
wireless communication. Protocols for organising large-scale activities over these
networks must be tolerant to the random faults intrinsic to the wireless medium,
and their effectiveness is judged by detailed performance evaluation. One of the
major factors impacting on the accuracy of an evaluation method is the under-
lying mathematical model used for the “communication channels”. The most
accurate models account for unreliabilities induced by noise and interference
amongst close neighbours. Conventional analysis methods rely on simulators [1,
2] incorporating some measure of random faults, however simulation in this con-
text suffers from a number of well-documented problems [9, 5] — most notable
is that accurate channel models validated against physical data do not normally
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feature. This leads to unrealistic results of performance analyses, which can vary
widely between different simulators.

An alternative to simulation is formal modelling and analysis, which is nor-
mally ideally suited to investigating complex protocols, and gives access to
profiles of performance which exhaustively range over worst- and best-case be-
haviour. Inclusion of realistic models of wireless communication implies appeal
to analytical formulae to determine the effect on performance of the spatial re-
lationships between nodes, such as the distance and density of near neighbours.
These context-dependent details however are not easily added to textual-style
formal modelling languages, and indeed they militate against a clear and mod-
ular specification style.

In this paper we overcome these difficulties by proposing a simple graphical
style of specification. We exploit the observations that (a) the distance between
and density of nodes in a network is the major factor impacting on the integrity of
wireless communication (together with physical parameters such as transmission
strength); that (b) this unreliability can be abstracted to a probability that
packets are lost; and that (c) the simplest way to express the crucial spatial
relationships is graphically, so that the details of the abstracted probabilities are
suppressed, and computed automatically from the graphical representation.

Besides its simplicity, the graphical style has other benefits in that it allows
designers to visualise various performance indicators such as best- or worst-
case signal strength between pairs of nodes, or the nodes’ individual power con-
sumption. Similarly the critical events occurring in a sample experiment may be
“stepped through” in a typical debugging style. Finally — unlike other graphical
visualisation tools — it acts as a “bridge” between formal analysis and the more
conventional simulation, providing the option to investigate performance using
probabilistic model checking, or to carry out more traditional system-wide sim-
ulation experiments. In both cases realistic models for wireless communication
play a fundamental role.

Our specific contributions are

1. CaVi a graphical user interface specialised for modelling networks compris-
ing wireless nodes. The tool gives immediate access to crucial performance
indicators such as signal strength between pairs of nodes;

2. A translation from a CaVi model to either a formal transition-style model
suitable for model checking in the PRISM model checker [10] or as input
to the recently-developed Castalia simulator [3]. Castalia is novel in that it
incorporates an accurate wireless channel model. The PRISM models are
the first such formal models which take network topology into account. At
present both Castalia and PRISM capture only flooding and gossiping pro-
tocols [7, 8].

In Sec. 2 and Sec. 3 we describe the context of wireless applications, and the
challenges that arise in their formal modelling. In Sec. 4 we describe a well-known
analytic model for describing unreliability of wireless links and explain how that
can be used to compute the probabilistic abstractions. In Sec. 5 we illustrate



how this can be incorporated in PRISM formal models for wireless protocols,
and illustrate the effect on performance analysis. In Sec. 6 we introduce CaVi the
graphical specification tool, and finally in Sec. 7 we demonstrate the techniques
we have assembled with a case study based on gossiping.

2 Wireless communication and performance modelling

In abstract terms a wireless network consists of a collection of nodes deployed
over a two-dimensional area which together run a combination of protocols in
order to achieve some specific goal. During operation the nodes routinely com-
municate using wireless links which are known to be highly unreliable, and in-
deed can have a significant impact on the overall performance of the system.
In particular not only does the reliability of the wireless links attenuates as the
distance between nodes extends, but it also falls off as the density of closely
clustered nodes increases, since simultaneous broadcasts from separate sources
can interfere and be effectively destroyed.

Thus the operability of the wireless network can depend as much on the topol-
ogy of the network as on the correctness of underlying protocols. In particular
the design of protocols are specifically intended to tolerate or reduce, as much
as possible, the frequency of faults arising due to the unreliability involved in
wireless communication. This paper is concerned with methods and tool support
to help designers understand and evaluate the effectiveness of their designs.

With this goal in mind we set out the three challenges implied by the speci-
fication and performance evaluation of emerging wireless network protocols.

1. Network specification: As mentioned above the network behaviour de-
pends critically on the network topology, suggesting that the topology should
be encoded as part of the specification.
Our first problem is how to incorporate details of distance and relative clus-
tering as part of the specification without leading to an infeasibly complicated
specification language?

2. Realistic mathematical models: Currently simulation is the major tool
for evaluating performance of wireless networks. Whilst emerging simulators
are beginning to account for accurate mathematical models of communi-
cation [3], simulation still suffers from several drawbacks. Aside from the
underlying mathematical model being remote from the specifier, the result-
ing performance analysis is essentially “second order”, in the sense that it
relies on a large number of simulation runs and, by implication, costly and
time consuming.
An alternative approach for protocol analysis is probabilistic model check-
ing, so far under-explored as an evaluation method in the wireless domain.
Model checking appears to overcome some of the problems surrounding sim-
ulation: the constructed models — Markov-style — are under direct control
of the specifier, and the analysis involves direct algorithmic exploration of
the associated mathematical structure. Thus the effect network parameters



have on performance can be analysed relatively easily. Despite this appeal-
ing access to sensitivity analysis, a typical formal model checking approach
assumes unrealistically that the links are either completely reliable, or uni-
formly unreliable, which is not the case.
Our second problem is how should realistic wireless communication models
be incorporated into formal model checking?

