
Multi-objective discounted reward verification
in graphs and MDPs

Krishnendu Chatterjee1, Vojtěch Forejt2, and Dominik Wojtczak3

1 IST Austria
2 Department of Computer Science, University of Oxford, UK

3 Department of Computer Science, University of Liverpool, UK

Abstract. We study the problem of achieving a given value in Markov
decision processes (MDPs) with several independent discounted reward
objectives. We consider a generalised version of discounted reward objec-
tives, in which the amount of discounting depends on the states visited
and on the objective. This definition extends the usual definition of dis-
counted reward, and allows to capture the systems in which the value of
different commodities diminish at different and variable rates.
We establish results for two prominent subclasses of the problem, namely
state-discount models where the discount factors are only dependent on
the state of the MDP (and independent of the objective), and reward-
discount models where they are only dependent on the objective (but
not on the state of the MDP). For the state-discount models we use a
straightforward reduction to expected total reward and show that the
problem whether a value is achievable can be solved in polynomial time.
For the reward-discount model we show that memory and randomisa-
tion of the strategies are required, but nevertheless that the problem is
decidable and it is sufficient to consider strategies which after a certain
number of steps behave in a memoryless way.
For the general case, we show that when restricted to graphs (i.e. MDPs
with no randomisation), pure strategies and discount factors of the form
1/n where n is an integer, the problem is in PSPACE and finite memory
suffices for achieving a given value. We also show that when the discount
factors are not of the form 1/n, the memory required by a strategy can
be infinite.

1 Introduction

Dynamic systems with multiple objectives. Graphs are a classical model for dy-
namical systems with non-deterministic behaviors. Markov decision processes
(MDPs) extend the model of graphs by allowing both non-deterministic as well
as probabilistic behavior. An MDP is given by a finite number of states and ac-
tions, together with a transition function which to a state and an action assigns
a probabilistic distribution on (successor) states. Initially, a token is placed in
a distinguished initial state, and an action is chosen, possibly in a probabilistic
way. The token is then moved to a state determined by the transition function,
and the process continues from the beginning, starting from the successor state.

The infinite sequence of states that is produced is called a run, and the aim
usually is to ensure that the produced runs have certain properties.

Discounted objectives. One of the most fundamental optimization objective for
dynamical systems is the discounted reward objective. Given a reward function
that assigns a reward to every state, and a discount factor λ which to every
state assigns a number strictly smaller than 1, the discounted reward of a run
is the sum of the rewards accumulated along the run, where every single reward
accumulated is weighted by the product of discounts of states previously visited.
The goal is to maximize the expected discounted reward.

Traditionally graphs and MDPs have been studied with the aim to opti-
mize a unique objective. However, in most modeling domains for dynamical
systems, there is not a single objective to optimize, but multiple, potentially de-
pendent and conflicting objectives. Hence recently the problem of multi-objective
optimization for dynamical systems has become an active area of research.
We consider graphs and MDPs with multiple discounted reward objectives (n-
dimensional discounted sum objectives). In the simplest case (which we call
uniform-discount model) the discount factor λ is independent of the states as
well as the dimension of the objectives. More generally the discount factor can
depend on the states of the system (called state-discount model, where the dis-
count factor at state s is λ(s)); or it can depend on the objective (reward-discount
model, where the discount factor for dimension i is λi). In the most general case
(unrestricted model) the discount factors can depend on the dimension as well
as on the state of the system (discount factor for dimension i in state s is λi(s)).

Discounted objectives are intended to capture the fact that the reward gained
soon is more valuable than a reward gained in the distant future. For example, in
financial applications one often has the opportunity of putting money on a risk-
free account with a small interest, and so any reward form (risky) investment
needs to be discounted by the value the invested money could gain on the risk-
free account. Our notion of discount allow to capture the fact that for different
currencies or commodities the interest on the risk-free account can vary (reward-
discount model), or that it can change depending on the circumstances (state-
discount model). The unrestricted model captures both these phenomena.

Classes of strategies. In case of graphs as well as MDPs strategies are recipes
that resolve the non-determinism of the system, i.e. say how actions should be
selected. A strategy looks into the current execution of the system, and speci-
fies how to resolve the non-deterministic behavior. The class of strategies can be
broadly classified into randomised strategies that can specify a probability distri-
bution over the non-deterministic choices, and the special case of pure strategies,
where for every execution of the system one of the non-deterministic choices is
executed (i.e., pure strategies only use Dirac distribution over the choices).

The achievability question. Given a graph or an MDP with n discounted reward
objectives, and a vector (v1, v2, . . . , vn), the achievability question is whether
there exists a randomised strategy (resp. pure strategy if restricted to pure
strategies) such that for each dimension 1 ≤ i ≤ n the expected discounted
reward with respect to ith objective is at least vi.

Our contributions. While the general problem for graphs and MDPs with multi-
ple discounted sum objectives is challenging, we provide several partial answers.
Below we present our contributions and then list some of the key open problems.

1. The decidability of MDPs with multiple discounted reward objectives under
randomised strategies under uniform-discount model was established in [6].
We first observe that the problem for state-discount model can be solved by a
simple reduction to total reward objectives (solved in [11]). In both the above
cases randomised memoryless strategies (that do not depend on the past) are
sufficient. We then consider MDPs with randomised strategies under reward-
discount model. We show that in contrast to uniform-discount and state-
discount model, randomised memoryless strategies are not sufficient, but it
is sufficient to consider “eventually memoryless” strategies, i.e. the strategies
which behave memorylessly after a fixed-length history-dependent prefix;
this helps us in establishing the decidability of the achievability question.

