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Formal and Efficient Synthesis for Continuous-Time
Linear Stochastic Hybrid Processes

Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Luca Cardelli, and Marta Kwiatkowska

Abstract—Stochastic processes are expressive mathematical
tools for modeling real-world systems that are subject to un-
certainty. It is hence crucial to be able to formally analyze the
behavior of these processes, especially in safety-critical appli-
cations. Most of the existing formal methods are not designed
for continuous-time processes, and those that are typically suffer
from state explosion in practice. This work introduces a theoret-
ical framework and a scalable computational method for formal
analysis and control synthesis for switched diffusions, a class
of stochastic models with linear dynamics that are continuous
in both time and space domains; the focus is on safety with
possible extensions to other properties. The proposed framework
first constructs a finite abstraction in the form of an uncertain
Markov process through discretization of both time and space
domains. The errors caused by the discretization in each domain
are formally characterized and cast into the abstraction model.
Then, a strategy that maximizes the probability of the safety
property and is robust against the errors is synthesized over
the abstraction model. Finally, this robust strategy is mapped to
a switching strategy for the stochastic processes that guarantees
the safety property. The framework is demonstrated in three case
studies, including one that illustrates the trade-off of the error
contribution by the time and space discretization parameters.

Index Terms—Formal verification, formal synthesis, prob-
abilistic model checking, stochastic hybrid systems, switched
diffusions, formal abstractions, temporal logics.

I. INTRODUCTION

SWITCHED stochastic processes are powerful models for
mathematical representation of real-world systems. These

models, through switching between several Stochastic Differ-
ential Equations (SDEs), enable the inclusion of uncertainty
as well as control, both of which are intrinsic in the physical
laws of systems and in their interactions with the world [2].
Therefore, they are frequently used for modeling and analysis
of systems in a wide range of domains such as cyber-physical
systems [3]–[5], biological systems [6], and chemical reaction
networks [7]. Despite their wide applicability, however, a
theoretical framework that provides formal guarantees as well
as scalable computational algorithms for analysis and control
of switched stochastic systems remains a major challenge. In
particular, the need for such a framework is of immediate
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importance for safety-critical applications such as autonomous
cars and air traffic control [8]. In this work, we target this
challenge for switched diffusions, a class of stochastic models
where the dynamics are linear and continuous in both time
and space domains.

Formal approaches to verification and synthesis for stochas-
tic processes have been the focus of many studies in recent
years [9]–[18]. The popularity of these methods is rooted
in the formal guarantees that they provide over expressive
and succinct specification languages, such as linear temporal
logic (LTL), probabilistic computation tree logic (PCTL), and
continuous stochastic logic (CSL) [19]. The classical accom-
panying challenge, though, is the state explosion problem,
which is particularly exacerbated for systems with continuous
domains. To overcome this problem, approaches based on
finite abstractions, which are essentially coarse representations
of the process, are proposed [9]–[13]. Existing works, by and
large, focus on discrete-time, continuous-space stochastic pro-
cesses and construct an abstraction in the form of a discrete-
time, discrete-space Markov process. This usually results in
discrepancies between the abstraction and original system,
which are then captured through error bounds. In practice,
there are two major limitations to these approaches. One is
that most real-world systems evolve in continuous time, and
the other is the (lack of) scalability of their computational
frameworks. That is, on the one hand, the error bounds can be
conservative if the abstraction is not fine enough, and on the
other hand fine abstractions can result in state-space explosion.

In this manuscript, we introduce a theoretical and computa-
tional synthesis framework for safety properties of (continuous
time and space) switched diffusions that is both formal and
scalable. The framework consists of two stages: abstraction
and synthesis. In the first stage, an appropriate discrete abstrac-
tion in the form of an uncertain Markov model that captures
all possible behaviors of the system is constructed. This is
achieved through a discretization of time and space domains,
each introducing an error. These errors are formally charac-
terized and represented as uncertain transition probabilities in
the abstraction model. For the space domain, the framework in
particular uses a suitable discretization based on the dynamics
of the system that results in closed-form analytical solutions
for the error term, leading to fast computations. In the second
stage, a robust strategy that optimizes a safety property is
synthesized over the abstraction. This strategy is computed by
considering only the feasible transition probability distribu-
tions, preventing the explosion of the error term and resulting
in achievable bounds for the safety probability. Finally, this
robust strategy is correctly mapped to a switching strategy for
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the system of switched diffusions with the guarantee that the
computed safety probability bounds also hold for this system.