3. Scale versus accuracy: Even if the modelling problem can be solved, the
model checking technique is still only viable for small to moderately-sized
networks, depending on the details of the protocol. Thus simulation is still
the only feasible option for investigating system-wide properties over large
networks. This indicates that if the analysis demands both an accurate eval-
uation of how parameters affect performance and a study of global network
properties that both model checking and simulation are called for, with a
consequent separate modelling effort for each.
Our third problem is how can the benefits of system-wide analyses be com-
bined with the accuracy of model checking without doubling the modelling
effort?

In what follows we address all three problems. For problem (2) we extend prob-
abilistic model checking in a novel way to account for unreliability of wireless
links; for problem (1) we also introduce a graphical specification tool to make
transparent the relevant details of the network topology, whilst still accounting
for them in the analysis; and finally, for problem (3), we explore how the graph-
ical specification can provide a bridge between model checking and simulation
with minimal duplication of modelling effort.

To extend probabilistic model checking, we render the unreliability of wireless
communication as a probability that packets get lost. To ensure that this ab-
straction is as realistic as possible we compute the probabilities using an analytic
formula validated against experimental field data [12]. We show how these prob-
abilities can be translated in the PRISM model checker [10] allowing accurate
formal model checking to be performed after all.

Next, inspired by other graphical tools [1], we propose a graphical style of
specification to reduce the specification effort, exploiting two of the above ob-
servations: specifying topological details can be done most naturally by drawing
a diagram, and the “run time” probabilities of communication failure — ac-
counting for both distance between and density of nodes — can be computed
automatically from the corresponding graphical representation.

Our graphical specification tool CaVi simplifies the specification task of com-
munication details; moreover for simple protocols it can act as a uniform mod-
elling language combining large-scale performance analyses based on simulation
with the accurate sensitivity analysis offered by model checking.

In the remainder of the paper we set out the details.

2.1 The PRISM model checker

The PRISM model checker [10] takes a specification of a system using a mod-
elling language for describing probabilistic state transition systems. In such a



model, a system is regarded as a collection of “communicating” modules, each
one consisting of a set of guarded commands, with each command composed of
the guard (a predicate on the variables) and a probabilistic update relation (the
probabilistic assignment to variables). Modules can communicate by enforcing
the assumption that same-labelled guarded commands must fire simultaneously;
additionally information can be shared between modules by their reading the val-
ues of others’ variables. Once specified the PRISM model checker constructs an
internal representation of the system model — a Markov-style transition system
for the composition of specified modules — which can then be analysed exhaus-
tively relative to a specified property using a suite of numerical algorithms.

Property specification is via probabilistic temporal logic [4], which is expres-
sive enough to describe many performance style properties; PRISM computes
the best- and worst-case probability of satisfaction. In this paper we shall use
that to analyse whether nodes eventually receive a message sent in a network
protocol.

The importance of this approach (as compared to simulation for example) is
that precise probabilistic results are computed exhaustively and are relevant to
the entire set of executions, rather than a simulated subset.

3 Modelling lossy wireless communication

Wireless nodes typically broadcast a message on a particular frequency — in the
case that several nodes broadcast using the same frequency at approximately the
same time, the messages can interfere so that the receiving node only detects
noise. In this section we discuss the effect on performance evaluation of the
precise modelling assumptions used in the formalisation of unreliable wireless
channels.

Consider the simple network in Fig. 2 depicting a four node network. Suppose
now that Source attempts to send a message to Target, but that they are too
far apart to be connected directly by a wireless link. In this case Source must
rely on relaying the message via the intermediate nodes NodeA and NodeB . We
consider a simple communication protocol in which Source broadcasts a message
to be picked up by NodeA and NodeB , both of which then forward the message
on to Target.

Depending on the assumptions in the mathematical model used to handle the
reliability of communication, very different conclusions as to the behaviour of the
system can be drawn. To illustrate this we provide three simple formal models
of Fig. 2, each based on different assumptions, and we discuss the implications
of each one.

We model the behaviour of each node as a simple state transition system; in
this small example we assume that the behaviour of Source, NodeA and NodeB

is given by the systems set out in Fig. 1, leaving the assumptions about the



reliability of communications to vary only in the model for Target 4 , set out
below. Source has only one action, to send a message, whilst each of NodeA and
NodeB receive the message, synchronising on the event recv, and attempt to
forward it to Target. The message is deemed to have been delivered successfully
on the occurrence of either sendA or sendB. The case of messages interference
is modelled by the event clash.

Next we illustrate how the analysis depends crucially on the assumptions
used in the formal model. The definitions below define three possible scenarios,
each one formalising a different assumption concerning simultaneous broadcasts.