2. For pure strategies, we consider the problem for graphs and establish decid-
ability for the unrestricted model when the discount factors are of the form
1/n for natural numbers n. In the above case we show that finite-memory
strategies are sufficient, whereas we also show that this is not the case when
we lift the restriction on discount factors.

Key open questions: We now list some interesting open questions related to
graphs and MDPs with multiple discounted sum objectives: (1) The decidability
of MDPs with randomised strategies under the unrestricted model remains open.
(2) The decidability of MDPs with pure strategies under the uniform-discount
model with discount factors of the form 1/n also remains open. (3) Given a graph
and a single rational discount factor (independent of the states), the decidability
of existence of a pure strategy (i.e. a path) such that the discounted sum is
exactly zero is another important open question. In fact, (3) can be reformulated
in terms of achievability question for two dimensions, with one reward being the
negative of the other, such that both are required to be at least zero.

Related work. The study of Markov decision processes with multiple objectives
has been an area of research in applied probability theory, where it is known
as constrained MDPs [14, 1]. The attention in the study of constrained MDPs
has been focused mainly to restricted classes of MDPs, such as unichain MDPs
where all states are visited infinitely often under any strategy. For general finite-
state MDPs, [6] studied MDPs with multiple discounted reward functions under
the uniform-discount model. It was shown that memoryless randomised strate-
gies suffice, and a polynomial-time algorithm was given to approximate (up to
a given relative error) the Pareto curve by reduction to multi-objective linear
programming and using the results of [13]. MDPs with multiple qualitative ω-
regular specifications were studied in [10]. It was shown that the Pareto curve can
be approximated in polynomial time in the size of the model; the algorithm re-
duces the problem to MDPs with multiple reachability specifications, which can
be solved by multi-objective linear programming. In [11, 12], the results of [10]
were extended to combine ω-regular and expected total reward objectives. MDPs

with multiple mean-payoff functions objectives were considered in [4]. Finally,
[7, 8] study multi-objective verification problem for stochastic games, which is a
model extending MDPs with a second kind of nondeterminism [7, 8].

2 Preliminaries

We use N, Z, Q, and R to denote the sets of positive integers, integers, rational
numbers, and real numbers, respectively. Given two vectors v,u ∈ Rk, where
k ∈ N, we write v ≤ u iff vi ≤ ui for all 1 ≤ i ≤ k, and v < u iff v ≤ u and
vi < ui for some 1 ≤ i ≤ k. Given a vector v and a number t ∈ R we use v + t
for the vector (v1 + t, . . . ,vk + t)

A probability distribution over a finite or countably infinite set X is a function
f : X → [0, 1] such that

∑
x∈X f(x) = 1. We call f Dirac if f(x) = 1 for some

x ∈ X. The set of all distributions over X is denoted by dist(X), and given two
distributions d and d′, we define |d− d′| := maxx∈X |d(x)− d′(x)|.
Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S,A,Act , δ) where S is a finite set of states, A is a finite set of actions,
Act : S → 2A \ ∅ is an action enabledness function that assigns to each state s
the set Act(s) of actions enabled at s, and δ : S ×A→ dist(S) is a probabilistic
transition function that given a state s and an action a ∈ Act(s) enabled at
s gives a probability distribution over the successor states. For simplicity, we
assume that every action is enabled in exactly one state, and we denote this
state Src(a). Thus, henceforth we will assume that δ : A → dist(S). A graph is
an MDP in which δ(a) is Dirac for all a ∈ A.

A run in M is an infinite alternating sequence of states and actions ω =
s1a1s2a2 . . . such that for all i ≥ 1, Src(ai) = si and δ(ai)(si+1) > 0. We denote
by RunsM the set of all runs in M . A finite path of length k in M is a finite prefix
w = s1a1 . . . ak−1sk of a run in M , and we denote by last(w) the last state of w
and by |w| := k the number of states in w.

Strategies and probabilities. Intuitively, a strategy in an MDP M is a
“recipe” to choose actions. It is formally defined as a function σ : (SA)∗S →
dist(A) that given a finite path w, representing the history of a play, gives a
probability distribution over the actions enabled in last(w). In general, a strat-
egy may use infinite memory. According to the use of randomisation, a strategy
σ, can be classified as pure (or deterministic) if σ(w) is always Dirac, and finite-
memory if it can be defined using a finite automaton that reads a history and
the choice made by σ is based solely on the state in which the automaton ends.
A strategy σ is eventually memoryless if there is ` such that for all ws and w′s
where |ws|, |w′s| ≥ ` we have σ(ws) = σ(w′s).

Each finite path w in M determines the set Cone(w) consisting of all runs
that start with w. To M , an initial state s and σ we associate the probability
space (RunsM ,F ,PσM,s), where RunsM is the set of all runs in M , F is the σ-field
generated by all Cone(w), and PσM,s is the unique probability measure such that

PσM,s(Cone(s1a1 . . . sk)) = µ(s1)·
∏k−1
i=1 σ(s1a1 . . . si)(ai)·δ(ai)(si+1), where µ(s1)

is 1 if s1 = s and 0 otherwise. We often omit the M from the subscript.

Rewards. A (discounted) reward structure is a tuple (r, λ) where r : S → R is
a reward function and λ : S → (0, 1) is a discount factor. A discounted reward

of a run ω = s1a1s2a2 . . . is defined to be r(ω) =
∑∞
i=1 r(si) ·

∏i−1
j=1 λ(sj).