The contributions of this work are fourfold. Firstly, we
introduce a theoretical framework for formal analysis of
continuous-time, continuous-space diffusion processes. This
includes the characterization and derivation of the error bounds
that result from time discretization. Secondly, we propose
a novel space discretization technique that is dynamics-
dependent and derive the closed-form analytical solution
for the computation of the exact (achievable) error bounds.
Thirdly, we introduce a strategy synthesis algorithm for un-
certain Markov processes with safety (invariance) properties,
which is robust against the embedded uncertainty. Fourthly, we
perform an empirical analysis on the trade-off between time
and space discretization parameters. One of the main outcomes
of this work is a computational framework that is both formal
and scalable for switched stochastic processes. The choice
of the abstraction model and the derivation of discretization
methods with tight error bounds (exact for space) leads to
fine and compact abstractions, whose computation is fast
without the need to rely on sampling-based approaches (as is
currently practiced in the literature, e.g., [12]). Furthermore,
due to duality between probabilistic safety and reachability
problems [20], the proposed framework can be easily extended
to verification and synthesis for more complex properties [14],
[21], [22] expressed in, e.g., PCTL and CSL.

II. PROBLEM FORMULATION AND APPROACH

We consider a switched stochastic process that is continuous
both in time and space and evolves according to:

dx(t) = F (a)x(t) dt+G(a) dw(t), (1)
x ∈ Rm, a ∈ A, t ∈ R≥0,

where
• A = {a1, ..., a|A|} is a finite set of actions,
• F : A→ Rm×m is the drift term,
• G : A→ Rm×r is the diffusion term, and
• w is an r−dimensional Wiener process.

Under each action a ∈ A, process x evolves according to the
SDE in (1). An action change at time t causes a switch in
the drift and diffusion values, resulting in an update in the
dynamics of the process only, i.e., no change in the value of
x(t) (unlike general stochastic hybrid systems [23]). Then, the
process continues evolving according to the updated SDE from
x(t) until the next switch.

Assumption 1 (Weakly controllable). Under each action a ∈
A, process (1) is weakly controllable, i.e., the controllability
subspace associated to (F (a), G(a)) is full rank.

This ensures that, under each action a, x(t) is a non-degenerate
Gaussian random variable with values in Rm [24].

A sample path or trajectory ωX of x is a time-unbounded
execution of the process (1), i.e., a function ωX : R≥0 → Rm.
We denote the set of all sample paths by Ω, the segment of
a path ωX that is limited to the time interval [0, t) by ωtX ,
and the value of path ωX at time t by ωX(t). Let Fw

t be
the sigma-algebra generated by the Wiener process w(t′) for

t′ ≤ t [25]. A switching strategy σX is a Fw
t -measurable

function that selects actions for the process in (1). Under σX ,
the stochastic process x is defined on the filtered probability
space (Ω,F ,F,Prob), where F = (Ft)t≥0 is a filtration such
that Ft ⊆ Fw

t , and Prob is a probability measure [26], [27].
In this work, we assume that σX is also Ft-adapted, i.e., its

choice of action at time t depends on ωtX (the trajectory of x
up to time t) [26]. In order to avoid Zeno behavior (an infinite
number of action switches over a finite time horizon), we also
assume that σX assigns a finite number of switches over any
finite time interval almost surely. Under such a strategy, both
the existence and the uniqueness of a solution x are guaranteed
since (1) is a linear SDE. Moreover, x remains bounded almost
surely over a finite time interval [25], [27].