Source =̂

„
var t: {sending, sent}
recv : (t = sending)→ t: = sent

«

NodeA =̂

0BB@
var fa: {listen, sending}
recv : (fa = listen)→ fa: = sending
sendA : (fa = sending)→ fa: = listen
clash : (fa = sending)→ fa: = listen

1CCA
The definition for NodeB is the same as for NodeA, except that the state variable is fb

and the second event is named sendB.

Fig. 1. Behaviour of Target and intermediate nodes NodeA and NodeB .

Source Target

B

A

Fig. 2. Illustrating interference

(1) Worst case interference assumption: A worst case interference assump-
tion implies that if messages are sent (almost) simultaneously from NodeA and
NodeB , then they will certainly interfere with each other. The model for Target1
4 Strictly speaking we should also include the possibility of unreliability in the com-

munications for NodeA and NodeB , but for the moment we assume that Source’s
communications to NodeA and NodeB are fully reliable.



at Fig. 3 encodes this assumption by the state registering noise on the execution
of the event clash. The whole system is now given by

System1 =̂ Source||NodeA||NodeB ||Target1 ,

with synchronisation between same-named events. Not surprisingly, the proba-
bility of the Target ’s reception of the message is computed as 0.

Target1 =̂

0BB@
var src: {listen, receive, noise}
sendA : ((src = listen) ∧ (sB 6= sending))→ src: = receive;
sendB : ((src = listen ∧ (sA 6= sending))→ src: = receive;
clash : (src = listen ∧ sA = sb = sending)→ src: = noise;

1CCA
Fig. 3. Worst-case interference assumption.

(b) Best case interference assumption: Alternatively we could encode the
most optimistic assumption, that the Target receives the message if either one
of NodeA or NodeB forward the message. Target2 in Fig. 4 encodes this best-
case assumption — it does not include an event clash in its repertoire of events,
but rather only the possibility of receiving from either NodeA or NodeB , either
possibility being considered depending on which of NodeA, or NodeB is ready to
send. In this model,

System2 =̂ Source||NodeA||NodeB ||Target2 ,

the Target is certain to receive the message.

Target2 =̂

0@var src: {listen, receive, noise}
sendA : ((src = listen) ∧ (sA = sending))→ src: = receive;
sendB : ((src = listen ∧ (sB = sending))→ src: = receive;

1A
Fig. 4. Best-case interference assumption.

(c) Average case interference assumption: In reality experiments have
shown that the situation lies somewhere between those worst- and best-case
scenarios, and in fact the precise positioning of the Target relative to NodeA and
NodeB can be crucial to the overall reliability of message relay from Source: if
Target is located close to both the intermediate nodes (for example symmetrically
between them), then their simultaneous forwarding of the message will interfere
and Target will not get it. Conversely if Target is placed too far afield then,
in any case, the signal strength of the received messages will be so weak as to
effectively disconnect Target from the network.



We formalise this average-case assumption in Target3 set out in Fig. 5. Here
on execution of the event clash there is a probability pr of either one of the
messages (from NodeA or NodeB) arriving uncorrupted. The probability that
Target now receives the message in the system defined by

System3 =̂ Source||NodeA||NodeB ||Target3

is now at least pr.
As we shall see, the precise value of pr — referred to below as the link

probability — depends on a number of factors, including the distance and spatial
orientation of NodeA and NodeB from Target, and from each other, and thus
pr itself can be thought of as an abstraction for the topological details of the
network. In the next section we describe how that is done.

Target3 =̂

0BB@
var src: {listen, receive, noise}
sendA : ((src = listen) ∧ (sB 6= sending))→ src: = receive;
sendB : ((src = listen ∧ (sA 6= sending))→ src: = receive;
clash : (src = listen ∧ sA = sb = sending)→ src: = receive pr⊕ noise;

1CCA
The probability pr captures the uncertainty of receiving either one (but not both)
of NodeA or NodeB ’s forwarded message. Its precise value depends on the relative
distances between NodeA, NodeB and Target.

Fig. 5. Average-case interference assumption.

4 Formal abstractions of signal strength and interference

In this section we discuss how the link probability mentioned above can be cal-
culated more generally within arbitrary networks to take account of the distance
between nodes and their relative clustering. We also discuss the other network
parameters impacting on the probability.5

Consider first the simple case set out at Fig. 6(a) of two nodes i and j
a distance d(i, j) apart, with j sending a message to i. The probability that
i receives j’s message is computed as a function of the signal-to-noise ratio,
SNRi,j which is the ratio of the power of the received message at i (rxi,j), and
the noise (bgNi,j) generated in part by the other activities of the network, as
well as general conditions of the environment. Thus SNRi,j =̂ rxi,j/bgNi,j . We
discuss first the analytic formulae for the latter two quantities.

