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Abstract
Large Language Models (LLMs) have been reported to have strong per-
formance on natural language processing tasks. However, performance
metrics such as accuracy do not measure the quality of the model in terms
of its ability to robustly represent complex linguistic structures. In this
paper, focusing on the ability of language models to represent syntax, we
propose a framework to assess the consistency and robustness of linguistic
representations. To this end, we introduce measures of robustness of neu-
ral network models that leverage recent advances in extracting linguistic
constructs from LLMs via probing tasks, i.e., simple tasks used to extract
meaningful information about a single facet of a language model, such
as syntax reconstruction and root identification. Empirically, we study
the performance of four LLMs across six different corpora on the pro-
posed robustness measures by analysing their performance and robustness
with respect to syntax-preserving perturbations. We provide evidence that
context-free representation (e.g., GloVe) are in some cases competitive
with context-dependent representations from modern LLMs (e.g., BERT),
yet equally brittle to syntax-preserving perturbations. Our key observation
is that emergent syntactic representations in neural networks are brittle.
We make the code, trained models and logs available to the community as
a contribution to the debate about the capabilities of LLMs.

1 Introduction
Large Language Models (LLMs) exhibit impressive performance in natural lan-
guage processing (NLP) tasks such as text classification [32], language transla-
tion [31], large-scale search engines [62], and even source-code generation for pro-
gramming languages [60], resulting in a great deal of media attention. However,
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current metrics mainly measure the performance of LLMs’ ability to capture
statistical patterns of discourse [4, 37], as opposed to their ability to robustly
capture and represent complex linguistic patterns of their domains.

Representing the linguistic and grammatical structure underlying the data
intuitively plays a cogent role in robust generalization of any linguistic system [9].
Remarkably, LLMs are also arguably capable of accurately representing structures
such as syntax trees [38], which has motivated researchers to investigate their
linguistic capabilities with ad hoc measures and benchmarks [53, 56]. This
indisputable progress is nonetheless counteracted by a series of critiques that
show how LLMs are unable to perform basic reasoning [44], have considerable
biases [29], are not well aligned to stakeholder values [4], and are brittle in the
face of adversarial examples [34]. Such studies make it clear that sustainable,
long-term advances in NLP need to be facilitated by appropriate metrics that
capture how LLMs represent the complex linguistic patterns underlying their
training data [5]. Unfortunately, a naive adaptation of definitions from other
domains, e.g., the image domain, is flawed [34].

In deep learning, robustness is often measured in terms of how much a
bounded perturbation (e.g., with respect to an ℓp-norm) of a test set input affects
the output of a network [58]. For NLP, bounded ℓp-norm perturbations applied
directly to an input do not preserve its semantic meaning or syntactic structure
and are therefore linguistically uninteresting. Further, ℓp distance measures in
the embedding space do not reflect how the input perturbation has affected the
representation of key linguistic features, which are extracted by the language
model from the input data.

In this paper, we propose a framework to evaluate the syntactic consistency
and robustness of linguistic representations that leverages probing tasks [10, 38],
namely, neural networks trained directly on the representation embedding to
evaluate the representation’s ability to encode a specific linguistic phenomenon,
such as the syntax tree of a sentence. To this end, we propose an efficient
probing method to perturb the input text so that its syntax (or context) is
largely preserved. We validate the perturbations to show that they can serve
as an effective proxy of syntax-preserving perturbations. We focus on syntactic
robustness, which informs our selection of probing tasks, but note that other
tasks can be easily incorporated. To assess robustness, we aim to measure the
performance of a language model to probing tasks on the original and perturbed
datasets. More specifically, we define a measure of robustness in terms of
aggregating (averaging) the worst-case drop of performance of a collection of
probing tasks over a given dataset, for a given perturbation budget, which then
captures the model’s ability to encode the linguistic phenomena, and is therefore
more appropriate for NLP settings.

In principle, our methodology for evaluating robustness of linguistic repre-
sentations allows us to benchmark LLMs and can be used by others to guide the
development of models that optimize for robust syntactic understanding, which
we find to be universally lacking. In addition, we demonstrate the ability of
the proposed metrics to offer novel insights and perspectives into the workings
of LLMs. In particular, we show that, despite conventional wisdom, context-
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dependent LLMs (BERT) are just as syntactically brittle as context-free embed-
dings (Word2Vec), and that deeper latent features provide as much syntactic
robustness as shallow features. We also offer a critique of the effect of fine-tuning
of such representations. We choose 6 datasets from the English Universal Depen-
dencies [45], which are representative of different linguistic registers, and perform
experiments on both standard embeddings (Wod2Vec and GloVe) and modern
LLMs (BERT and RoBERTa) [11, 18, 32, 40] on 4 representative syntactic prob-
ing tasks from [38], i.e., structural probe [21], part-of-speech (POS) tagging, root
identification and calculation of the depth of a sentence’s syntax tree. We use
two complementary sources of perturbations. The former method is grounded
in the utilization of WordNet synonyms [41], which we subsequently augment
with constraints designed to uphold the syntactic structure of a sentence while
modifying the maximum number of words permissible within a predetermined
perturbation threshold. Conversely, the latter approach is centered around word
prediction and relies on GPT-2 [50]. WordNet facilitates the selection of per-
turbations that maintain syntactic integrity, whereas GPT-2, along with other
language models, produces substitutions that typically do not retain the original
sentence’s syntactic coherence. However, they compensate for this limitation by
demonstrating a heightened awareness of contextual factors.

In summary, in this work we make the following contributions:

• Propose measures to evaluate robustness of linguistic representations that
leverage probing tasks.

• Develop a methodology for analyzing an LLM’s ability to robustly capture
complex syntactical information underlying its training data.

• Demonstrate how our robustness metrics reveal that context-free represen-
tations are equally brittle to manipulations as more sophisticated context-
dependent representations.

• Provide empirically insightful observations into feature collapse, training
duration, and depth of pre-trained LLM heads from the robustness per-
spective.

In addition to these empirical observations, we draw attention to the brittle-
ness of emergent syntactic representations of language models as a contribution
to the debate about the capabilities of LLMs. The code, trained models and
logs are made available for reproducibility.1

2 Related Works
In this section, we first overview the linguistic models we study. Next, we discuss
recent methods aimed at extracting the syntactic structure represented by a

1The code to replicate the experiments of this paper is available at the following repository:
https://github.com/EmanueleLM/emergent-linguistic-structures.
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language model. Finally, we summarise a series of works that revealed weaknesses
in language understanding captured by these models.

Linguistic representations Early attempts to represent language were in
the form of bag-of-words or binary/one-hot encodings [37]. The success of deep
learning led to the increasing reliance on vector representations of language
(word embeddings) in NLP tasks [59]. Word embeddings such as Word2Vec[40]
and GloVe[46] translate one-hot encoded words and embed them into real-valued
vectors such that similar words are mapped to similar vectors. In the past decade,
researchers developed linguistic representations whose symbols are independent
from each other: we call such representation context-free [37, 40, 46]. Only
recently, with the improvement of training procedures and the capability of
deep learning models to ‘digest’ massive datasets, representations where each
symbol depends on the context in which it appears became possible [47], thus
better embodying the distributional hypothesis [54]. We refer to this approach
as context-dependent, e.g., Large Language Models (LLM) [11, 47].

Extracting syntactic structures Many works have investigated whether
representations embed the structure of a language, with a particular focus on
LLMs [17, 23, 38] recently, and context-free representations [30] prior to this.
There is an ongoing debate on whether representations can embody complex
syntactic structures [20, 56]. Studies include assessing grammaticality of a
representation [43] and extracting grammars from representations, with works
ranging from linguistics [13, 14] to formal languages [55] and NLP [26, 39].

Alignment in NLP The impressive performance of modern LLMs has led to
claims that they have “mastered” language [25]. This claim has been disputed
by a series of works seeking to contextualize the results of LLMs, in particular
showing their lack of “natural language understanding” [5]. In [6] the authors
show that context-free representations can be gender biased. Considerable biases
are also found to exist in context-dependent representations in [29]. In addition to
bias, [4] highlights the multitude of ways in which LLMs are not well aligned with
stakeholder values. In [44], the authors highlight the language models’ failure to
perform basic linguistic reasoning tasks, while in [15] their scope limitations.

The works closest to our paper are those that study the robustness of NLP
models. While human understanding of linguistic structures is very robust [16],
the robustness of NLP models is still far from being achieved [61], as prominent
works over-focus on a notion of adversarial robustness [22, 24, 36] that is linguis-
tically flawed [34, 64]. Practically speaking, robustness is measured and guaran-
teed either in the embedding space, hence w.r.t. bounded ℓp-norm changes of a
sentence’s embedding representation [22, 35], or through discrete, semantically
enhanced replacements [1, 12, 52, 34], which do not capture linguistic structures
such as syntax.
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Ground Truth Syntax Graph Predicted Syntax Tree

Representation: RoBERTa-base 
Model: 6 layers FC with ReLU activations
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Figure 1: A syntax graph reconstructed via the structural probe task from a
RoBERTa representation is shown in the middle; for comparison, the ground truth
structure is sketched on the left. On the right, the same structure is displayed as
a dependency tree (annotated with additional information so that dependencies
and hierarchies between words are made clear) so that other supervised tasks can
be instantiated, e.g., identifying the root, or computing the depth of the tree.

3 Background and Notation
In this section, we present the notation and concepts that we use to frame our
methodology. A sentence s = {s1, .., sl} is a finite sequence of l > 0 symbols (here
words) defined over finite vocabulary Σ. A sense of grammaticality is given by
linguistic rules. A linguistic rule assesses the violation of a property by a sentence
s and we denote a sentence s satisfying a rule, R, with R |= s. A language, L, is
defined by an alphabet Σ and a (possibly infinite) set of rules R = {R1, .., Rn}.