A. Problem Formulation

We are interested in the safety analysis of process x, and
our aim is to compute a switching strategy that maximizes the
probability of remaining in a safe set.

Problem 1. Given the switched stochastic process in (1), a
compact and measurable safe set Xsafe ⊂ Rm, and a time
duration τ ∈ R≥0, find a switching strategy σX that maximizes
the safety probability of process x, namely the probability of
remaining in Xsafe given by

Psafe(x, Xsafe, τ | σX) =

Prob(ωX(t) ∈ Xsafe ∀t ∈ [0, τ ] | σX). (2)

Safety analysis is one of the fundamental problems in
quantitative verification, which can be reformulated as a non-
trivial stochastic optimal control problem with a multiplicative
cost comprising indicator functions [20], and in particular it
has been studied for stochastic hybrid processes [28]. In this
paper, the focus is on such analysis, as formulated in Problem
1. It is worth noting that solving this problem can also lead to
the solution of the dual problems of reachability analysis [20],
again a core problem in formal verification [19]. Therefore,
the solution to the safety Problem 1 can be extended to the
verification of stochastic hybrid systems over more general
PCTL and CSL properties [14], [21], [22].

The measurability of the event in (2) is based on the
fact that x is almost surely continuous. This implies that x
is a separable stochastic process [29, Theorem 38.1], and
for separable stochastic processes, (2) is well defined. We
emphasize that the measurability of (2) has been established
also for more general classes of stochastic processes [30] and
that evidently (2) does not account for sets of paths of measure
zero that might escape the safe set.

B. Proposed Approach

Analytical approaches to Problem 1 are generally infeasible.
That is due to the fact that such approaches require solu-
tions to partial differential equations (PDE) with absorbing
boundaries, which usually cannot be obtained in closed form
[31]. The switched process in (1) can be formulated as a
bilinear stochastic control problem with control taking values
over a finite set and acting on both drift and diffusion terms
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[32]; however, literature mostly considers actions only in the
drift term and studies exclusively classical stochastic control
problems, which furthermore require, in general, numerical
solutions with an error that is very difficult (if possible at all)
to compute [26], [33].

In this work, we take a general approach that is both formal
and computationally tractable through a discrete abstraction.
We construct a finite model in the form of an uncertain Markov
process that captures all possible behaviors of the process in
(1). This construction involves a discretization of both time
and space domains, which results in a model that approximates
the behavior of the continuous process in (1). We quantify the
error of this approximation and represent it as uncertainty in
the Markov model. We then synthesize an optimal strategy
on this model that is robust against the uncertainty and can
be mapped to the process in (1). Our solution also provides
accurate error bounds on the safety probability of the process
in (1) under this strategy. We should remark that the resulting
strategy, although robust against uncertainties, is in general
only sub-optimal for process (1) due to the discretized nature
of the abstraction model. In fact, as discussed in Sec. VI,
optimality is obtained only in the limit of infinitely-fine time
and space discretizations

We note that the proposed solution framework is not limited
to finite safety time durations and is able to handle unbounded
durations, i.e., τ ∈ R≥0 ∪ {∞}. However, due to the un-
bounded stochastic nature of the process in (1), the safety
probability is zero for a compact Xsafe and τ = ∞; hence,
only τ ∈ R≥0 is considered in Problem 1 (see [12], [34]).

III. PRELIMINARIES

A. Stochastic Hybrid Systems

A switched stochastic process as presented in (1) can be
represented as a continuous-time stochastic hybrid system
(SHS), where each action in A is viewed as a discrete mode
(or location), and the evolution of the system under a discrete
action is determined by the linear dynamics in the correspond-
ing discrete mode. Below, we provide a definition for a simple
class of SHS that is adapted from [23] and models the process
in (1).

Definition 1 (SHS). A (continuous-time) linear stochastic
hybrid system H is a tuple H = (A,m,F,G), where
• A = {a1, . . . , a|A|} is a finite set of discrete modes,
• m ∈ N defines the dimension of the continuous state

space Rm in each mode. The hybrid state space is defined
as S = A× Rm,

• F = {F (a) ∈ Rm×m | a ∈ A} is a collection of drift
terms,

• G = {G(a) ∈ Rm×r | a ∈ A} is a collection of diffusion
terms.