5 The analytic formulas referred to in this section are all taken from Zuniga and
Krishnamachari [12].



Power and noise levels: The signal strength of the received message rxbBi,j

depends on the distance d(i, j) between i and j, and the power at which j
transmits, txj , and is given by the formula

rxbBi,j =̂ txj − PLd0 − 10(pLE) log10(d(i, j)/d0) , (1)

where pLE is called the path loss exponent, and can be thought of as the rate
at which the signal strength deteriorates with distance, and d0 and PLd0 are
scaling constants determined by the environment. The power at the receiver can
now be computed directly:

rxi,j =̂ 10rxdBi,j/10 (2)

Next we compute the background noise. In the simple case depicted in
Fig. 6(a) where there are no neighbouring nodes, the background noise is as-
sumed to be a constant nbgN determined by the operating environment. In
more complicated scenarios, depicted in Fig. 6(b), the noise generated by the
other nodes in the network must be taken into account. Let sendk be a function
which is 1 or 0 according to whether node k is transmitting a message or not. The
total background noise at receiver i interfering with the message transmitted by
j is given by

bgNi,j =̂ nbgN +
∑

k 6=i,j

rxi,k ∗ sendk . (3)

With the two quantities bgNi,j and rxi,j given at (2) and (3) respectively we
can now compute the probability that i receives j’s message.

Link probabilities: The current analytic models for computing the link prob-
abilities predict that there is signal-to-noise threshold below which there is ef-
fectively zero probability that the message can be decoded by the receiver. That
threshold depends on a number of network specific parameters: the data rate
nDR, the noise bandwidth nBW , the threshold probability nTP , the frame length
f of the message, and the modulation type of the transmission. Here, we use
Frequency Shift Keying (FSK) which describes a simple method of encoding
information into the carrier wave using only two states. For FSK modulation,
the threshold is computed as

∆i,j =̂ − 2
nDR

nBW
loge(2(1− nTP

1
8f )) . (4)

With (4) we can finally compute the link probabilities. First we compute the
threshold-free probability that j’s message is received by i

snr2prob(SNRi,j) = (1− 0.5 ∗ exp(−0.5
nBW

nDR
SNRi,j))8f , (5)

where we recall that SNRi,j =̂ rxi,j/bgNi,j , and that bgNi,j is given at (3). And
now taking the threshold into account, we have
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Sender k is closest to receiver i, so its signal is strongest; Sender j’s is weakest. All link
probabilities are affected by the others’ activities. Here d, d′ and d′′ are the distances
from the senders to the receiver i.

Fig. 6. Signal strength varying with distance and interference

precvi,j =̂
{

0 if SNRi,j < ∆i,j

snr2prob(SNRi,j) otherwise (6)

Note that since this formula depends on the mutual contribution to the noise
of the surrounding nodes, this is actually a conditional probability, namely the
probability that i receives j’s message given that i does not receive the message
from any of the other nodes. This together with the assumption that if j 6= k then
the events “i receives a message from node j” and “i receives a message from
node k” are mutually disjoint, implies that we can can compute the probability
Pi that any message is received by i (from whichever sender) as the sum of the
individual link probabilities:

Pi =
∑
j 6=i

precvi,j ∗ sendj , (7)

where sendj was defined above.

4.1 Translating the analytic model to PRISM

In this section we consider a PRISM model for a small example network based
on that illustrated in Fig. 2 with the detailed link probabilities modelled as
probabilistic transitions. The PRISM source file appears in the appendix, and
here we transcribe and explain examples representing each separate section of
that model.

Four nodes are numbered 0, 1, 2, 3, with 0 and 3 corresponding to the
Source and Target respectively. All nodes are either active or inactive; when a
node i is active (activei = 1) it can listen for and/or receive a message, or send



one it received previously. If a node is not active, then it is inactive (activei =
0), in which case it only listens. We use the variable sendi to denote whether
node i is in possession of an uncorrupted message (sendi = 1) which it must
forward, or not (sendi = 0) (either because one was never received, or because it
has already been forwarded). As described above, in this simple protocol, nodes
listen for a message and then forward it; once it has received and sent a message
a node becomes inactive. The following PRISM code formalises this behaviour
for node 3, where recvp3 is the link probability which depends on the state of
the surrounding nodes, and whose calculation we describe below.

module node3

active3:[0..1] init 1;

send3: [0..1] init 0;

[tick] send3=0&active3=1 -> recvp3:(send3’=1)&(active3’=1)+

(1-recvp3):(send3’=0)&(active3’=1);

[tick] send3=1&active3=1 -> send3’=0&active3’=0;

[tick] active3=0 -> send3’=0&active3’=0;

endmodule

Note that this is a synchronous implementation of the abstract network de-
scribed above in Sec. 3, which though easier to understand, if implemented di-
rectly would have a significant impact on space and model checking times, as
well as the feasibility of automating the generation of PRISM models. In this
synchronous style the nodes all behave in lockstep, synchronising on the action
tick. The difference in behaviour between whether one node or several nodes
broadcast at the same time is all accounted for in the link probabilities (rather
than explicitly by including separate labelled guarded commands for each as it
was explained in Sec. 3).