The application of neural networks to language became possible thanks to a
numerical representation of sentences [40]. Given a sentence s comprising l > 0
symbols from a language L, a linguistic representation ψθ, where θ are parameters,
maps s into a (l · d)-dimensional vector of real numbers, i.e., ψθ : s ∈ L −→ Rl·d.
A linguistic representation ψθ is said to be context-free (or independent from
the context) when the representation of each word is independent from the other
words, i.e., ψθ(si|s \ si) = ψθ(si). Otherwise, it is said to be context-dependent
(or dependent on the context).

4 Methodology
Given a linguistic embedding ψθ and a sentence s, the central question of interest
in this work is what information does ψθ extract robustly from s? To answer
this question we consider using perturbation-based analysis. Specifically, given
another sentence s′ that is similar to s, how does ψθ(s) differ from ψθ(s′)?
While such perturbation analysis is reminiscent of adversarial robustness in
the image domain [58], we highlight that a naive adaptation to NLP is devoid
of the nuance of natural language and inappropriate for this setting [34]. We
address this shortcoming with a two-phase framework. Firstly, we seek to gain
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insights into the syntactic properties understood by a language model through
the use of probing tasks. Secondly, we propose an efficient scheme for computing
perturbations that aim to preserve the sentence’s original syntax, and study how
such perturbations affect the model insights from the probing task.

4.1 Probing Tasks for Model Introspection
Recently, probing tasks have been introduced as a linguistically relevant measure
of a model’s understanding of complex linguistic phenomena, often grouped into
surface, syntax, and semantic probing tasks [10]. A probing task is a simple,
non-challenging task used to extract linguistically meaningful information about
a single facet of a language model, e.g., the subject number task requires us to
extract the number of subjects in a sentence from its embedding. Probing tasks
are classifiers trained directly on the representation embedding to evaluate the
representation’s ability to encode a specific linguistic phenomenon. The key idea
here is that the probing task be linguistically specific – testing the representation
of a specific phenomenon – and simple enough that strong performance on the
task indicates, without bias, that a language model has accurately represented
the given linguistic phenomenon. We select four probing tasks, which we design
to assess the presence of syntactic structures in linguistic representations, but
stress that our framework could be extended to any of the ten probing tasks
presented in [10].

We first define a generic probing task, which serves as a basis to describe the
four syntactic tasks that feature in our robustness framework.

Definition 1 (Probing Task) Given a set S = {s(1), .., s(n)} of n > 0 sentences
from a language L, each paired with a label T = {t(1), .., t(n)}, a probing task
consists of finding a mapping f from each sentence representation ψθ(s) s.t.
E(s(i),t(i))∼(S,T ) [L(f(ψθ(s)), t)] > p, where L is a measure of performance of
such a reconstruction, and p some positive quantity that certifies a given level of
performance.

The first syntactic probing task we propose to study is the syntax reconstruc-
tion task. An accurate understanding of the information content of a sentence s
depends on the reader’s ability to understand the intra-word relationships in s.
This is not just true for natural language, but also for programming languages
where parse trees are important to understand source code. A syntax tree t is
an undirected, acyclic graph G := (s,A), where the words of s are vertices and
A is an edge list which contains an edge between two words if they modify each
other or are contextually linked, see [37] for more details. There are two stan-
dard representations of syntax trees in NLP and linguistics, namely dependency
and constituency trees. In the former, each word corresponds to a node and the
tree structure reflects the word order, while, in the latter, words themselves are
terminal nodes whose order follows the ‘bare phrase structure’ (as per the mini-
malist program by Noam Chomsky [8]). In this paper, we work with dependency
tree representations, but the methodology and the results can be extended to
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the constituency representation standard. Formally, the syntax reconstruction
probing task is given as:

Definition 2 (Syntax Reconstruction) Given a set S = {s(1), .., s(n)} of n > 0
sentences from a language L and their syntax-tree representation T = {t(1), .., t(n)},
syntax reconstruction is a probing task f from S to T that guarantees sufficient
performance.

In practice, the syntax probing task consists of extracting, from a sentence
representation, the distance between each pair of words, as they are arranged
in the dependency parse tree of the sentence itself (see Figure 2): the task is
commonly used as a proxy of the capabilities of a representation to recognize
the mutual dependency relationships between words in a sentence, represented
as a directed graph. Probes are usually linear [38], as one wants to assess
how representations encode features that are immediately available to solve the
task [44], though there has been recent criticism of the excessive simplicity of
linear probes compared to non-linear ones [48, 63].

0  1  2  1
1  0  1  2
2  1  0  3
1  2  3  0
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Figure 2: The dependency parse tree of
a sentence (left), alongside the matrix of
distances between pairs of words in the
tree (right).

Using probing tasks to assess the
capabilities of a model has become a
popular approach with the develop-
ment of increasingly complex linguis-
tic representations. However, some
studies have shown that probes can
only reveal the correlation between
the traces of a symbolic structure in
a representation and its performance
on a task [3, 51]. In our work, we use
probes to provide evidence of the exis-
tence of syntactic structures in linguis-
tic representations, rather than test-
ing their performance on higher-level
NLP tasks. We show an example of a dependency syntax tree and its reconstruc-
tion in Figure 1.

The second probing task disregards intra-word relationships and focuses on a
language model’s ability to identify the part of speech of a given word. Formally,
the part-of-speech (POS) tagging task is given as:

Definition 3 (POS-tagging) Given a set S = {s(1), .., s(n)} of n > 0 sentences
from a language L and the POS-tags for each sentence, POS = {pos(1), .., pos(n)},
POS-tag reconstruction is a probing task g from S to POS that guarantees
sufficient performance.

This task is commonly used as a proxy of the capabilities of a representation
to represent the role of a word in its context: an example is shown in Figure 3. In
conjunction, these two tasks allow us to inspect how a language model identifies
and semantically links entities in a sentence, thus giving us a comprehensive,
linguistically-informed perspective on what is captured by a language model.
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Figure 3: A sentence with its POS tags (left). A sentence in the CONLL format,
used to test a model on multiple syntactic tasks (right).

We complete the benchmark with two further syntactic tasks, namely root
identification and the tree-depth estimation, which we present below.

Definition 4 (Root Identification) Given S and T as in Def. 2, and the root of
the tree R = {r(1), .., r(n)} where r(i) ∈ t(i), root identification is a probing task
h from S to R that guarantees sufficient performance.

Definition 5 (Tree-depth Estimation) Given S and T as in Def. 2, and the
depth of the tree D = {d(1), .., d(n)} where d(i) ∈ N+, tree-depth estimation is a
probing task u from S to D that guarantees sufficient performance.

With tasks in Def. 4 and 5, we assess a representation’s capacity to distil
single units of information (root and depth), which can be extracted from a tree’s
sentence representation. We sketch the two tasks in Figure 1 (right). When
compared to the structural probe task, root identification and tree-depth are
easier to solve: in fact, they are meant to show to what extent low-order syntax
information, as opposed to high-order encoded by structural probe, is encoded
in a linguistic representation.

4.2 Syntax-Preserving Perturbation Analysis
The second phase of our methodology involves perturbation-based analysis. It is
widely known and confirmed by neuroscience that human language exhibits very
robust linguistic representations [7, 16], while NLP models suffer from brittleness
against perturbations, which are often easily transferable across models yet
difficult to detect [27]. Though many works have shown how brittle NLP
models are in the presence of bounded attacks on embedding space [36], such
attacks do not necessarily preserve human meaning and are therefore arguably
of questionable merit [34]. We define two types of perturbations: the first
aims to preserve syntax (referred to as coPOS) and constitutes the backbone of
our empirical evaluation; the second exploits context to preserve the semantics
(coCO), and is introduced to strengthen our comparison of models’ syntactic
robustness. We further add, as baseline, a perturbation method with words
randomly sampled from the English vocabulary. We now introduce the coPOS
and the coCO perturbation methods, which are illustrated in Figure 4.

Definition 6 (Consistent POS Substitution) A consistent POS substitution
(coPOS) consists of the replacement of one or more words in a sentence s
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"Sarah enjoyed the movie."

"I go as I need some food."

    Sarah
liked

hated

enjoyed

like

WordNet

"Sarah liked the movie." "Sarah and the movie."

"I go because I need some food." "I go . I need some food."

liked

movie

the

Sarah

enjoyed

movie

the

Sarah and movie

the
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go
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go

need

because

I

I food

some

go need
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coPOS coCOOriginal

Hamming

 Syntax
distance

Figure 4: Two examples of coPOS and coCO perturbations applied on clean
input texts, and the resulting syntax trees induced by such alterations. Words
perturbed are highlighted in red. coPOS perturbations are designed to minimize
the probability of disrupting the syntax of a sentence (such as the substitution
of ‘as’ with ‘because’), while coCO can possibly disrupt it (e.g., substitution
of ‘and’ with a period).
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with words that keep unaltered the POS-tag of the perturbed sentence, i.e., if
s/s′ are the original/perturbed sentence, pos/pos′ the ground-truth POS-tag of
s/s′, and s′ = sub(s), the perturbation procedure, then it holds for coPOS that
sub(s) =⇒ pos ≡ pos′.