The expected discounted reward under a strategy σ is Eσs [r, λ] :=∫
ω∈RunsM r(ω) dPσs , and the optimal discounted reward is Eopt

s [r, λ] =

supσ Eσs [r, λ]. We also use Eopt
s,a [r, λ] to denote the optimal value after taking

the action a in s, i.e. δ(a)(s′) · Eσ′s′ [r, λ] where σ′ is defined by σ′(w) = σ(saw)
for all w.

In this paper we deal with multi-objective rewards, i.e. we assume that we
are given n objectives, each as a tuple (ri, λi), together with a vector v ∈ Rn.
The problem we aim to solve is to decide whether there is a strategy σ such that
Eσs [ri, λi] ≥ vi for every 1 ≤ i ≤ n. If the answer is positive, we call the vector
v achievable. The vectors v such that v − τ are achievable for all τ > 0, but no
u > v is achievable, are called Pareto-optimal vectors.

As we have already mentioned, in general this problem appears to be difficult,
and hence we study several interesting and useful sub-classes of the general model
(which we call the unrestricted model).

– State-discount model: Here we assume that the discount factor is fully deter-
mined by the state, i.e. λi(s) = λj(s) for every 1 ≤ i, j ≤ n and s ∈ S.

– Reward-discount model: In reward-discount model the discount factor de-
pends only on the objective, i.e. λi(s) = λi(s

′) for all 1 ≤ i ≤ n and s, s′ ∈ S.
In such case we can write just λ instead of λ(s).

Both the above models subsume the restriction studied in [6], where the discount
factor is given as one number, independent of the state or the reward. We refer
to the model of [6] as the uniform-discount model.

3 Results for MDPs and Randomised Strategies

3.1 State-discount model

We start with presenting the most direct of our results, which concerns the solu-
tion for state-discount model. This result can be obtained by straightforwardly
extending a well-known reduction from discounted rewards to total reward.
Given a reward function r, the expected total reward of a run w = s1a1s2 . . .
is defined to be

∑∞
i=1 r(si), and the expected value Eσs [r] under a strategy σ is

defined accordingly.

Theorem 1. Let us have a state-discount model given by an MDP M =
(S,A,Act , δ) and objectives (r1, λ), . . . (rn, λ). The problem of deciding whether
a point u is achievable can be solved in polynomial time.

Proof. We create an MDP M ′ = (S ∪ {s⊥}, A,Act , δ′) from M by adding a
mandatory transition to dead state s⊥ from s ∈ S with probability 1 − λ(s).
Formally, for all s ∈ S we define δ′ by δ′(s, a)(s′) = λ(s) · δ(s, a)(s′) for all

s′ 6= s⊥ and δ′(s, a)(s⊥) = 1 − λ(s). The state s⊥ has only self-loops available.
We also define a reward function r′ by r′(s) = r(s) for all s ∈ S, and r′(s⊥) = 0.

It is then easy to show that for any strategy σ we have Eσs [r, λ] = Eσs [r′].
Thus we can use the results of [11] for multi-objective total reward to obtain the
desired result. ut

3.2 Reward-discount model

We now present the results related to the reward-discount model. We will show
that when looking for strategies that achieve a given vector v, it is sufficient to
consider randomised history-dependent strategies which are eventually memo-
ryless. To motivate this result, we first give an example where neither memory-
less nor deterministic history-dependent strategies suffice. Let us have an MDP
(which is in fact a graph) from the following picture:

s0 s1s2

The initial state is s0, and there are two reward functions, r1 and r2, where
r1(s1) = r2(s2) = 1 and ri(sj) = 0 for i 6= j. The discount factors are given by
λ1 = 0.25 and λ2 = 0.5.

When the initial state is fixed to s0, every strategy σ is completely determined
by the probabilities pσ(i) of being in the state s1 after 2 · i+1 steps. In addition,
we have

Eσs0 [r1, λ1] =

∞∑
i=0

0.252·i+1 · pσ(i)

Eσs0 [r2, λ2] =

∞∑
i=0

0.52·i+1 · (1− pσ(i))

Consider the strategy σ such that pσ(0) = 1, pσ(1) = 0.5 and pσ(i) = 0 for
all i > 1. Under such strategy we get Eσs0 [r1, λ1] ≈ 0.258 and Eσs0 [r2, λ2] ≈ 0.1.
Obviously, σ must be a history-dependent randomised strategy.

We show that no other strategy performs same as or better than σ. Note
that any strategy σ′ which satisfies pσ

′
(i) < 1 and pσ

′
(j) > 0 for i < j can be

improved as follows. Let q = min{pσ′(j), (1 − pσ′(i))/λ2·(j−i)
1 }. We change the

strategy σ′ to the strategy σ′′ defined by

pσ
′′
(`) =

pσ
′
(`) + q · λ2·(j−i)

1 for ` = i

pσ
′
(`)− q for ` = j

pσ
′
(`) otherwise

We then get

Eσ
′′

s0 [r1, λ1] = q · λ2·(j−i)
1 · λ2·i+1

1 − q · λ2·j+1
1 + Eσ

′

s0 [r1, λ1] = Eσ
′

s0 [r1, λ1]

Eσ
′′

s0 [r2, λ2] = −q · λ2·(j−i)
1 · λ2·i+1

2 + q · λ2·j+1
2 + Eσ

′

s0 [r2, λ2] > Eσ
′

s0 [r2, λ2]

so σ′′ performs better than σ′. Since this step can be repeated as long as there
are pσ

′
(i) < 1 and pσ

′
(j) > 0 for some i < j, we get that any strategy is

outperformed by some strategy σ̄ for which there is ` and x satisfying pσ̄(k) = 1
for k < `, pσ̄(`) = x and pσ̄(k) = 0 for k > `. However, one can easily see
that any such σ̄, except for σ itself, gives a worse reward than σ in the first
or in the second objective, and so in particular no memoryless randomised or
history-dependent deterministic strategy can outperform σ.