Next, to incorporate the link probabilities from (6) and (7) in a PRISM
model, we need to compute the various quantities such as the transmission pow-
ers, the signal-to-noise ratios and thresholds for each node, taking into account
their actual pairwise separations. Due to the limitations on the available arith-
metical functions implemented in the current distributed version of PRISM, we
precomputed rxi,j from (2), the power at the receiver i from message broadcast
by j. These values are denoted in the PRISM model by linRxSignal i j, and
appear as constant declarations for each pair of nodes. For example between
nodes numbered 1 and 3, the reception power between pairs of nodes is:

const double linRxSignal_1_3 = 3.04330129123453E-8;

const double linRxSignal_3_1 = 3.04330129123453E-8;

Next the signal-to-noise ratio SNR(i, j) = rxi,j/bgNi,j between pairs of
nodes can be calculated from the above figures for reception power, given by
equations (1), (2) and (3). As examples we give those quantities for SNR(3, 1).

formula snr_3_1 = (linRxSignal_3_1*send3)/

(linRxSignal_0_1*send0 + linRxSignal_2_1*send2 + 1.0E-10);



Next the conditional link probabilities precvi,j at (7) are calculated from the
precomputed thresholds, and combined in a single PRISM formula, with precv3,2

given as an example,

formula Preceive_3_2 = func(max,0,(snr_3_2>=12.357925578002547)?

func(pow,(1-0.5*func(pow,2.71828,-0.781*snr_3_2)), 8 * 25):0);

Finally the total link probabilities Pi are computed as the sum, as at (7),
where we take the precaution of ensuring that the sum does not exceed 1 (which
sometimes happens due to rounding errors).

formula recvp0 = func(min,1,Preceive_1_0+Preceive_2_0+Preceive_3_0);

formula recvp1 = func(min,1,Preceive_0_1+Preceive_2_1+Preceive_3_1);

formula recvp2 = func(min,1,Preceive_0_2+Preceive_1_2+Preceive_3_2);

formula recvp3 = func(min,1,Preceive_0_3+Preceive_1_3+Preceive_2_3);

5 Performance analysis with PRISM

In this section we illustrate how our PRISM model captures the unreliability of
wireless links caused by distance and interference between neighbouring nodes.
Observe that once the background noise has been set, the only variables are the
node specific parameters (such as power and signal strength) and the distances
between nodes.

In this experiment the three nodes 0, 1 and 2 were placed so that 1 and
2 had a high chance of receiving the message broadcast by 0, and the effect
on performance of nodes 3’s position investigated. Thus for various positions of
node 3 we computed the separate probabilities that nodes 1, 2 and 3 obtained
the message. Specifically we used the PRISM model checker to compute the
probability that the following temporal logic properties for strong until were
satisfied:

Pmin=? [send1 = 0 U send1 = 1]
Pmin=? [send2 = 0 U send2 = 1]
Pmin=? [send3 = 0 U send3 = 1]

namely the chance that eventually sendi = 1 for each of the nodes i = 1, 2, 3.
The results appear as three contour plots in Fig. 7.

The right-hand plot, for node 3 illustrates in particular the effects of interfer-
ence and distance. The 0 contour indicates that the distance is the major factor,
with node 3 being far too far from any of the other nodes to receive any message.
The cluster of contours around nodes 1 and 2 however shows clearly the impact
of interference: if node 3 is at position (x, y) =̂ (3.5,−2) say, it has a high chance
of receiving the message from node 2, even it is too far to hear node 0 directly.
As node 3 moves up vertically (increasing its y component), it becomes closer
to node 1, so that interference between nodes 1 and 2 becomes the influential
factor, and the probability of ever receiving the message falls rapidly. Finally the
high chance of receiving the message when located directly between nodes 1 and
2 is due to node 3 receiving node 0’s broadcast directly.



 0.89

 0.99

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

8

 0.89

 0.99

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

 1 0

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

The three placements of ⊕ in each diagram indicate the static positions of nodes 0, 1
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Fig. 7. Analysis of interference
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probability of eventually receiving the message.

Fig. 10. Per-node probabilities of eventually receiving the message
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This diagram illustrates how CaVi interfaces with PRISM for analysing gossiping pro-
tocols. The user develops a graphical representation of the network, from which CaVi
can compute the link probabilities. These are combined with the flooding template to
produce an input file for PRISM describing the model. The PRISM tool can then be
used to analyse performance.

Fig. 8. CaVi and PRISM

The plots for nodes 1 and 2 are symetrical, and from them we notice that the
movement of node 3 has only a small effect on either of them eventually receiving
the message, as the most likely scenario is that they receive the message directly
from node 0. In the case that node 3 is placed closer to node 0 than either of
the other two, node 3 actually acts as the intermediary, increasing the chance
that node 1 say receives the message, in the case that it didn’t receive it directly
from the source.

6 CaVi: A graphical specification tool

As we have seen, it is possible to formalise interference by using a probabilis-
tic abstraction, but the detailed calculations required to introduce them into a
PRISM model for example are too intricate to do by hand. To overcome this
problem we have designed and implemented CaVi, a graphical specification tool
which can automate the procedure of preparing a formal PRISM model with
link probabilities computed directly from a graphical representation of a net-
work. This eases considerably the task of specification in situations when the
nodes all execute identical code.

The main feature of CaVi is its graphical interface, with which a user can
design a specific network layout. Nodes may be created in a “drag-and-drop”
fashion, and the properties of individual nodes (such as the power and signal
strength) may be tuned as necessary via individual node menus of parameters.
During development a user can visualise the worst- and best-case link probabil-
ities, calculated from equation (6).