Ensuring that a perturbation satisfies the coPOS definition enables inter-
pretability of our results. Specifically, a coPOS perturbation is built with the
intent to preserve the word’s syntactic role in a sentence, and therefore one can
impute any probe misclassifications to a lack of robustness of the linguistic rep-
resentation. Since guaranteeing that a perturbation always preserves its coPOS
tag is challenging due to the intrinsic complexity of natural language, we rely on
an efficient algorithmic implementation to generate proxy coPOS perturbations,
described in Section 5, which we carefully validate on the datasets used in our
experimental evaluation (see Section 5.1).

Definition 7 (Context Consistent Substitution) A context consistent substitu-
tion (coCO) consists of the replacement of one or more words in a sentence s with
a generative model that maintains semantic closeness but does not strictly en-
force the substitution to be syntactically coherent. While many alternative meth-
ods exist in the literature to generate coCo perturbations, we rely on GPT-2 [50]
next word predictions, which serves as a benchmark for syntactically-informed
methods such as coPOS. In other words, a substitution w′ of a word w ∈ s is
generated by a generative model ϕ conditioned on the context where the word
appears, i.e., w′ = argmaxw∈V ϕ(s|s \ w).

Below, we formally define the conditions under which we consider a linguistic
model robust: informally, for a linguistic representation to be robust we desire
it to accurately solve a family of probing tasks and behave consistently on
slight syntax-preserving perturbations of an input text. We assume that coPOS
substitutions are used as perturbations, but note that the concept of linguistic
robustness can also be instantiated with Def. 7.

First, we introduce the notion of consistency of representations, termed ϵ-
robustness.

Definition 8 (ϵ-robust Representations) Given a linguistic representation ψθ, a
set of sentences S, a set of perturbed sentences S′ which are coPOS perturbations
of S, and a measure of distance dist : (s, s′) −→ R between representations (e.g.,
ℓp-norm, cosine similarity), we say that the representation ψθ is ϵ-robust w.r.t.
dist if ∀(s, s′) ∈ (S, S′), max(dist(ψθ(s), ψθ(s′))) < ϵ.

Despite its simplicity, ϵ-robustness is linguistically informed, as all sentences
in S′ are coPOS to those in S, and thus we can be confident that the perturbations
are syntactically consistent for the given probing task. Moreover, this metric
can serve as a useful tool for developing robust language models, in the sense of
maximizing ϵ while maintaining good performance on the underlying task.

While ϵ-robust representations are desirable, what is more informative is the
ability for a representation, ψθ, to be robust not just with respect to a distance
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Figure 5: An example of a perturbed sentence s′ obtained through a coPOS
perturbation. Candidate substitutions are sampled from a pool of WordNet
synonyms, from which we select the one that maximizes the Hamming distance
and minimizes the syntactic disruption w.r.t. the original input, see Section 5
for details. The perturbation is then fed, through a linguistic representation ψθ,
to a probe (neural network trained directly on the representation) that in turn
predicts its syntax tree.

metric, but with respect to a probing task. Formally, we define a language model
ψθ to be syntactically robust if the performance on multiple proxy tasks is not
adversely affected by perturbations that are close in some representation space
(e.g., Def. 6).

Definition 9 (Syntactically Robust Representation) Given an input s, its repre-
sentation ψθ(s), a set of probing tasks {T1, ..,Tm}, a set of mappings {f1(s), .., fm(s)}
that take as input the representation ψθ(s) and solve the respective i-th probing
task, a set of strictly positive quantities {τ1, .., τm} and a small quantity ϵ > 0, a
set of measures of performance on each task {L1, ..,Lm}, a consistent perturbation
s′ = sub(s), and a measure of distance between representations dist : (s, s′) −→ R,
ψθ is syntactically robust iff ∀(Ti, fi,Li, τi) ∈ (T, f,L, τ), dist(ψθ(s), ψθ(s′)) <
ϵ =⇒ Li(fi(ψ

θ(s)), fi(ψ
θ(s′))) < τi.

5 Algorithm for Evaluating Robustness
In this section, we describe a procedure to assess the robustness of the syntactic
structures encoded by a linguistic representation, as formalized in Def. 9. We
outline the full algorithm and give step-by-step comments in the Appendix,
Section A.

The general framework takes as input a language model ψθ, a set of m probing
tasks {Ti}mi=1, performance metrics for each task {Li}mi=1, a perturbation func-
tion sub, and two constants τ and k. For each task T, we sample n sentences and
for each sentence s we compute k coPOS (or coCO, alternatively) perturbations
s′, where each coPOS perturbation modifies τ -many words. We then use the per-
formance measure corresponding to the task to measure L(f(ψθ(s)), f(ψθ(s′)))
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and take the perturbed sentence s′ that maximizes this quantity to be the approx-
imate (since we sample finitely many replacements only) worst-case perturbation.
Then we record the drop in performance that s′ causes. Finally, we take the av-
erage drop in performance across all n sentences to be an approximate measure
of worst-case performance for the language model on the given probing task.

coPOS perturbations Given an l > 0 word long sentence s, we formulate
a method to obtain a perturbed sentence s′, where τ ≤ l words in s are replaced
whilst keeping the syntax of the original input largely preserved.2 Our procedure
is sketched in Algorithm 1.

Algorithm 1 coPOS perturbations.
Require:

s, b, τ,WordNet(·, ·), distham(·, ·),
distsyntax(·, ·)

Ensure: A coPOS perturbation.
1: s∗, d∗h, d

∗
t ← (s, 0., inf)

2: for j ∈ [1, .., b] do
3: s′ ←WordNet(s, τ) ▷ Perturb τ

random words in s with synonyms
4: dh ← distham(s, s′)
5: dt ← distsyntax(s, s

′)
6: if dh > d∗h ∧ dt < d∗t then
7: s∗, d∗h, d

∗
t ← (s′, dh, dt)

8: end if
9: end for

10: return s∗

We replace each candidate word in
s with one drawn from the WordNet
synonym graph [41]. We further en-
sure that a perturbation is, among the
input-perturbation pairs generated by
a WordNet replacement, the one that
minimizes the syntactic distance of
the tree representations while maxi-
mizing the Hamming distance between
the actual sentences, i.e., the number
of words that are actually perturbed.
The syntactic distance of each pair of
inputs and perturbations is computed
via the Stanza dependency parser [49],
while the Hamming distance between
two sentences is the number of word
positions in which two words are dif-
ferent.3 In practice, for each input,
b > 0 sentences are generated by per-
turbing τ words via WordNet (line 3):
the syntactic distance between the dependency tree of each input/perturbation
pair is computed, alongside their Hamming distance (line 6), which could be less
than τ if WordNet does not return a viable substitution, and only the sentence
that minimizes the syntactic distance while maximizing the Hamming is used to
test the representation’s robustness.

While this procedure is designed to preserve syntax between s and s′, the
semantics in general is not: though one may want to introduce further constraints
on the replacement procedure to ensure the semantics is preserved, our primary
intent is to assess robustness against syntax manipulations. We will show in the
experiments that, even for these simple proxy syntax-preserving perturbations,

2WordNet synonyms, or any similar technique, are specifically crafted to maintain the
syntactic structure of word replacements. However, it is important to acknowledge that no
technique can offer an absolute guarantee of preserving syntactic integrity when replacing a
word in a sentence with a generic alternative.

3As two sentences in an input-perturbation pair have the same number of words, we do not
need to rely on the Levenshtein distance.
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a linguistic representation’s performance degrades sensibly and in some cases
it is comparable with random guessing, which indicates that this perturbation
scheme is powerful enough to benchmark current language models. Further, this
method has a clear advantage in terms of simplicity and computational efficiency
as multiple word substitutions can be parallelized. We sketch the aforementioned
procedure in Figure 5 (left).

coCO perturbations Our results are complemented by experiments with
coCo perturbations (Def. 7), which consist of generating τ replacements via a
conditioned LLM, as explained in Def. 7. While we employ GPT-2 [50] for gen-
erating a replacement, any generative LLM, thus including masked LLMs such
as BERT or RoBERTa [11], is suitable for this task. Further implementation
details are provided in the Appendix, while the process of coCO perturbation
is sketched in Figure 4.

Baseline perturbations Finally, we add a baseline perturbation method that
involves substituting τ > 0 words in a sentence with random replacements from
the English vocabulary. In this case, the syntactic consistency of a sentence is
not guaranteed to be maintained, and thus serves as a base case for our analysis.

5.1 Validating the Perturbation Methods
In this section, we report the results of the validation process of the coPOS and
the coCO perturbation methods. For each perturbation method, and for each
dataset that we then employ in the experimental evaluation, we calculate the
syntactic distance between a sentence syntax tree and a perturbed candidate:
the distance between trees is automatically computed as the minimum number
of operations of addition and deletion of a node to turn a tree into another, via
Stanza [2] dependency parses. While in this work we report the results regarding
the distance between dependency trees, as that is the representation provided
by the CoNLL format, as well as that employed in [38], our code permits to
compute distance between sentences via their constituency representation.

Examples of the perturbed syntax tree of a sentence from the Ud-English-
Pud dataset are shown in Figure 6 for each perturbation method. In Figure 7,
we report, for each of the 6 dataset used in the experimental evaluation, the
syntactic distance between trees, for the coPOS, coCO, and baseline method,
with varying perturbation budget τ equal to 1, 2, and 3. We further compute
the average distance between pairs of sentences randomly sampled from each
dataset, and for which we expect the distance between trees to be higher than
for any other method.

As one can notice from Figure 7, the coPOS method induces the least changes
in a syntax tree, and it is thus expected to disrupt the performance of the
probing tasks only if the representations are inherently brittle. On the other
hand, both coCO and baseline are expected to challenge a probe’s capacity to
correctly represent a sentence’s syntactic information. We will show with the
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proxy coPOS method that probes, and in turn their representations, are very
brittle to syntax-preserving manipulations.