The evolution of stochastic hybrid system H is a stochastic
process s(t) = (a(t),x(t)) with values in S. The term x
represents the evolution of the continuous component of H,
while a describes the evolution of the discrete components
over time. Let PathstH be the sets of paths of s over the time
interval [0, t). Then, a switching strategy at time t for H is a

measurable function σH : PathstH → A that assigns a discrete
mode to each path up to time t.

Assumption 2 (Piecewise-constant σH). The switching strat-
egy σH forH is a piecewise-constant function that may change
its value only at time instants t = k · ∆t, where k ∈ N and
∆t ∈ R>0.

This assumption considers σH to be a piecewise-constant
function with constant sampling times. Hence, σH is a special
case of the strategy σX defined in Sec. II.

Definition 2 (SHS execution). An execution of a SHS H =
(A,m,F,G) under a switching strategy σH and an initial state
s(0) = (a(0),x(0)) ∈ A × Rm is a stochastic process s(t),
whose sample paths for the duration of t ∈ [0, tf) denoted
by ω

tf
H ∈ Paths

tf
H are obtained according to the following

algorithm:

set t = 0 and ω0
H = (a(0),x(0));

while t < tf

set a = σH(ωtH);

compute ω∆t
X according to (1) with initial state x(t);

extend ωtH by (a, ω∆t
X );

t = t+ ∆t;

end

Given σH, the probability space defined on process x naturally
extends to process s. We can associate to x(t) a controlled
transition probability measure T d. For a ∈ A, let B(Rm) be
the Borel sigma-algebra on the state space Rm. Then, starting
from a continuous state x ∈ Rm in mode a at time t ∈ R≥0,
the probability that x(t + ∆t) ∈ B, where B ∈ B(Rm) is a
region in the state space Rm, with the assumption of no mode
change in the duration ∆t is given by

T d(B | x, a,∆t) =

∫
B

N (z | Ex(∆t), Covx(∆t)) dz, (3)

where N (· | Ex(∆t), Covx(∆t)) is a multivariate normal
density function with mean Ex(∆t) and covariance matrix
Covx(∆t) given by

Ex(∆t) = eF (a)∆tx, (4)

Covx(∆t) =

∫ ∆t

0

eF (a)(∆t−z)G(a)GT (a)(eF (a)(∆t−z))T dz.

(5)

Lemma 1. The covariance matrix Covx(∆t) is full rank.

Proof. The proof follows directly from Assumption 1.

B. Finite-state Markov Models

We utilize Markov models as abstraction structures.

Definition 3 (MDP). A Markov Decision Process (MDP) is a
tuple M = (Q,A, P ), where:
• Q is a finite set of states,
• A is a finite set of actions,
• P : Q×A×Q→ [0, 1] is a transition probability function.
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The set of actions available at q ∈ Q is denoted by A(q).
The function P has the property

∑
q′∈Q P (q, a, q′) = 1 for

all q ∈ Q paired with each a ∈ A(q).
A path ω through an MDP is a sequence of states ω = q0

a0−→
q1

a1−→ q2
a2−→ . . . such that ai ∈ A(qi) and P (qi, ai, qi+1) > 0

for all i ∈ N. We denote the last state of a finite path ωfin by
last(ωfin) and the set of all finite and infinite paths by Pathsfin

and Paths , respectively.
A strategy defines a choice of action at each state of the

MDP. Its formal definition follows.

Definition 4 (Strategy). A strategy σ of an MDP model M
is a function mapping a finite path ωfin = q0q1 . . . qn of M
onto an action in A. In other words, a strategy is a function
σ : Pathsfin → A that specifies, for every finite path, the
next action to be applied. If a strategy depends only on
last(ωfin) and time step n, it is called a (time-dependent)
Markov strategy. If a strategy depends only on last(ωfin), it
is called a memoryless or stationary Markov strategy. The set
of all strategies is denoted by Σ1.