In Fig. 9 we illustrate two examples of how the graphical interface may be
used in the design and analysis. The figure shows two panes, with the left being
the pane where designers may create and edit a network, and the pane on the
right is for visualising the results of simulation experiments. In the left-hand
pane, for example, a user may indicate which node is the receiving node (in this
case the central node), and the others are assumed to be senders. Colours then
differentiate between nodes whose messages will be almost certainly lost (red),
have a good chance of succeeding (green), or merely a variable chance (yellow).

The pane on the right indicates how the events may be viewed as a result
of a simulation experiment. Simulation allows the user to “step through” an
example execution sequence in a dynamic experiment. In this case the display
shows which of the nodes is sending, to whom they are connected, and with what
strength. In this snapshot the bottom left node is transmitting, and is connected
to all but the top right node. The thickness of the arrows indicate the strength
of the connection, with the vertical connection being somewhat weaker than the
other two.

Fig. 9. CaVi:Visualising network performance indicators

Once the network is specified, the graphical representation forms the basis
for formal models which take account of the effect of the topology in terms of the
link probabilities. Using a template for the per-node behaviour of the protocol,
the functions used to compute the actual probabilities are printed to a PRISM
model file, together with an instantiation of a pre-prepared template for each
numbered node. Currently we only have a template for gossiping- and flooding-
style protocols, although the aim would be to expand that to other common
patterns. An example of the automatically-generated PRISM model for the four
node network is provided in the appendix. This model can then be fed into
PRISM for detailed performance evaluation. The diagram at Fig. 8 illustrates
the relation between CaVi and PRISM.

CaVi can also generate an input file for the Castalia wireless simulator, which
we discuss briefly in Sec. 7.2 below. Other features of CaVi include some visu-
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Fig. 10. Graphical specification of a 13-node network

alisation techniques of network performance indicators, and simulation runs,
discussed in detail elsewhere [6].

7 Putting it all together: randomised gossiping

In this section we show how to use the CaVi tool for investigating a PRISM
model for a probabilistic gossiping protocol.

We consider the problem of designing a flooding protocol to maximise the
probability that the message is distributed over a network. It is known that
using a simple flooding protocol such as described in Sec. 5, where nodes send as
soon as they receive the message suffers from some serious performance issues,
due to the high likelihood of interference. To mitigate this problem, variations
of this basic scheme have been proposed in which nodes only forward a received
message with probability p. The aim is to choose the value of p to optimise the
probability of the message being received by all nodes.

Using the CaVi tool, we first specify the network topology by placing the
nodes in the arrangement given in Fig. 10. Here node 0 is assumed to be the
originator of the message to be distributed. The other nodes’ behaviour is given



as for the example in Sec. 5, but with an additional parameter, which is the
probability of sending. In the PRISM model that is given by Psend and in this
study it is the same for all nodes throughout the network.

For example, node 1’s behaviour is described by the PRISM model below,
where now the chance of a message being forwarded is combined with the
link probability, so that the overall probability that a message is received is
Psend*recvpi, and the chance of it not being received is (1-Psend)*recvpi.

module node1

active1:[0..1] init 1;

send1: [0..1] init 0;

[tick] send1=0&active1=1 -> Psend*recvp1:(send1’=1)&(active1’=1)+

(1-Psend)*recvp1:(send1’=0)&(active1’=0)+

(1-recvp1):(send1’=0)&(active1’=1);

[tick] send1=1&active1=1 -> send1’=0&active1’=0;

[tick] active1=0 -> send1’=0&active1’=0;

endmodule

As before the probabilities for receiving recvpi are calculated automatically
by the CaVi tool and combined with a node template to create automatically
a PRISM model for gossiping in the network with layout at Fig. 10. Next we
used PRISM to compute the per-node probabilities of eventually receiving the
message. The results appear at Fig. 11 where we have plotted a separate graph
for each node, with the vertical axes being the probability that the message is
eventually received by that node, and the horizontal axis is Psend, which varies
between 0 and 1.

The results show that the nodes 1, 2 and 5 clustered close to the originator
node 0 have a probability of eventually receiving proportional to Psend, since
they receive the message (if at all) directly from node 0, and since there can
be no interference when only node 0 broadcasts. The nodes 3, 4, 7, 8, 11 and
12, all positioned too far away to receive it first-hand however have a non-linear
relationship with Psend. When Psend is too low, then they have a very slim
chance of receiving the message at all, since they are relying on a chain of nodes
to forward their received message, and in this case the forwarding probability
Psend is very low for each. On the other hand these nodes also have a low
chance of ever receiving the message when Psend is high, because although the
intermediate nodes will send with high probability, their messages also have a
high chance of being destroyed by interference. The network-wide optimal value
for Psend appears to be around 0.8.

7.1 Discussion

The use of CaVi to include the network topology characteristics to generate
the formal model is an important step. Whilst the formulae for computing the
probabilities are uniform, the task of preparing them by hand would be too time
consuming and prone to error.
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Each graph represents the probability that node i eventually receives the message. The
top row of graphs correspond to nodes 1, 2, 3, 4 Fig. 10; the second row to 5, 6, 7, 8,
and the third row to 9, 10, 11, and 12.
For each graph the horizontal axis is the probability Psend, and the vertical axis is the
probability of eventually receiving the message.