Now we prove that for the reward-discount model the problem whether a vec-
tor v is achievable is decidable. The intuition for the proof is the following. Given
discount structures (r1, λ1), . . . , (rn, λn) where the discount factors are pairwise
different, after m steps any future contribution of ith reward will be discounted
by λmi . For m being sufficiently large and for λi > λj we get that λmi � λmj , and
so any reward accumulated w.r.t. jth objective becomes comparably negligible
and cannot be meaningfully “traded off” for reward accumulated w.r.t. ith ob-
jective. This leads to the notion of eventually memoryless strategies, which after
certain number of steps don’t make any tradeoffs, but instead greedily give the
highest priority to the rewards with the higher discount factors.

For the rest of this subsection we fix a reward-discount model given by an
MDP M = (S,A,Act , δ) and reward structures (r1, λ1), . . . , (rn, λn) such that
λi ≥ λi+1 for all 1 ≤ i ≤ n− 1. By U we denote a bound on maximal/minimal
value of discounted rewards; for example, we can set U :=

∑∞
j=0 λ

j
1 · rmax where

rmax = max1≤i≤n maxs∈S |ri(s)|.
The following two lemmas state some basic properties of the set of achievable

points.

Lemma 1. The set of achievable points for a reward-discount model is convex.

Proof. When we have two achievable points u and v together with 0 ≤ c ≤ 1,
the point c · u + (1 − c) · v can be achieved by a strategy that in the first step
randomly (with probability c and 1− c) decides whether to mimic the strategy
for u or v, and sticks to the decision forever. ut

Lemma 2. Pareto-optimal strategies exist for a reward-discount model, i.e.
limit of a sequence of achievable points is achievable.

Proof. Let u be the limit of a sequence of achievable points, and let us have an
infinite sequence of strategies σ0, σ1, . . . such that σi achieves the point u − 1

i .
Let Θ0 denote the set of the strategies in this sequence, and let w1, w2, . . . be the
enumeration of all finite paths in the MDP. We construct infinite sets Θ0, Θ1 . . .
and distributions d1, d2 . . . such that for every ε > 0 the setΘi contains a strategy
σ that achieves value u− ε, which satisfies |σ(wj)− dj | ≤ ε for all j ≤ i.

We then define a strategy σ by σ(wi) = di for all i ≥ 1. We claim that σ
achieves the point u. Suppose this is not the case, then there must be some ε
such that σ does not achieve u − ε, and let k be such that λki · U ≥ ε/4 for all
1 ≤ i ≤ n. Note that for any strategy σ̄ we have

Eσ̄s,a[ri, λi] ≥
(∑
w=s1a0s1...sk

Pσ̄s,a[w] ·
k∑
`=1

λ`−1
i · ri(s`)

)
− ε/4

Let m be an index such that all paths of length at most m are in the sequence
w1, . . . , wm. There must be a strategy σ′ ∈ Θm such that

– Eσ′s,a[ri, λi] ≥ ui − ε/4
– We have

∏m
j=0 |σ′(wj)− dj | ≤

ε
(U+ε)·4

Fix one such strategy σ′, then we get

Eσs [ri, λi] ≥
∑

w=s0a0s1...sk

Pσs [w] ·
k∑
`=0

λ`i · ri(s`)−
ε

4

≥
∑

w=s0a0s1...sk

(
Pσ
′

s [w]− ε

(U + ε) · 4

)
·
k∑
`=0

λ`i · ri(s`)−
ε

4

≥
∑

w=s0a0s1...sk

(
Pσ
′

s [w] ·
k∑
`=0

λ`i · ri(s`)−
ε ·
∑k
`=0 λ

`
i · ri(s`)

(U + ε) · 4

)
− ε

4

≥
∑

w=s0a0s1...sk

Pσ
′

s [w] ·
k∑
`=0

λ`i · ri(s`)−
ε

2

≥ (u− ε

4
)− ε

2
≥ u− 3 · ε

4

which contradicts that σ does not achieve the value u− ε. ut

Theorem 2. Let let u be a Pareto point for a reward-discount model such that
u is not a convex combination of any other Pareto points. Then there is a de-
terministic eventually memoryless strategy achieving u.

Proof. Since u is not a convex combination of other achievable points and be-
cause the set of achievable points is convex by Lemma 1 and downwards closed
by definition, by the separating hyperplane theorem [3] there must be a nonneg-
ative vector w and a number d such that for u · w = d, but for all achievable
points v 6= u we have v ·w < d.

Note that any strategy σ that satisfies
∑

1≤i≤n wi ·Eσs [ri, λi] ≥ d also satisfies
that Eσs [ri, λi] ≥ ui for all 1 ≤ i ≤ n, since otherwise it achieves the point
v := (Eσs [ri, λi])1≤i≤n with v 6= u and v ·w ≥ d, which is a contradiction.