Finally, we show examples of perturbations that our methods produce. In
Figure 8, we report example sentences that induce, according to Stanza [49], a
high degree of disruption in the dependency syntax tree representation, with
those produced by the coCO perturbation method the most disrupted for each
input/perturbation pair (not counting the baseline, which almost surely disrupts
the syntactic tree of a sentence through random replacements). On the other
hand, the coPOS perturbation method can be seen to preserves the structure
of each sentence. In Figure 9, we present examples of linguistically interesting
perturbations, which do not induce the maximum syntactic disruption.

6 Experiments
We implement and empirically validate our framework by demonstrating how
it can provide insights into the robustness of language models. We start with
details on linguistic representations, datasets, and probing task models. We then
discuss context-free and context-dependent linguistic representations, the effect
of latent feature depth, and the duration of fine-tuning.4 Finally, we summarise
the results of applying our framework in these settings.

6.1 Experimental Setting
Datasets and metrics We assess the syntactic robustness of different lan-
guage models using the probing tasks of syntax reconstruction, POS-tagging, root
identification and tree-depth estimation on 6 datasets from the Universal Depen-
dencies collection [45]. We chose datasets standardized according to the CONLL
format [19], which consists of sentences split into words, with each indexed and
annotated with multiple syntactic information such as POS-tags and the rela-
tionship with other words/tokens. An example of a sentence in the CONLL
format, with relationship tags between words and part-of-speech tags used to
build the ground truth for our probing tasks, is given in Figure 3.

We measure the performance on syntax reconstruction in terms of the ‘undi-
rected unlabeled attachment score’ (UUAS), i.e., the fraction of edges in the
ground truth syntax tree that is correctly predicted by a model, the ‘same dis-
tance ratio’ (SDR), i.e., the number of times a model correctly guesses the dis-
tance between each pair of words in the ground truth syntax tree, and the Spear-
man correlation (used in [38]), which summarizes the strength of the relationship
between the matrix representation of the original vs. reconstructed syntax tree.
With regards to POS-tagging, we evaluate a model in terms of the accuracy on
estimating the correct POS-tag as shown in Figure 10 (top). On root identifi-
cation (see Def. 4), we use the accuracy of correct vs. wrong estimates, while

4Further details on the implementation, the architectures, the training procedure and the
configurations are provided in the Appendix.
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told: (Root) (VBD)
├── man: 1 (NN)
│   └── The: 2 (DT)
├── him: 1 (PRP)
└── coming: 1 (VBG)
   ├── that: 2 (IN)
   ├── warfare: 2 (NN)
   │   ├── a: 3 (DT)
   │   └── between: 3 (IN)
   │       └── universes: 4 (NNS) (Plural)
   │           ├── the: 5 (DT)
   │           └── two: 5 (CD)
   ├── is: 2 (VBZ)
   ├── ,: 2 (,)
   └── predicted: 2 (VBN)
       ├── as: 3 (IN)
       ├── he: 3 (PRP)
       │   ├── and: 4 (CC)
       │   └── Walter: 4 (NNP)
       └── had: 3 (VBD)

told: (Root) (VBD)
├── man: 1 (NN)
│   └── The: 2 (DT)
├── him: 1 (PRP)
└── coming: 1 (VBG)
    ├── that: 2 (IN)
    ├── war: 2 (NN)
    │   ├── a: 3 (DT)
    │   └── between: 3 (IN)
    │       └── universes: 4 (NNS) (Plural)
    │           ├── the: 5 (DT)
    │           └── two: 5 (CD)
    ├── is: 2 (VBZ)
    ├── ,: 2 (,)
    ├── as: 2 (IN)
    │   └── the: 3 (DT)
    ├── and: 2 (CC)
    └── predicted: 2 (VBN)
       ├── Walter: 3 (NNP)
       └── had: 3 (VBD)

told: (Root) (VBD)
├── man: 1 (NN)
│   └── The: 2 (DT)
├── him: 1 (PRP)
└── coming: 1 (VBG)
    ├── that: 2 (IN)
    ├── dog: 2 (NN)
    │   ├── a: 3 (DT)
    │   └── war: 3 (NN)
    ├── universes: 2 (NNS) (Plural)
    │   ├── the: 3 (DT)
    │   └── two: 3 (CD)
    ├── is: 2 (VBZ)
    ├── ,: 2 (,)
    └── predicted: 2 (VBN)
        ├── as: 3 (IN)
        ├── he: 3 (PRP)
        │   ├── and: 4 (CC)
        │   └── Walter: 4 (NNP)
        └── had: 3 (VBD)

told: (Root) (VBD)
├── man: 1 (NN)
│  └── The: 2 (DT)
├── him: 1 (PRP)
└── coming: 1 (VBG)
    ├── that: 2 (IN)
    ├── war: 2 (NN)
    │   ├── a: 3 (DT)
    │   └── between: 3 (IN)
    │       └── universes: 4 (NNS) (Plural)
    │           ├── the: 5 (DT)
    │           └── two: 5 (CD)
    ├── is: 2 (VBZ)
    ├── ,: 2 (,)
    └── predicted: 2 (VBN)
        ├── as: 3 (IN)
        ├── he: 3 (PRP)
        │   ├── and: 4 (CC)
        │   └── Walter: 4 (NNP)
        └── had: 3 (VBD)

coPOS coCO baseline

original

syntactic distance: 0. syntactic distance: 0.289 syntactic distance: 0.263

input sentence

'The man told him that a war between the two universes is coming, as he and Walter had predicted;’

Figure 6: Comparison of the disruption induced on the dependency syntax tree
by different perturbation methods, along with the syntactic distance between
trees. The representation of each dependency syntax tree has been compacted to
make the effect of the perturbation methods clear, yet it is equivalent to that of
Figures 2 and 4. The example sentence belongs to the Ud-English-Pud dataset,
and the perturbations are actual perturbations induced by our methods. In blue,
the single word that has been perturbed, while in red the perturbation induced
by such perturbation on the tree.
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randomcoCOcoPOS baseline

Perturbation Budget  τ=1

Perturbation Budget  τ=3

syntactic equivalence
syntactic equivalence

syntactic equivalence

syntactic equivalencesyntactic equivalence

syntactic equivalence

syntactic equivalence
syntactic equivalence

syntactic equivalence

syntactic equivalence

syntactic equivalence syntactic equivalence

Perturbation Budget  τ=2

syntactic equivalence
syntactic equivalence

syntactic equivalence

syntactic equivalence

syntactic equivalence syntactic equivalence

Figure 7: Tree distance, measured with Stanza, between an input and its
perturbed version, for different datasets and perturbation budgets: results are
averaged over the entire dataset. The coPOS perturbation method (red) induces
almost no disruption to a perturbation’s syntax tree, being always close to the
level of syntactic equivalence, while injection of random words (blue) and coPOS
perturbations (green) both induce some noticeable disruption. The disruption
induced by comparing the syntax tree of two randomly picked up sentences that
belong to the same dataset is reported for further comparison (orange).
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[src]       Manufacturers Hanover had a loss due to a big reserve addition .
[coCO]   Manufacturers Hanover , a loss due to a big reserve of .
[coPOS] producer Hanover had a loss due to a big taciturnity addition .

En-Universal

[src]       And those are usually the basic scientists , The bottom is usually the surgeons .
[coCO]   And those are usually the ones that , The bottom line usually the surgeons .
[coPOS] And those are usually the basic scientist , The bottom is usually the surgeons .

Ted

[src]       Drs. Ali work wonders .
[coCO]   Drs.     work in the
[coPOS] Drs. Ali oeuvre wonders .

UD-English-Ewt

[src]       Environment Canada spokeswoman Sujata Raisinghani told CBC News 
              the department will look into the incident .

[coCO]        Canada    , Sujata Raisinghani told CBC News the agency will be 
              into the incident .

[coPOS] surround Canada spokeswoman Sujata Raisinghani told CBC News 
              the department will look into the incident .

Ud-English-Gum

[src]       Break with a Banshee by Gilderoy Lockhart
[coCO]   Break with the best by the Lockhart
[coPOS] prison-breaking with a banshie by Gilderoy Lockhart

Un-English-Lines

[src]       However , they were intercepted and had to do battle in Freeman , close to
               the Hudson River .
[coCO]   However , they were able and had to do battle with Freeman , close to the 
               Hudson River .
[coPOS] However , they were intercepted and had to do struggle in Freeman , finis to
               the Hudson River .

Un-English-Pud

(11.0)

(10.0)

(0.875)

(0.875)

(2.5)

(2.0)

(1.428)

(0.714)

(0.428)

(0.714)

(0.266)

(0.333)

Figure 8: Examples of sentences and worst-case coCO and coPOS perturbations
that are reported in our experiments to highly disrupt the dependency syntax
tree according to Stanza [49] (the syntactic distance between the original and
perturnbed sentence is shown on the right). For each of the 6 CoNLL datasets, we
show the original sentence on top. For coCO, perturbed words are highlighted in
red) and replacements with empty words (which are allowed from the vocabulary)
are denoted with a red rectangle . For coPOS, perturbed words are highlighted
in blue. Results refer to the perturbation regime with τ = 3, i.e., where at most
3 words per-sentence are perturbed.
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[src]       But the report says : The only way sex is sex between uninfected partners .
[coCO]   But the report says that The only way sex is sex between uninfected partners .
[coPOS] But the reputation says : The only safe sex is sex between uninfected partners .

En-Universal

[src]       A windpipe cell already knows it 's a windpipe cell .
[coCO]   A windpipe is a knows it 's a windpipe cell .
[coPOS] A trachea cubicle already knows it 's a windpipe cubicle .