Fig. 11. Per-node probabilities of eventually receiving the message
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Fig. 12. Model checking and model building times

The templates for gossiping we use for the subsequent generation of the net-
work models combine receiving and forwarding in a single probabilistic transi-
tion, leading to very compact internal PRISM representations of the constructed
system. Fig. 13 and Fig. 14 for example give some idea as to the growth rate
of the number of states and transitions as the number of network nodes in-
creases. Though the growth is still exponential for substantially-sized networks
(16 nodes) the actual size is still well within the capability of the PRISM. Sim-
ilarly Fig. 12 shows the actual time spent by PRISM to construct and perform
the model checking to produce the plots in Fig. 11. Interestingly the time to
construct these models is an order of magnitude greater than the time to do the
model checking, and this is largely due to the time spent parsing the function
definitions for the calculation of the link probabilities.
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Fig. 13. The number of states and transitions

7.2 Model checking and simulation

Castalia [3] is a recently-developed simulator for wireless networks, whose nov-
elty is that it incorporates an accurate model for wireless communication. It
takes as input a file containing parameters describing the power, signal strength,
“geographical” position of each node; once these have been specified, the simula-
tor executes by effectively stepping through a sequence of possible states. Where
the behaviour depends on the result of a random event, the simulator generates
a random number to resolve the choice. Thus the simulator recreates, as far as
possible, the results that would be obtained from testing the physical system.
Statements about the performance of the system are based on statistical analysis
of a large collection of many simulation runs. The errors in this kind of analysis
come from the statistical analysis as well as from inaccuracies in quantifying the
random events in the simulation model.

The advantages of simulation however are that since it only records the result
of an actual run, it is able to cope with large networks and thus can still give a
performance forecast of a network made up of many nodes.
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Fig. 14. Memory requirements

On the other hand a very large number of simulation are runs required to
obtain the same accuracy as can be obtained with model checking [11] making
the overall enterprise very costly in time.

Currently we are able to generate both PRISM or Castalia models from the
graphical input to CaVi, and thus we have established it as a single graphical
interface between model checking and simulation. We envisage that one use of
such an interface would be the ability to visualise the results obtained from both
in a uniform way. Such a “bridging language” would allow “counterexamples”
computed via model checking to be validated in the simulator, for example,
although how best to combine model checking and simulation most effectively is
still a topic for research.

8 Conclusions and future work

In this paper we have described a prototype tool which supports a uniform mod-
elling approach optimised for specifying wireless protocols. Its main features in-
clude the capabilities to take account of the topology and other parameters of the



network which, experiments have shown, have a major impact on the integrity
of the communication. The CaVi tool allows the specification of a network via
a graphical interface, and the automated generation of formats for simulation
and model checking. Detailed performance indicators may be visualised during
specification of the network, as well as the results of subsequent simulation and
model checking experiments.

The principal difference between CaVi and other specification tools is the link
it provides between simulation and formal model checking. To simplify the details
related to the topology in the formal specification task, we use a translation
directly to link probabilities. Those probabilities are calculated according to a
validated analytic formula.

Currently we only supply templates for gossiping and flooding protocols;
whilst we do not envisage a translation from a CaVi model of an arbitrary
protocol to PRISM, we would aim rather to provide a library of templates for
certain classes of protocol whose precise behaviour can be defined by a number
of parameters, in the same way that models are defined in Castalia.

We have not explored fully the uses of our formal models, for example whether
it could be used to investigate the extent of fault tolerance that needs to be built
into an unreliable network. That remains an interesting topic for future research.

Acknowledgements: We thank Viet Cuong Nguyen and Michael Ma for help
with the implementation of CaVi.
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A Automatically-generated PRISM model for a
four-node gossiping network

probabilistic

const double PsendingNode0 = 1.0;

const double PsendingNode1 = 1.0;

const double PsendingNode2 = 1.0;

const double PsendingNode3 = 1.0;

const double linRxSignal_0_1 = 1.5112050684404692E-9;

const double linRxSignal_0_2 = 1.5112050684404692E-9;

const double linRxSignal_0_3 = 1.0345994570907724E-8;

const double linRxSignal_1_0 = 1.5112050684404692E-9;

const double linRxSignal_1_2 = 1.6211305024389717E-9;

const double linRxSignal_1_3 = 3.04330129123453E-8;

const double linRxSignal_2_0 = 1.5112050684404692E-9;

const double linRxSignal_2_1 = 1.6211305024389717E-9;

const double linRxSignal_2_3 = 3.21510813957935E-8;

const double linRxSignal_3_0 = 1.0345994570907724E-8;

const double linRxSignal_3_1 = 3.04330129123453E-8;

const double linRxSignal_3_2 = 3.21510813957935E-8;

formula snr_0_1 = (linRxSignal_0_1*send0)/(linRxSignal_2_1*send2

+ linRxSignal_3_1*send3 + 1.0E-10);

formula snr_0_2 = (linRxSignal_0_2*send0)/(linRxSignal_1_2*send1

+ linRxSignal_3_2*send3 + 1.0E-10);

formula snr_0_3 = (linRxSignal_0_3*send0)/(linRxSignal_1_3*send1

+ linRxSignal_2_3*send2 + 1.0E-10);