Hence, it suffices to show that deterministic eventually memoryless optimal
strategies σ suffice for optimising the value of

∑
1≤i≤n wi · Eσs [ri, λi]. Before we

proceed, we show that we can simplify the problem in several respects. The first
observation is that we can restrict to deterministic strategies σ (this can be
proved by methods similar to the ones used in by [5], and using properties of
single-objective discounted rewards). Further, we can easily preprocess the input
to work with the sequence of the discount factors which is strictly decreasing:
whenever λi = λi+1, then we can create an objective (r′, λi) where r′(s, a) =
wi·ri(s, a)+wi+1·ri+1(s, a), and look for a strategy σ which satisfies 1·Eσs [r′, λi]+∑
j 6=i wj · Eσs [rj , λj] ≥ d. At the same time, whenever some wi is equal to 0, we

can omit the ith reward since it does not affect the value
∑

1≤i≤n wi ·Eσs [ri, λi].

Thus, from now on we assume that λi > λi+1 for all i and that all wi are
nonzero.

In what follows we will use the notion of an optimal action subject to
taking an action optimal w.r.t. different objectives. For a set B ⊆ A we use
Eopt
s′,B [ri, λi] := supσ∈ΣB

Eσs [r, λ] where ΣB contains the strategies which only
assign nonzero probabilities to actions from B. We put A0 = A, and for all
1 ≤ i ≤ n we define Ai to contain the actions of Ai−1 which give the best value
w.r.t. (ri, λi), i.e. a ∈ Ai iff a ∈ Ai−1 and

Eopt
s,Ai−1

[ri, λi] = ri(s) +
∑
s′∈S

δ(a)(s′) · λi · Eopt
s′,Ai−1

[ri, λi]

where s = Src(a). Note that for every σ ∈ ΣAi we have Eσs [ri, λi] = Eopt
s,Ai

[ri, λi].
This is due to the properties of single-objective discounted reward in which
taking any optimal action suffices to ensure the optimal values [14]. For every
a ∈ Ai−1(s) denote

vi,s,a =
(
Eopt
s,Ai−1

[ri, λi]
)
−
(
ri(s) +

∑
s′∈S

δ(a)(s′) · λi · Eopt
s′,Ai−1

[ri, λi]
)

the loss when taking non-optimal optimal action (within Ai−1(s)) w.r.t. ith
objective. We use ε := min{vi,s,a|vi,s,a > 0} to denote the least positive value
among all vi,s,a.

Now let k be a number such that for all i we have wi ·ε·λki >
∑n
j=i+1 wj ·U ·λkj .

Such number certainly exists by the fact that λi > λi+1 and wi > 0 for all i.
By induction in i we show that in order to be optimal, a strategy σ must pick

actions from Ai on any path ws where |ws| = ` > k. Suppose we have proved
the claim for i− 1. Note that if the strategy takes an action a ∈ Ai in ws, then
the optimal reward gained after ws is

(i−1∑
j=1

λ`j · wj · E
opt
s,Aj

[rj , λj]
)

+ λ`i · wi · E
opt
s,Ai

[ri, λi] ,

while if a does not maximise the value, by the choice of k we get that

n∑
i=1

λ`i · Eσws[ri, λi] ≤
(i−1∑
j=1

λ`j · wj · E
opt
s,Aj

[rj , λj]
)

+
(
wi · λ`i · E

opt
s,Ai

[ri, λi]− wi · ε · λ`i
)

+
(n∑
j=i+1

wj · λ`j · Eopt
s [rj , λj]

)

<
(i−1∑
j=1

λ`j · wj · E
opt
s,Aj

[rj , λj]
)

+ wi · λ`i · E
opt
s,Ai

[ri, λi]

Hence, actions from Ai(s) give better value. Consequently, in order to be opti-
mal, the strategy σ must, for any path ws with |ws| > `, only take actions from

An, and as we have argued above, any strategy which takes these actions suf-
fice, meaning that we can pick an arbitrary deterministic eventually memoryless
strategy which eventually plays actions from An. ut

By Carathéodory’s theorem [15], for an achievable point u there must be at
most n + 1 achievable points v1 . . .vn+1 of which u is a convex combination,
and for which deterministic eventually memoryless strategies exist. This directly
gives an algorithm which for any achievable point u returns “yes”, and which
does not halt otherwise: Set a step bound m, and try to “guess” n different
deterministic strategies which become memoryless after at most m steps and
which achieve points of which u (or some larger value) is a convex combination.
There is only a finite number of such strategies, so we can guess by exploring all
options. If the strategies are found, return that u is achievable. If the appropriate
strategies can’t be found, increase m and continue from the beginning.

Finally, we give an algorithm that for u which is not achievable returns “no”,
and does not halt otherwise. If u is not achievable, then by Lemma 2 there is
τ such that u − τ is not achievable. Let us pick m such that λmi · U ≤ τ/3 for
all i. Then any strategy satisfies that within m steps, the reward accumulated
w.r.t. ith reward is at most ui − 2 · τ/3, and we know that from that point on
no more than τ/3 can be accumulated. This means that m witnesses that u is
not achievable. Hence, our algorithm fixes a number m and verifies whether for
all strategies it is the case that there is i such that the reward accumulated up
to m steps is at most u − 2 · λmi · U/3. This problem can be expressed using a
formula over reals with addition and multiplication, for which the satisfiability
problem is decidable [16]. If we find out that all strategies satisfy the condition,
we return that u is not achievable, otherwise we increase m and continue.

The two above algorithms can be run in parallel, giving an algorithm that
eventually terminates for any input. This allows us to establish the following
corollary.

Corollary 1. For the reward-discount model, the problem of achievability of a
given vector is decidable.

Remark 1. Our analysis does not yield any upper complexity bound. The lim-
iting factor of our analysis is that in Theorem 1 we don’t have any information
about the vector w. If we were able to bound the coordinates in of w, then later
in the proof we could give a bound on k, and hence establish the upper num-
ber of steps after which the strategies start behaving memoryless. Nevertheless,
there is no obvious way how to achieve this.