Ted

[src]       I loved the atmosphere here and the food is good , however the tables are so 
               close together . 

[coCO]   I loved the atmosphere here . the food is good . however the tables are so 
               close together .

[coPOS] I loved the aura here and the nutrient is good , however the tables are so 
               close together .

UD-English-Ewt

[src]       The purple spheres represent atoms of another element .
[coCO]   The purple and gold atoms are another element .
[coPOS] The purple spheres represent atoms of another constituent .

Ud-English-Gum

[src]       Can't anyone help you ?
[coCO]   Can't anyone else you know
[coPOS] Can't anyone service you ?

Un-English-Lines

[src]      Meanwhile , his place in tribune was occupied by Marco Antonio , who held the 
               position until December .
[coCO]   Meanwhile , his wife in tribune , occupied by Marco Antonio , who held the
               position until December .
[coPOS] Meanwhile , the place in tribune was occupied by the Antonio , who held the 
               position until dec. .  

Un-English-Pud

(2.0)

(0.0)

(0.272)

    (0.0)

(0.684)

    (0.0)

(0.666)

    (0.0)

(1.0)

(0.0)

(0.473)

(0.157)

Figure 9: Examples of linguistically interesting sentences and perturbations,
along with their syntactic distances (right) as calculated with Stanza [49]. For
each of the 6 CoNLL datasets, we report the original sentence on top. For coCO,
perturbed words are highlighted in red), while for coPOS in blue. Results refer
to the perturbation regime with τ = 3, i.e., where at most 3 words per-sentence
are perturbed.
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Figure 10: Performance of different linguistic representations on syntax recon-
struction and POS-tagging probing tasks (top) and on root identification (ac-
curacy metric) and tree-depth estimation (SDR and Spearman metric) probing
tasks (bottom). For all plots, the performance of the probing tasks is reported
as shaded bars, with the performance for the perturbed representation shown as
a solid overlapping bar: the results refer to the case where the coPOS perturba-
tion budget τ is equal to 3 (i.e., at most 3 words per-sentence are perturbed).
Regardless of the embedding/representation employed, we observe severe brittle-
ness of the syntactic representations.
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on tree-depth estimation (Def. 5) we use the SDR, along with the Spearman
correlation, so as not to penalize models that do not infer the label exactly.

Syntactic robustness (Def. 9) is measured in terms of the drop in the perfor-
mance of a model when targeted with a coPOS or a coCO perturbation, e.g.,
∆UUAS represents the drop of the UUAS metric on the syntax robustness task,
comparing the performance on the original sentence with its perturbed version.
Regarding POS-tags, we convert the drop of accuracy into the more intuitive
difference between words correctly guessed on the original sentence compared to
its perturbed version, denoted ‘# Words Adv’ in Table 1.

Models and probing tasks We perform our analyses on 4 linguistic represen-
tations, of which 2 are context-free, namely GloVe [46] and Word2Vec [40], and
2 context-dependent, namely, BERT [11] and RoBERTa [32]. As LLMs employ
deep attention-based architectures, we perform experiments on sentences distilled
from the −5th (i.e., the fifth counting from the most external), the −9th and the
last (i.e., −1th or the output) hidden layer of a representation. While in [38] it
was observed that the most hidden layers are those that perform the best on syn-
tactic tasks, we provide results also for an intermediate and the last hidden layer.

For each probing task (in our setting, syntax reconstruction, POS-tagging,
root identification and tree-depth estimation, as per Def. 2, 3, 4 and 5), we stack
a deep neural network on top of a linguistic representation ψθ, thus obtaining
a set of models {f1(s), .., fm(s)}: we optimize each model fi via supervised
learning on the i-th task Ti, leaving the representation’s parameters θ fixed. We
note that the measures of performance {L1, ..,Lm} vary from a probing task to
another, as we detail in the experimental evaluation.

When training the probing task models, we searched for a common architec-
ture that achieves high performance for each of the four language models. We
tested fully-connected, convolutional, and recurrent neural networks, and found
that fully-connected (FC) probing models had the best performance across the
language models. For each combination of datasets, probing tasks, models, per-
turbation methods (coPOS, coCO), and for a varying perturbation budget τ , we
train a 3-layer deep FC network with a varying number of parameters in the or-
der of 10M. In this sense, both the static and dynamic representations are kept
fixed (i.e., their parameters are ‘frozen’ at training time), not to invalidate the
scope of the probing tasks and to allow full reproducibility of the results. This
experimental evaluation accounts for approximately 900 distinct cases.

6.2 Empirical Evaluation of Syntactic Robustness
We now report the results of our robustness evaluation; in particular, we can
quantify the syntactic robustness of the representation ψθ according to Def. 9.

Performance on probing tasks In Figure 10 we observe that, across the
structural probe task and the POS-tag, all the models have similar performances,
with an average POS-tag accuracy around 0.8 and syntax reconstruction SDR
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1.1 Robustness
Syntax Reconstruction POS-tagging

∆SDR ∆UUAS ∆Sp ∆Acc.
GloVe 0.2066± 0.1243 0.2444± 0.1298 0.0062± 0.0032 6.4897± 3.0856
Word2Vec 0.1553± 0.1161 0.1145± 0.1004 0.0052± 0.0048 6.831± 2.2698
BERT layer -1 0.2011± 0.0784 0.1607± 0.0835 0.0032± 0.0077 3.0803± 2.9857
RoBERTa layer -1 0.193± 0.0808 0.1752± 0.1117 0.0019± 0.0039 4.1293± 3.3021
BERT layer -5 0.2287± 0.0817 0.2451± 0.1212 0.005± 0.003 3.243± 3.0814
RoBERTa layer -5 0.2038± 0.0758 0.2086± 0.1052 0.0024± 0.0379 3.0607± 3.0132
BERT layer -9 0.2307± 0.0838 0.281± 0.1142 0.0035± 0.0037 3.544± 3.2826
RoBERTa layer -9 0.2045± 0.0763 0.2148± 0.1116 0.0017± 0.0023 3.4723± 3.1265

1.2 Robustness
Root Identification Tree Depth Estimation

∆Acc. ∆Acc. ∆Sp
GloVe 0.4387± 0.1953 0.2663± 0.235 0.0174± 0.0189
Word2Vec 0.5251± 0.1123 0.2582± 0.2712 0.0093± 0.0285
BERT layer -1 0.5015± 0.2135 0.3495± 0.2139 0.0209± 0.0159
RoBERTa layer -1 0.5286± 0.1661 0.3193± 0.2348 0.0261± 0.0126
BERT layer -5 0.6039± 0.1383 0.3314± 0.2401 0.0086± 0.0158
RoBERTa layer -5 0.5211± 0.168 0.2829± 0.2524 −0.0062± 0.0379
BERT layer -9 0.612± 0.1216 0.3256± 0.2423 0.0159± 0.018
RoBERTa layer -9 0.5151± 0.1773 0.3312± 0.2365 −0.0002± 0.0222

1.3 Distance/Similarity Metrics
ℓ2-norm distance Cosine similarity

GloVe 0.023± 0.0032 0.9352± 0.0132
Word2Vec 0.0038± 0.0005 0.9231± 0.0161
BERT layer -1 0.0299± 0.0036 0.8994± 0.0221
RoBERTa layer -1 0.0103± 0.0013 0.9835± 0.0039
BERT layer -5 0.0388± 0.0045 0.926± 0.0196
RoBERTa layer -5 0.0259± 0.0032 0.9764± 0.0059
BERT layer -9 0.0377± 0.0045 0.9296± 0.0186
RoBERTa layer -9 0.0188± 0.0018 0.9843± 0.0026

Table 1: Relationship between the syntactic robustness metrics for four probing
tasks on coPOS perturbations with budget τ = 2 (top and middle row) and the
distance between pairs of perturbed and original inputs measured via cosine
similarity and ℓ2-norm distance (bottom row). The accuracy drop of the POS-
tag task is reported as the number of words correctly guessed in both cases.
The reported standard deviation is measured by averaging over the 6 training
corpora. Whilst the distance (similarity) between inputs and perturbations is
low (high), we observe that all embeddings/representations are brittle to syntax-
preserving perturbations.
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2.1 Robustness
Syntax Reconstruction POS-tagging

∆SDR ∆UUAS ∆Sp ∆Acc.
GloVe 0.2098± 0.124 0.2616± 0.1411 0.139± 0.0106 6.743± 3.0337
Word2Vec 0.1655± 0.1114 0.1232± 0.1014 0.0118± 0.014 7.071± 2.1687
BERT layer -1 0.208± 0.0773 0.1782± 0.0862 0.0285± 0.0177 3.1592± 3.0359
RoBERTa layer -1 0.1989± 0.0823 0.1951± 0.116 0.02± 0.0146 4.2887± 3.3774
BERT layer -5 0.235± 0.082 0.267± 0.1293 0.0261± 0.0191 3.286± 3.1258
RoBERTa layer -5 0.2093± 0.0767 0.2319± 0.1117 0.0133± 0.0126 4.2887± 3.3774
BERT layer -9 0.235± 0.0859 0.2988± 0.154 0.0162± 0.0135 3.613± 3.3219
RoBERTa layer -9 0.2109± 0.0774 0.2378± 0.1227 0.0135± 0.012 3.561± 3.205