formula snr_1_0 = (linRxSignal_1_0*send1)/(linRxSignal_2_0*send2

+ linRxSignal_3_0*send3 + 1.0E-10);

formula snr_1_2 = (linRxSignal_1_2*send1)/(linRxSignal_0_2*send0

+ linRxSignal_3_2*send3 + 1.0E-10);

formula snr_1_3 = (linRxSignal_1_3*send1)/(linRxSignal_0_3*send0

+ linRxSignal_2_3*send2 + 1.0E-10);



formula snr_2_0 = (linRxSignal_2_0*send2)/(linRxSignal_1_0*send1

+ linRxSignal_3_0*send3 + 1.0E-10);

formula snr_2_1 = (linRxSignal_2_1*send2)/(linRxSignal_0_1*send0

+ linRxSignal_3_1*send3 + 1.0E-10);

formula snr_2_3 = (linRxSignal_2_3*send2)/(linRxSignal_0_3*send0

+ linRxSignal_1_3*send1 + 1.0E-10);

formula snr_3_0 = (linRxSignal_3_0*send3)/(linRxSignal_1_0*send1

+ linRxSignal_2_0*send2 + 1.0E-10);

formula snr_3_1 = (linRxSignal_3_1*send3)/(linRxSignal_0_1*send0

+ linRxSignal_2_1*send2 + 1.0E-10);

formula snr_3_2 = (linRxSignal_3_2*send3)/(linRxSignal_0_2*send0

+ linRxSignal_1_2*send1 + 1.0E-10);

formula Preceive_0_1 = func(max,0,

(snr_0_1>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_0_1)), 8 * 25):0);

formula Preceive_0_2 = func(max,0,

(snr_0_2>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_0_2)), 8 * 25):0);

formula Preceive_0_3 = func(max,0,

(snr_0_3>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_0_3)), 8 * 25):0);

formula Preceive_1_0 = func(max,0,

(snr_1_0>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_1_0)), 8 * 25):0);

formula Preceive_1_2 = func(max,0,

(snr_1_2>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_1_2)), 8 * 25):0);

formula Preceive_1_3 = func(max,0,

(snr_1_3>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_1_3)), 8 * 25):0);

formula Preceive_2_0 = func(max,0,

(snr_2_0>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_2_0)), 8 * 25):0);

formula Preceive_2_1 = func(max,0,

(snr_2_1>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_2_1)), 8 * 25):0);

formula Preceive_2_3 = func(max,0,

(snr_2_3>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_2_3)), 8 * 25):0);

formula Preceive_3_0 = func(max,0,

(snr_3_0>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_3_0)), 8 * 25):0);

formula Preceive_3_1 = func(max,0,

(snr_3_1>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_3_1)), 8 * 25):0);

formula Preceive_3_2 = func(max,0,

(snr_3_2>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_3_2)), 8 * 25):0);



formula recvp0 = func(min,1,Preceive_1_0+Preceive_2_0

+Preceive_3_0);

formula recvp1 = func(min,1,Preceive_0_1+Preceive_2_1

+Preceive_3_1);

formula recvp2 = func(min,1,Preceive_0_2+Preceive_1_2

+Preceive_3_2);

formula recvp3 = func(min,1,Preceive_0_3+Preceive_1_3

+Preceive_2_3);

module node0

active0:[0..1] init 1;

send0: [0..1] init 0;

[tick] send0=0&active0=1 -> PsendingNode0:(send0’=1)&(active0’=1)

+(1-PsendingNode0):(send0’=0)&(active0’=0);

[tick] send0=1&active0=1 -> send0’=0&active0’=0;

[tick] active0=0 -> send0’=0&active0’=0;

endmodule

module node1

active1:[0..1] init 1;

send1: [0..1] init 0;

[tick] send1=0&active1=1 -> PsendingNode1*recvp1:(send1’=1)&

(active1’=1)+(1-PsendingNode1)*recvp1:(send1’=0)&(active1’=0)+(1-

recvp1):(send1’=0)&(active1’=1);

[tick] send1=1&active1=1 -> send1’=0&active1’=0;

[tick] active1=0 -> send1’=0&active1’=0;

endmodule

module node2

active2:[0..1] init 1;

send2: [0..1] init 0;

[tick] send2=0&active2=1 -> PsendingNode2*recvp2:(send2’=1)&

(active2’=1)+(1-PsendingNode2)*recvp2:(send2’=0)&(active2’=0)+(1-

recvp2):(send2’=0)&(active2’=1);

[tick] send2=1&active2=1 -> send2’=0&active2’=0;

[tick] active2=0 -> send2’=0&active2’=0;

endmodule

module node3

active3:[0..1] init 1; send3: [0..1] init 0;

[tick] send3=0&active3=1 -> PsendingNode3*recvp3:(send3’=1)&

(active3’=1)+(1-PsendingNode3)*recvp3:(send3’=0)&(active3’=0)+(1-

recvp3):(send3’=0)&(active3’=1);

[tick] send3=1&active3=1 -> send3’=0&active3’=0;

[tick] active3=0 -> send3’=0&active3’=0;

endmodule