4 Results for Graphs and Pure Strategies

In this section we study the decidability of the problem of achievability of a given
vector for graphs. We show decidability of this problem and existence of finite-
memory strategies even for the unrestricted model where the discounts depend
both on the state as well as the objective function. However, we require all of

these discount functions λi to be inverse-integer, which means that for each i
and s ∈ S there is some m ∈ N such that λi(s) = 1/m. Under this restriction,
we are able to represent the integer thresholds as periodic sequences, yielding a
finite-state system. A similar approach was used in a different setting by [2].

Finally, we show that if not all of the discount reward functions are inverse-
integer then any strategy for a given achievable vector may require an infinite
amount of memory and we leave the decidability of that case as an open problem.

For the rest of this section, fix a graph M = (S,A,Act , δ), i.e. δ(a) is Dirac
for all a ∈ A, i.e. δ(a) is Dirac for all a ∈ A.

Theorem 3. Let (r1, λ1), . . . (rn, λn) be discounted reward structures with
inverse-integer discount factors and let v ∈ Qn be the bound to be achieved,
where n is fixed and all constants are given in unary. The problem whether there
exists a pure strategy σ achieving v can be solved in polynomial time.

Proof. We start by reducing this problem for arbitrary rational rewards functions
ri and lower threshold vi to integer rewards and thresholds. To do so for each i
we multiply the denominator of vi by the denominators of all rational numbers
ri(s) for every s ∈ S to obtain some number di. We now define r′i(s) = di · ri(s)
and v′

i = di · vi. It is easy to see that r′i(ω) = di · ri(ω) for any ω and so for
any σ we have Eσs0 [ri, λi] ≥ vi iff Eσs0 [r′i, λi] ≥ v′

i. Moreover, notice that all the
numbers defining r′i and v′

i are of polynomial size, because n is fixed.
We first focus on the case n = 1. It is well-known that the problem in this

setting can be solved in polynomial time even when all the inputs are given in
binary by finding a solution to a linear program which gives the optimal value
as well as the optimal deterministic strategy for the controller. However, this
approach does not generalise to the n > 1 case. Instead, we will use automata
theory based approach to solve the case n = 1 which works in polynomial-time
if all the constants are represented in unary, and can be exponential otherwise.
The advantage of this approach is that it allows us to solve the general case by
using a cross product construction of the automaton generated for each of the
reward structure.

Now, let the single inverse-integer reward structure be (r, λ) and the lower
threshold bound be v. Also, let amax = dmaxs∈S r(s)/(1 − λ(s))e and amin =
bmins∈S r(s)/(1 − λ(s))c. Let δ(s) be the set of all possible successors of state
s, i.e. δ(s) = {s′ ∈ S | ∃a∈Act(s)δ(a)(s′) = 1}. We construct a deterministic au-
tomaton A = (Q,Σ,∆) with the set of states Q = S×{amin, amin+1, . . . , amax}∪
{>,⊥}, action alphabet Σ = A and transition function ∆ : S × A → S. The
initial state of A is (s0, v). Intuitively, if A is in state (s, x) after reading the k-th
letter of the word, then x denotes how big the discounted reward of the tail of
this word should be in order for the whole word to satisfy the condition ≥ v.
Formally, we define the transition function ∆ as follows. If the current state is
(s, x) then notice that y := (x− r(s))/λ(s) ∈ Z, because λ is an inverse-integer
discount. Now, if y ∈ {amin, amin+1, . . . , amax} then the automaton for each ac-
tion a such that Src(a) = s have a transition to the state (δ(a), y) which reads
letter a. However, if y > amax then the only transition from (s, x) is to state >

and if y < amin then the only transition is to ⊥. Also, from > the only transition
is to > and from ⊥ the only transition is to ⊥. These special transitions can
read any action letter.

Lemma 3. There exists a pure strategy σ such that Eσs0 [r, λ] ≥ v iff there exists
an infinite word such that the corresponding run of the automaton never reaches
> (a safety accepting condition).

Proof. (⇒) Let σ be any pure strategy such that Eσs0 [r, λ] ≥ v and let it generate
a run ω = s1a1s2a2 . . ., where s1 = s0. That is we have r(ω) = Eσs0 [r, λ] ≥ v. Let
(s1, x1)(s2, x2) . . . be the sequence of states visited by A while reading the word
a1a2 . . ., where s1 = s0 and x1 = v. Let us modify this sequence by replacing >
and ⊥ states by the actual states of the form (s, x) that would have be visited
if these special states > and ⊥ were not present. In other words, sk+1 = δ(ak)
and xk+1 = (xk − r(sk))/λ(sk) hold for any k even if xk 6∈ {amin, . . . , amax}. We
will show that it cannot be the case that xk > amax for some k and as a result
> did not occur in the original sequence.

The proof is by contradiction; let l be the first step for which xl > amax =
maxs r(s)/(1− λ(s)). It is easy to see that there has to be some constant α > 1
such that xl ≥ maxs r(s)/(1−α ·λ(s)). In fact, we can pick α to be mins 1/λ(s)−
r(s)/(λ(s) ·xl). This is because from the definition of α for any s we would then
have r(s)/(1−α ·λ(s)) ≤ r(s)/(1− (1− r(s)/xl)) = xl. Note that α > 1 because
from the definition of amax if xl > amax then (xl − r(s))/λ(s) > xl for all s.
Finally, we get xl+1/xl = (xl−r(sl))/(xl ·λ(sl)) = 1/λ(sl)−r(sl)/(λ(sl)·xl) ≥ α.
Therefore xl+1 ≥ αxl ≥ xl, but the expression for α increases as xl increases
and so for any k we have xl+k ≥ αxl+k−1 ≥ . . . ≥ αk · xl. In conclusion xk →∞
as k →∞.