2.2 Robustness
Root Identification Tree Depth Estimation

∆Acc. ∆Acc. ∆Sp
GloVe 0.4987± 0.1827 0.293, 0.2024 0.0417, 0.0134
Word2Vec 0.5785± 0.1462 0.2915, 0.2444 0.0174, 0.0184
BERT layer -1 0.5526± 0.202 0.3863, 0.2054 0.0838, 0.0494
RoBERTa layer -1 0.5449± 0.1804 0.3567, 0.2166 0.0993, 0.0531
BERT layer -5 0.6374± 0.1483 0.3937, 0.2247 0.0633, 0.0374
RoBERTa layer -5 0.5448± 0.1735 0.3267, 0.2338 0.0672, 0.0215
BERT layer -9 0.6293± 0.1408 0.3726, 0.2217 0.054, 0.0512
RoBERTa layer -9 0.549± 0.1786 0.3613, 0.2317 0.0471, 0.0326

2.3 Distance/Similarity Metrics
ℓ2-norm distance Cosine similarity

GloVe 0.0344± 0.0018 0.8783± 0.0271
Word2Vec 0.0059± 0.0002 0.8572± 0.0331
BERT layer -1 0.0487± 0.0063 0.7951± 0.0433
RoBERTa layer -1 0.0195± 0.0016 0.9597± 0.0064
BERT layer -5 0.0652± 0.0058 0.8432± 0.0316
RoBERTa layer -5 0.0488± 0.0037 0.9416± 0.0102
BERT layer -9 0.058± 0.004 0.8768± 0.0173
RoBERTa layer -9 0.0373± 0.0024 0.9557± 0.0057

Table 2: Relationship between the syntactic robustness metrics for four probing
tasks on coCO perturbations with budget τ = 2 (top and middle row) and the
distance between pairs of perturbed and original inputs measured via cosine
similarity and ℓ2-norm distance (bottom row). The reported standard deviation
is measured averaging over the 6 training corpora. The accuracy drop of the
POS-tag task is reported as the number of words correctly guessed in both cases.
Whilst the distance (similarity) between inputs and perturbations is low (high),
we observe that all embeddings/representations are brittle to syntax-preserving
perturbations.
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Figure 11: Left: For an increasing perturbation budget τ and the coPOS method,
cosine similarity between perturbed and original sentences drops, while the ℓ2-
norm increases. Right: It is clear that, even with τ = 2 (i.e., at most two words
per-sentence are perturbed), the models’ performance already experiences a
significant drop (the higher the curve, the worse the model is on a syntactic task).
Increasing the perturbation budget only slightly increases a drop of robustness.

around 0.7. Of the context-dependent language models, RoBERTa and BERT
are comparable, though we cannot definitively conclude which one is better.
Similarly, GloVe slightly outperforms Word2Vec on tree-depth estimation, while
Word2Vec is better on the structural probe. Interestingly, we notice that word
embeddings only slightly worse than BERT and RoBERTa. The same trends
emerge on root identification and tree-depth estimation, as shown in Figure 10
(bottom): while BERT generally outperforms the competitors and Word2Vec
struggles to compete, GloVe is a competitor of both the language models. We
conclude with a final remark on the lack of performance gap between GloVe and
Word2Vec, as it suggests that pre-training a representation on local and global
word co-occurrences [46] does not help syntactic structures to emerge, a contro-
versial yet intriguing discovery.5

Robustness on probing tasks In Figure 10, solid bars represent the perfor-
mance of a trained model subjected to a coPOS perturbation under the pertur-
bation budget of τ = 3: in other words, we generate an approximate worst-case
coPOS perturbation given that we can only change at most 3 word in the given
sentence. The drop in performance of a model on a task can be inferred via the
gap between the solid and shaded bars (the latter corresponding to the unper-
turbed sentence). We notice that for each metric, excluding the Spearman cor-
relation in tasks 1 and 4, discussed in the Appendix, there is a substantial drop
in performance, which suggests that each language model represents a brittle
understanding of syntactic concepts. While Spearman is used as a metric in [38],

5http://languagelog.ldc.upenn.edu/myl/PinkerChomskyMIT.html
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in the Appendix, Section D.1, we discuss an interesting finding, validated by sub-
stantial empirical evidence, that we believe partially invalidates it as a proper
metric to judge the syntactic similarity between trees extracted from linguis-
tic representations. In particular, in the syntax reconstruction task (Figure 10,
top) we notice a dramatic decrease in UUAS of more than 50% on any task and
any model, while the SDR drop is of around 20− 30%. Thus, for each language
model and dataset, the syntax reconstruction task is now incorrect more often
than it is correct. For UUAS, this indicates that our coPOS scheme is able to
find syntactically meaningful perturbations which reduce the performance of the
model to random guessing. Secondly, we highlight that, for UUAS and SDR,
the largest decrease in performance comes for the datasets for which the per-
formance was the highest. This indicates that robust representation of syntax
may be at odds with performance. The same considerations are valid for the
POS-tag probing task, with the accuracy that drops to a random guess with the
perturbation budget τ equal to 1. The coPOS perturbation method degrades
the performance on root identification and tree-depth estimation as much as in
the previous tasks (also in this case excluding the Spearman correlation, which
we remind we discuss in the Appendix). In fact, the performance drops to a ran-
dom guess on any task and for any representation, which provides evidence that
these representations are brittle, and thus not suited to cases of domain shifts.

On the correlation between robustness and sentence similarity In this
batch of experiments, we keep track of the farthest distance between an input and
its coPOS perturbation (see Def. 8) using the ℓ2-norm and the cosine similarity
between each pair of input/perturbation. We then measure the performance
drop of each model to assess any correlation with the aforementioned measures
of distance/similarity. As reported in Table 1, we find that high drops in
performance can be caused by perturbations with small ℓ2-norm compared to
the unperturbed sentence, and conversely high cosine similarity. This confirms
that linguistic representations are remarkably brittle even to local perturbations,
i.e., those whose representation lies in the proximity of the original input. We
replicate the results using the coCO perturbation method (Table 2), which
confirm that perturbations extracted via GPT conditioning are farther than the
coPOS in the representation space, and equally effective at dismantling a model’s
robustness. Similar observations can be made with the baseline perturbation
method, as reported in the Appendix, Table 5.

Varying the perturbation budget While we have already shown that a
small perturbation budget τ exposes a representation to effective performance-
degrading attacks, we now investigate the relationship of the distance/similarity
metrics and robustness with respect to a varying number of coPOS perturba-
tions. In Figure 11, both the cosine similarity and the ℓ2-norm behave mono-
tonically as τ increases. Deeper LLM’s layers are less affected by an increased
perturbation budget, with BERT less prone than RoBERTa to maintaining the
internal consistency of its representation of the original and perturbed sentences
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training epochs

Fine-tuning task dataset: SST-2  

loss (train)
loss (validation)

training epochs

Metrics: Training/Validation Loss, Training/Validation Accuracy 

Structures Collapse on Fine-tuning BERT

 Robustness Metrics: UUAS, Same Distance Ratio (SDR)

Structural-probe dataset: TED Dataset

Figure 12: BERT model fine-tuned (and finally, overfitted) on the SST dataset,
while its representations are used to train a model to solve the structural probe
task. Train and validation losses (left) and accuracies (right) pertain to the fine-
tuning task (SST), while SDR and UUAS show the performance on the structural
probe. The syntactic metrics degrade as the fine-tuning process proceeds, yet
severe over-fitting does not harm syntactic structures.

(Figure 11, top-left). In word embeddings (Figure 11, bottom-left), while the
trends of cosine similarity between GloVe and Word2Vec are similar, the ℓ2-
norm of Word2Vec does not change as much as for GloVe, a sign that in this
representation words lie very close to each other w.r.t. the Euclidean distance.
When it comes to performance drop (Figure 11, right), static and dynamic rep-
resentations are comparable as they are both not worse than those induced by a
single coPOS perturbation, i.e., with τ = 1. The performance drop on the coCO
and the baseline method are reported in the Appendix, Figures 14 and 15.

On linear vs. non-linear probes In our experiments, we use ReLU-activated
probing tasks, which constitute a stronger model than classical linear probes [10].
There have been arguments recently in favour of non-linear probes, motivated by
the fact that linguistic structures are not necessarily encoded linearly by linguistic
representations [48, 63]. While we choose to report the results that concern non-
linear probes, we conducted the same experiments with linear probes, for which
results are released in the code.

Experiments with linear probes are meant to (i) provide a robustness compar-
ison to the ReLU setting; and (ii) contribute to the debate on the effectiveness
of linear probes as tools to investigate the internals of LLMs, since non-linear
probes attached to linguistic representations may are on one hand more accurate,
yet can incur in overfitting and potentially hinder the expressiveness capabilities
of a linguistic representation [44].

The effect of fine-tuning and overfitting on syntactic structures We
finally conduct an analysis whose primary intent is to understand the effect
of counter-fitting [42] and fine-tuning on syntactic structures, respectively for
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context-free and context-dependent representations. We train a counter-fitted
version of GloVe and we fine-tune, and finally overfit, a BERT-based representa-
tion on the SST-2 dataset [57]: differently from previous experiments, we update
the weights of the language model (i.e., we do not keep them frozen) to investi-
gate the existence of some form of catastrophic forgetting of the syntactic struc-
tures encoded in the model. By performing the robustness analysis introduced
in this paper, we observe that fine-tuning negatively affects the performance of
both shallow and deep context-dependent representations; despite this, exces-
sive fine-tuning is not significantly harmful as the performance does not collapse
even after many epochs the model has overfitted on the training set. The task’s
validation loss is informative to prevent overfitting on the structural probe task,
while accuracy on the fine-tuning task can be misleading and hide syntax col-
lapse. We sketch the training dynamics, along with the accuracy of the model
on the classification task and the structural probe metrics, in Figure 12. We
also observe that any metric of a counter-fitted model has inferior performance
on any task and any dataset while being equally brittle to coPOS perturbations,
thus limiting the utility of counter-fitting on models aimed at capturing differ-
ent aspects of human linguistics: performance and robustness are in line with
those of standard GloVe embedding (i.e., Table 1 and Figure 10); we report an
extended evaluation of this phenomenon in the Appendix.

Justification for the linguistic structures collapse In light of the empirical
evidence provided in this paper, we conclude with some hypotheses on why
good performance of linguistic representations, whether LLMs or standard word
embeddings, comes at the cost of brittleness on high-order syntactic tasks.
Certainly, the robustness-performance trade-off accounts for the frailty of over-
fitted probes [33]. On the other hand, the absence stricto sensu of adversarial
attacks, replaced by coPOS and coCO perturbations, forces us to second-guess
the existence of such structures. In high-dimensional spaces, vectors (i.e., words)
become progressively harder to distinguish, while at the same time the high-
dimensionality allows one to optimize a decision boundary that is overfitted on
the training set, but fails poorly on slight variations of an input. The hypothesis
that we put forward in this paper, with the aim to stimulate discussion among
NLP researches as well as linguists, is that linguistic structures emerge as a
process of fitting between static sentences and their syntax trees, granted by
rich linguistic representations which nonetheless collapse as soon as the input
distribution allows for word substitution, a shift against which human linguistic
structures are indeed extremely robust.

7 Conclusion and Future Works
In this work we studied a notion of syntactic robustness for linguistic representa-
tions. Robustness is a desirable property of such models, yet we have exhibited
the risk of taking their inherent robustness for granted. We gave empirical evi-
dence of severe brittleness of both LLMs and word embeddings when perturbed
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via the coPOS and coCO method with restrained perturbation budget. We com-
plemented this by an analysis of the dynamics of robustness w.r.t. overfitting
and counter-fitting. In future, we aim to extend this empirical framework to
tasks where the syntactic information is not explicitly provided, and further ex-
ploring formally such ‘syntactic subspaces’ where common linguistic features lie:
the aim is the foundation of a ‘linguistics for Large Language Models’.
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A Algorithm for Evaluating Robustness
Average distance of the farthest representation As a measure of distance
between sentences, we rely on the ℓ2-norm and the cosine similarity, whose usage
is widespread in NLP robustness [22, 24], noting that other measure are also
possible [12, 28, 35]. We provide a sketch of the procedure in Alg. 2. It estimates
the average distance of the farthest perturbation in the representation space of
ψθ, w.r.t. a measure of distance like an ℓ-p norm. The procedure easily accounts
for measures of similarity, like the cosine similarity, by changing max with min
at line 9.

Average worst-case syntactic robustness Complementary to Algorithm 2,
Algorithm 3 permits to evaluate syntax robustness of a linguistic representation
ψθ. For each pair of a model and a probing task (fi, Ti), we draw a pool of
sentences Si from a CONLL corpus of choice (lines 2, 4); then, for each sentence
s ∈ Si, we compute a set of coPOS perturbations (lines 7, 8). The ratio between
the number of sentences in Si and the perturbations depends on the budget
parameter k, as well as the number of words per sentence τ that are perturbed;
e.g., with τ = k = 1, each sentence in Si is perturbed once via a single-word
substitution. We rely on WordNet [41] and its graph of synonyms to draw, for
each sentence s, a substitute s′ that is syntax-preserving. We exemplify this
process is Figure 5. We then quantify the drop of performances of fi on the
original vs. perturbed input representations via the performance measure Li

(line 10). As we aim for a measure of robustness against perturbations, we return
for each sentence s ∈ Si the worst-case drop induced by any of the s′ generated
previously, averaged over the number of test cases (lines 11, 13 and 15). We
can now pair the measure of robustness with the ϵ-distance between S and the
set of worst-case perturbations S′ (Def. 8) as the largest deviation of a pair of
input/perturbation w.r.t. the representation ψθ.

B Experiments
As described in the experimental section, we perform our analyses on 4 lin-
guistic representations, namely GloVe [46], Word2Vec [40], BERT [11] and
RoBERTa [32].

We searched for the best architecture in terms of performance on the four
tasks on the 6 corpora of interest: we found that the convolutional architecture
performs poorly on the tasks, while recurrent architectures are competitive with
fully connected, but introduce additional computation overhead and the intrinsic
inductive bias of the recurrent gates.

We applied the least amount of pre-processing to the input texts, i.e., we
split sentences into words – both for the context-free and the context-dependent
representations. As the size of the input matrix for the syntax reconstruction
task grows quadratically with the input length, we cut (pad) the sentences longer
(shorter) than 20 words.
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Algorithm 2 Estimate the average distance of the farthest perturbations w.r.t.
a representation ψθ.
Require: ψθ(·), S, sub(·), k, dist(·, ·)
Ensure: Average distance of the farthest representation of ψθ

s∼S(s) against
subs′∼S′(s′)

1: rob = 0.
2: for s ∈ S do
3: x← ψθ(s)
4: worst = 0
5: for j in [1, .., k] do
6: s′ ← sub(s)
7: x′ ← ψθ(s′) ▷ Obtain the representation of a perturbed input
8: d = dist(x, x′) ▷ Calculate the distance between input and

perturbation
9: worst = max(worst, d) ▷ Worst-case as farthest perturbation

10: end for
11: rob += worst
12: end for
13: return rob/|S| ▷ Average over each worst-case.

Algorithm 3 Estimate the average worst-drop of robustness of ψθ on probing
tasks T.
Require: ψθ(·), {T1, ..,Tm}, {f1(s), .., fm(s)}, {L1, ..,Lm}, sub(·), τ, k
Ensure: Average worst-drop of robustness of ψθ

s∼S(s) against subs′∼S′(s′) on
each task {T1, ..,Tm}

1: Drop = {} ▷ Will contain the average worst-case drop per task Ti

2: for i ∈ [1, ..,m] do
3: drop = 0. ▷ Average worst-case drop of robustness
4: Si ← data(Ti) ▷ Get data from each task
5: for s ∈ Si do
6: d = 0.
7: for j in [1, .., k] do
8: s′ ← sub(s, τ) ▷ τ words are perturbed to obtain s′ from s
9: x, x′ ← ψθ(s), ψθ(s′) ▷ Input/perturbation pairs

10: ∆d = Li(fi(x), fi(x
′)) ▷ Drop of robustness between input and

perturbation
11: d = max(d,∆d) ▷ Get the case that minimizes syntax robustness
12: end for
13: drop += d
14: end for
15: Drop

+←− drop/|Si|
16: end for
17: return Drop
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As regards the training, models have been trained until they start overfitting
the data, i.e., we end the procedure via early-stop.

For further details on the architectures, e.g., the number of parameters, the
initialization, etc., we provide the logs of each experiment as part of the code to
reproduce the experiments.

C Logs for all the experiments of the paper (and
more)

We make the code available, which alongside the instructions to run it can be
found at https://github.com/EmanueleLM/emergent-linguistic-structures.
We also provide all the logs to reconstruct the results we present in this paper.
Files are stored as plain text in the .zip archive, under the
robust-linguistic-structures\verify\MLM_internals\syntax-integrity
\results folder.

D Experiments: Additional Results

D.1 On Spearman correlation’s drop as a measure of ro-
bustness

While the Spearman correlation metric is used in [38] to measure the capacity of
a model to represent a sentence’s syntax tree, we found two reasons why that
this metric is not indicative of the robustness of a model. To illustrate the first
reason, we present an example: consider the syntax tree presented in Figure 13
(left), which encodes the distances between the sentence [0, 1, 2, 3]. Its distance
metric between nodes is also reported in Figure 13 (right). Now, suppose that a
perturbation makes the tree change from that on the left to that on the right,
with the relative distance matrix reported on the right. The Spearman coefficient
between the two trees is, according to a standard implementation6, 0.65; however,
we could not consider a model, which outputs the second tree as a result of a
sentence manipulation, robust as the difference between the syntax structures is
not reflected in the value of the coefficients.
Furthermore, we discovered that for all the experiments, both the coPOS and
coCo perturbation methods induce a shift of each word-to-word distance towards
negative values. One might argue that the shift can preserve the information
of the original tree, e.g., any word-to-word distance is for example shifted by
a negative constant c: in that case, one could revert the predicted tree with a
simple mathematical operation. Unfortunately, this is not possible, as the shift
varies sensibly from word to word while maintaining the correlation between the
original and the predicted trees high.

6https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.
html
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Figure 13: Example of Spearman correlation and its lack of consistency when
judging syntax manipulations.
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Figure 14: Left: for an increasing perturbation budget τ and the coco method,
cosine similarity between perturbed and original sentences drops, while the ℓ2-
norm increases. Right: It is clear that, even with τ = 2 (i.e., at most two words
per-sentence are perturbed), the models’ performance already experiences a
significant drop (the higher the curve, the worse the model is on a syntactic
task). Increasing the perturbation budget does not lead to a significant drop of
robustness.

D.2 coCO and Baseline Perturbations
In Figure 14, we report the cosine similarity and the ℓ2 drop between pairs of
inputs and perturbations (left), and the relative drop of performances on the
probing tasks (right), when inputs are targeted by coCO perturbations. The
same results, but relative to the baseline perturbation method, are reported in
Figure 15. Results are comparable to those with coPOS perturbations, thus
strengthening the hypothesis that linguistics structures, if present, are brittle to
slight, syntax-preserving perturbations.