On the other hand, for any k let us denote the discounted-reward of
ω until step k by r(ωk) :=

∑k
i=1 r(si) ·

∏i−1
j=1 λ(sj). Notice that x1 = v,

x2 = (v − r(s1))/λ(s1) = v/λ(s1) − r(s1)/λ(s1), x3 = v/(λ(s1) · λ(s2)) −
r(s1)/(λ(s1) · λ(s2)) − r(s2)/λ(s2), and by induction xk = v/

∏k−1
j=1 λ(sj) −∑k−1

i=1 r(si)/
∏k−1
j=i λ(sj). In other words, xk ·

∏k−1
j=1 λ(sj) = v − r(ωk) ≤ r(ω) −

r(ωk) =
∑∞
i=k+1 r(si) ·

∏i−1
j=1 λ(sj), which means xk ≤ λ(sk) ·

∑∞
i=k+1 r(si) ·∏i−1

j=k+1 λ(sj) ≤ (maxs λ(s) ·maxs r(s))/(1−maxs λ(s)), but the right hand side
is a constant while we just showed that xk →∞ as k →∞; a contradiction.

(⇐) Let ω = a1a2 . . . be any infinite word for which A does not enter state
> and let (s1, x1)(s2, x2) . . . be the sequence of states visited by A along this
word. If ⊥ state is in this sequence (and as a result only ⊥ occurs from that
moment on), then note that (amin − r(s))/λ(s) < amin for any s ∈ S and so
when A is starting at any state (s, x) such that x < amin, no state (s′, x′) with
x′ > amax can be reached. Therefore, xk < amax holds for every k in either case.
As we will now show, this condition suffices for the word ω to be accepted and
so the automaton should accept any word once it enters ⊥ no matter what the
tail of that word is. Again, let us denote the discounted-reward of ω until step k
by r(ωk) :=

∑k
i=1 r(si) ·

∏i−1
j=1 λ(sj) and notice that xk

∏k−1
j=1 λ(sj) = v − r(ωk).

We know that for any k we have xk ≤ amax which means that v − r(ωk) ≤

amax ·
∏k−1
j=1 λ(sj), and so v−amax ·

∏k−1
j=1 λ(sj) ≤ r(ωk). Now taking the limit as

k → ∞ we get that v ≤ r(ω), because amax is a constant, and
∏k−1
j=1 λ(sj) → 0

and r(ωk)→ r(ω) as k →∞. ut

Now, to deal with more than one reward structures, we will use a cross
product of all the automata constructed for each of the reward structures. Let
Ai = (Qi, Σi, ∆i) be the automaton generated using the previous construc-
tion for the reward structure (ri, λi). The cross-product automaton A′ is de-
fined as follows A′ = (Q′, Σ′, ∆′), where the set of states Q′ =

∏
iQi, the

letter alphabet Σ′ = A and the transition function ∆′ is defined as follows:
∆((s1, . . . , sn), a) = (∆1(s1, a), ∆2(s2, a), . . . ,∆n(sn, a)). The initial state of the
automata A′ is s′0 = ((s0,v1), (s0,v2), . . . , (s0,vn)). Notice that the size of the
automata A′ is polynomial in the size of the original graph, because n is fixed.
Technically we can further reduce the size of A by noticing that any reachable
state ((s1,v1), (s2,v2), . . . , (sn,vn)) satisfies s1 = s2 = . . . = sn. A run of A′ is
accepting if it does not reach the > state in any of the component automata.
This is a safety condition and deciding the existence of a safe run can be done
in time linear in the size of the automaton [9].

ut

Theorem 4. Let (r1, λ1), . . . (rn, λn) be inverse-integer reward structures given
in binary, and let v ∈ Qn be a bound. The problem whether there exists a pure
strategy σ achieving v can be solved in PSpace. If such σ exists, then there is
also a finite-memory one.

Proof. We use the same cross-product automaton A′ construction as in the proof
of Theorem 3. The size of the automata A′ is now exponential in the size of
the original graph, but every state can be represented using polynomial space,
because we just need to remember the current state, (s, x), of each component
automaton and the value of x has at most polynomially many bits. Also the
number of states of A′ can be represented using polynomially many bits. Notice
that A′ has an accepting run iff there exists a cycle starting s′0 which never
reaches a > state. So a simple NPSpace (which is =PSpace) algorithm can be
given as follows: we simply simulate the transitions while counting the number
of steps made, and we stop and reject if we reach >, and stop and accept if we
already made more steps than the number of states in A′. The latter implies that
we already formed a cycle and a run that never reaches > exists. A safe strategy
can be reconstructed from the accepting path of our algorithm by looking at the
transitions taken, and repeating a pattern based on them forever. Notice that
the size of the memory such a strategy requires is at most equal to the number
of states in the automaton A′. ut

Proposition 1. There are uniform-discount rewards (r1, λ), (r2, λ) that are not
inverse-integer such that for some v ∈ Q2: any pure strategy σ which achieves v
requires infinite memory.

Proof. We will show this already for a system with just two states. Let us denote
the states by s1 and s2 and actions by a1 and a2. The uniform discount is set to

λ = 2
3 . From any state the action ai leads to state si. We set r1(s1) = r2(s1) = 0,

r1(s2) = 1, r2(s2) = −1, and the thresholds to v1 = 3/2 and v2 = −3/2.
Notice that since r1(ω) + r2(ω) = 0 for any infinite path ω, the conditions
Eσs0 [ri, λi] ≥ vi are satisfied iff r1(ω) = 3/2. Because we are only looking at
finite-memory pure strategies σ, we can represent the unique run ω it generates
by a string ω′ = b1 . . . bk · (c1 . . . cl)ω, where k ≥ 0, l ≥ 1, bi, ci ∈ {0, 1} and the
j-th position in ω′ is 0 iff a1 is used at the j-th step of the run ω and otherwise
it is equal to 1. Notice that we have

r1(ω) = b1+
2

3
b2+. . .+

(
2

3

)k−1

bk+

(
2

3

)k
1

1− (2
3)l

(
c1 +

2

3
c2 + . . .+

(
2

3

)l−1

cl

)

and if we multiply both sides by 3k ·(3l−2l) the right-hand side will be an integer,
but the left-hand side will not be an integer as r1(ω) = 3/2 and 3k · (3l − 2l) is
an odd number for l ≥ 1.

Finally, we just need to show now that there exists an infinite sequence
ω = b1b2 . . . such that bi ∈ {0, 1} for all i and

r1(ω) = b1 +
2

3
b2 + . . .+

(
2

3

)k−1

bk + . . . =
3

2
. (1)

In other words there exists a pure winning strategy σ which uses an infinite
amount of memory. We use the following algorithm to generate this sequence ω.
We initialise x := 3

2 . At the k-th step, starting with k := 1, if x ≥ 1 then we
set bk := 1 and update x := 3

2 (x − 1), and otherwise set bk := 0 and update
x := 3

2x. We then move to the next step k := k + 1. Intuitively the value of x

at the k-th step tell us what the value of
(

2
3

)k
bk+1 + . . . should be in order for

the total discount reward to be equal to 3
2 . Also, based on the rules how x gets

updated, at any step we have x ≥ 0 and x ≤ 3
2 . From this fact and using similar

reasoning to Lemma 3, we can show that this process will generate an infinite
sequence ω = b1b2 . . . such bi ∈ {0, 1} for all i and the condition (1) holds.

5 Conclusions

We have studied MDPs with multiple discounted objectives. We have extended
the results of [6] by considering a more expressible class of models, which allow
to specify discount factors dependent on states and/or objectives.

As we have already mentioned in the introduction, there are several interesing
and challenging open questions. Except for these, it is also of interest to obtain
a complexity bound for the reward-discound model.

Acknowledgements The authors are grateful to Aisis Šimaitis for his stimu-
lating discussions on the topic. K. Chatterjee is supported by Austrian Sci-
ence Fund (FWF) Grant No P 23499-N23, FWF NFN Grant No S11407-N23
(RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows

award. V. Forejt is also affiliated with Faculty of Informatics, Masaryk Univer-
sity in Brno, and was supported by a Royal Society Newton Fellowship and
EPSRC project EP/J012564/1. D. Wojtczak is supported by the grant EPSRC
EP/H046623/1.

References

1. E. Altman. Constrained Markov Decision Processes (Stochastic Modeling). Chap-
man & Hall/CRC, 1999.

2. U. Boker and T. A. Henzinger. Determinizing discounted-sum automata. In CSL,
pages 82–96, 2011.

3. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press,
2004.

4. T. Brázdil, V. Brozek, K. Chatterjee, V. Forejt, and A. Kucera. Two views on
multiple mean-payoff objectives in markov decision processes. In LICS, pages 33–
42. IEEE Computer Society, 2011.

5. K. Chatterjee, L. Doyen, H. Gimbert, and T. A. Henzinger. Randomness for free.
In P. Hlinený and A. Kucera, editors, MFCS, volume 6281 of Lecture Notes in
Computer Science, pages 246–257. Springer, 2010.

6. K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov decision processes with
multiple objectives. In B. Durand and W. Thomas, editors, STACS, volume 3884
of Lecture Notes in Computer Science, pages 325–336. Springer, 2006.

7. T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. On stochas-
tic games with multiple objectives. In Proc. 38th International Symposium on
Mathematical Foundations of Computer Science (MFCS’13). Springer, 2013. To
appear.

8. T. Chen, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. Synthesis for multi-
objective stochastic games: An application to autonomous urban driving. In
In Proc. 10th International Conference on Quantitative Evaluation of SysTems
(QEST 2013). IEEE CS Press, 2013. To appear.

9. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
10. K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-objective

model checking of Markov decision processes. Logical Methods in Computer Sci-
ence, 4(4):1–21, 2008.

11. V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative multi-
objective verification for probabilistic systems. In P. Abdulla and K. Leino, editors,
Proc. 17th Int. Conf. Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’11), volume 6605 of LNCS, pages 112–127. Springer, 2011.

12. V. Forejt, M. Kwiatkowska, and D. Parker. Pareto curves for probabilistic model
checking. In S. Chakraborty and M. Mukund, editors, Proc. 10th International
Symposium on Automated Technology for Verification and Analysis (ATVA’12),
volume 7561 of LNCS, pages 317–332. Springer, 2012.

13. C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In FOCS, pages 86–92. IEEE Computer Society,
2000.

14. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, 1994.

15. R. Rockafellar. Convex Analysis. Princeton University Press, 1997.
16. A. Tarski. A decision method for elementary algebra and geometry. Rand report.

Rand Corporation, 1948.