38



C
o
si

n
e
 S

im
ila

ri
ty

ℓ2 norm                    Structural Probe Cosine Similarity POS-tag

A
cc

u
ra

cy
 d

ro
p

A
cc

u
ra

cy
 d

ro
p

Perturbation Budget Perturbation Budget Perturbation Budget Perturbation Budget

Figure 15: Left: For an increasing perturbation budget τ and the baseline
method, cosine similarity between perturbed and original sentences drops, while
the ℓ2-norm increases. Right: It is clear that, even with τ = 2 (i.e., at most two
words per-sentence are perturbed), the models’ performance already experiences
a significant drop (the higher the curve, the worse the model is on a syntactic
task). Increasing the perturbation budget does not lead to a significant drop of
robustness.

D.3 The Effect of Fine-tuning and Over-fitting on Syntac-
tic Structures

We report the performances of GloVe counter-fitted models on the four probing
tasks in Tables 4 and 3. As it can be observed, the performance on each
task is inferior to standard GloVe embedding, suggesting that counter-fitting
is harmful to the syntactic structures encoded in the representation. When
targeted with perturbations, the syntactic structures of GloVe counter-fitted
models collapse, thus, we can conclude that counter-fitting does not improve the
syntactic capabilities of a model, yet it is equivalently as brittle as GloVe.
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3.1 Robustness
Syntax Reconstruction POS-tagging

∆SDR ∆UUAS ∆Sp ∆Acc.
TED 0.167 0.0872 0.0011 4.470
En-Universal 0.2360 0.29931 0.0056 9.456
Ud-English-ewt 0.1463 0.3124 0.0.106 6.951
Ud-English-gum 0.1678 0.3252 0.0025 3.253
Ud-English-lines 0.2599 0.2981 0.0022 7.402
Ud-English-pud 0.0574 0.0.0612 0.0010 5.746

3.2 Robustness
Root Identification Tree Depth Estimation

∆Acc. ∆Acc. ∆Sp
TED 0.3753 0.0727 0.0165
En-Universal 0.5288 0.2215 −0.0011
Ud-English-ewt 0.816 0.7751 0.0102
Ud-English-gum 0.389 0.3065 0.0028
Ud-English-lines 0.4493 0.314 0.0037
Ud-English-pud 0.3894 0.2583 −0.0189

3.3 Distance/Similarity Metrics
Cosine similarity ℓ2-norm distance

TED 0.881 0.006
En-Universal ≈ 1. 0.0033
Ud-English-ewt 0.9295 0.005
Ud-English-gum ≈ 1. 0.005
Ud-English-lines ≈ 1. 0.0058
Ud-English-pud 0.881 0.0058

Table 3: Robustness of GloVe counter-fitted models, with an analysis, w.r.t.
each dataset (one per row), of the relationship between the syntactic robustness
metrics for coCO perturbations with budget τ = 2 (top and middle) and the
distance between pairs of perturbations and original inputs (bottom). The
accuracy drop of the POS-tag task is reported in number of words correctly
guessed. Results confirm that counter-fitting does not improve robustness at any
level (in this case, syntactic robustness).
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4.1 Robustness
Syntax Reconstruction POS-tagging

∆SDR ∆UUAS ∆Sp ∆Acc.
TED 0.167 0.0872 0.0011 4.470
En-Universal 0.2360 0.29931 0.0056 9.456
Ud-English-ewt 0.1463 0.3124 0.0.106 6.951
Ud-English-gum 0.1678 0.3252 0.0025 3.253
Ud-English-lines 0.2599 0.2981 0.0022 7.402
Ud-English-pud 0.0574 0.0.0612 0.0010 5.746

4.2 Robustness
Root Identification Tree Depth Estimation

∆Acc. ∆Acc. ∆Sp
TED 0.3753 0.0727 0.0165
En-Universal 0.5288 0.2215 −0.0011
Ud-English-ewt 0.816 0.7751 0.0102
Ud-English-gum 0.389 0.3065 0.0028
Ud-English-lines 0.4493 0.314 0.0037
Ud-English-pud 0.3894 0.2583 −0.0189

4.3 Distance/Similarity Metrics
Cosine similarity ℓ2-norm distance

TED 0.925 0.0037
En-Universal 0.919 0.0033
Ud-English-ewt 0.9295 0.0035
Ud-English-gum ≈ 1. 0.0036
Ud-English-lines ≈ 1. 0.0037
Ud-English-pud 0.9518 0.0038

Table 4: Robustness of GloVe counter-fitted models, with an analysis, w.r.t.
each dataset (one per row), of the relationship between the syntactic robustness
metrics for coPOS perturbations with budget τ = 2 (top and middle) and the
distance between pairs of perturbations and original inputs (bottom). The
accuracy drop of the POS-tag task is reported in number of words correctly
guessed. Results confirm that counter-fitting does not improve robustness at any
level (in this case, syntactic robustness).
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Figure 16: Performance, against baseline perturbations, of different linguistic
representations on syntax reconstruction and POS-tagging probing tasks (top)
and on root identification (accuracy metric) and tree-depth estimation (SDR
and Spearman metric) probing tasks (bottom). For all plots, the performance
of the probing tasks is reported as shaded bars, with the performance for the
perturbed representation shown as a solid overlapping bar: the results refer to
the case where the baseline perturbation budget τ is equal to 3 (i.e., at most 3
words per-sentence are perturbed). Regardless of the embedding/representation
employed, we observe severe brittleness of the syntactic representations.
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Figure 17: Performance, against coCO perturbations, of different linguistic
representations on syntax reconstruction and POS-tagging probing tasks (top)
and on root identification (accuracy metric) and tree-depth estimation (SDR
and Spearman metric) probing tasks (bottom). For all plots, the performance
of the probing tasks is reported as shaded bars, with the performance for the
perturbed representation shown as a solid overlapping bar: the results refer to
the case where the coCO perturbation budget τ is equal to 3 (i.e., at most 3
words per-sentence are perturbed). Regardless of the embedding/representation
employed, we observe severe brittleness of the syntactic representations.
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Figure 18: Tree-distance, measured with Stanza, between an input and its per-
turbed version, for different datasets and perturbation budget τ = 2. The coPOS
perturbation method (red) induces almost no disruption to a perturbation’s syn-
tax tree, while injection of random words (blue) and coPOS perturbations (green)
both induce some noticeable disruption. The disruption induces by comparing
the syntax tree of two random sentences is reported for comparison (orange).
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5.1 Robustness
Syntax Reconstruction POS-tagging

∆SDR ∆UUAS ∆Sp ∆Acc.
GloVe 0.2087± 0.123 0.2822± 0.1498 0.0545± 0.0097 6.583± 2.9971
Word2Vec 0.161± 0.1137 0.139± 0.0996 0.035± 0.0079 6.8977± 2.2552
BERT layer -1 0.208± 0.0803 0.1787± 0.0827 0.0289± 0.0156 3.1208± 3.0138
RoBERTa layer -1 0.2026± 0.0805 0.1954± 0.1129 0.013± 0.0154 4.2408± 3.3794
BERT layer -5 0.2395± 0.0804 0.2599± 0.1287 0.023± 0.0196 3.289± 3.1118
RoBERTa layer -5 0.2123± 0.0764 0.2303± 0.1094 0.0137± 0.0098 3.1448± 3.1161
BERT layer -9 0.2345± 0.0938 0.2828± 0.162 0.0204± 0.0126 3.6504± 3.7005
RoBERTa layer -9 0.2151± 0.0773 0.2372± 0.1189 0.009± 0.0106 3.568± 3.2097

5.2 Robustness
Root Identification Tree Depth Estimation

∆Acc. ∆Acc. ∆Sp
GloVe 0.4853± 0.1776 0.2796± 0.2265 −0.0108± 0.1222
Word2Vec 0.6118± 0.1342 0.3115± 0.2495 0.0407± 0.0156
BERT layer -1 0.5466± 0.2041 0.3883± 0.2186 0.103± 0.0784
RoBERTa layer -1 0.5557± 0.1783 0.3586± 0.2312 0.0818± 0.0306
BERT layer -5 0.6466± 0.1421 0.3896± 0.2246 0.0317± 0.0575
RoBERTa layer -5 0.5464± 0.1778 0.3252± 0.2351 0.0225± 0.0704
BERT layer -9 0.6462± 0.1392 0.3927± 0.2461 0.0314± 0.0464
RoBERTa layer -9 0.5563± 0.1834 0.3485± 0.2493 0.0344± 0.046

5.3 Distance/Similarity Metrics
ℓ2-norm distance Cosine similarity

GloVe 0.0427± 0.001 0.8156± 0.0391
Word2Vec 0.0059± 0.0002 0.8606± 0.0184
BERT layer -1 0.0538± 0.0052 0.7401± 0.0418
RoBERTa layer -1 0.0211± 0.0014 0.9519± 0.006
BERT layer -5 0.0731± 0.0041 0.8059± 0.0299
RoBERTa layer -5 0.0539± 0.004 0.9302± 0.0122
BERT layer -9 0.0669± 0.0035 0.8382± 0.0199
RoBERTa layer -9 0.0375± 0.0021 0.9553± 0.0051

Table 5: Relationship between the syntactic robustness metrics for four linear
probing tasks on baseline perturbations with budget τ = 2 (top and middle row)
and the distance between pairs of perturbed and original inputs measured via
cosine similarity and ℓ2-norm distance (bottom row). The accuracy drop of the
POS-tag task is reported as the number of words correctly guessed in both cases.
The reported standard deviation is measured by averaging over the 6 training
corpora. Whilst the distance (similarity) between inputs and perturbations is
low (high), we observe that all embeddings/representations are brittle to syntax-
preserving perturbations.
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