Given strategy σ, a probability measure Prob over the set of
all paths Paths is induced on the resulting Markov chain [19].

When modeling with MDPs, it might be difficult to deter-
mine exact values of transition probabilities between states. In
such cases, an interval for each value may be considered. The
model that allows the inclusion of these intervals is known as
bounded-parameter [35] or interval MDP (IMDP) [22].

Definition 5 (IMDP). An interval Markov decision process
(IMDP) is a tuple I = (Q,A, P̌ , P̂ ), where Q and A are as
in Def. 3, and
• P̌ : Q×A×Q→ [0, 1] is a function, where P̌ (q, a, q′) is

the infimum (lower bound) of the transition probabilities
from state q to state q′ under action a ∈ A(q),

• P̂ : Q× A×Q→ [0, 1] is a function, where P̂ (q, a, q′)
is the supremum (upper bound) of the transition proba-
bilities from state q to state q′ under action a ∈ A(q).

For all q, q′ ∈ Q and a ∈ A(q), it holds that P̌ (q, a, q′) ≤
P̂ (q, a, q′) and

∑
q′∈Q P̌ (q, a, q′) ≤ 1 ≤

∑
q′∈Q P̂ (q, a, q′).

Let D(Q) denote the set of discrete probability distributions
over Q. Given q ∈ Q and a ∈ A(q), we call γaq ∈ D(Q) a
feasible distribution reachable from q by a if

P̌ (q, a, q′) ≤ γaq (q′) ≤ P̂ (q, a, q′)

for each state q′ ∈ Q. We denote the set of all feasible
distributions for state q and action a by Γaq . In IMDPs, the
notions of paths and strategies are extended from MDPs in
a straightforward manner. The additional concept is that of
adversary, which makes the choice of a feasible distribution2.

Definition 6 (Adversary). Given an IMDP I, an adversary is
a function π : Pathsfin×A→ D(Q) that, for each finite path

1In this work, we focus on (time-dependent) Markov strategies as they
are sufficient for optimality of safety (and reachability) properties for MDPs
and IMDPs [12], [20].

2In the verification literature for MDPs, the notions of strategy, adversary,
or policy are equivalent and used interchangeably. Their semantics are
however distinguished over IMDPs.

ωfin ∈ Pathsfin and action a ∈ last(ωfin), assigns a feasible
distribution π(ωfin, a) ∈ Γalast(ωfin). The set of all adversaries
is denoted by Π.

Given a finite path ωfin, a strategy σ, and an adversary π, the
IMDP evolution proceeds as follows. At state q = last(ωfin),
first an action a ∈ A(q) is chosen by σ. Then, π resolves the
uncertainties and chooses one feasible distribution γaq ∈ Γaq .
Finally, the next state q′ is chosen according to the distribution
γaq , and the path ωfin is extended by q′.

Given a strategy σ and an adversary π, a probability measure
Prob over the set of all paths Paths (under σ and π) is induced
by the resulting Markov chain [12].

C. Polytopes and their Post Images

Let m ∈ N and consider the m-dimensional Euclidean space
Rm. A full dimensional polytope P is defined as the convex
hull of at least m+ 1 affinely independent points in Rm [36].
The set of vertices of P is the set of points vP

1 , . . . , v
P
nP
∈

Rm, nP ≥ m + 1, whose convex hull gives P and with the
property that, for any i = 1, . . . , nP, point vP

i is not in the con-
vex hull of the remaining points vP

1 , . . . , v
P
i−1, v

P
i+1, . . . , v

P
nP

.
A polytope is completely described by its set of vertices,

P = conv(vP
1 , . . . , v

P
nP

), (6)

where conv denotes the convex hull. Alternatively, P can be
described as the bounded intersection of at least m+ 1 closed
half spaces. In other words, there exists a k ≥ m+1, hi ∈ Rm,
and li ∈ R, i = 1, . . . , k such that

P = {x ∈ Rm | hTi x ≤ li, i = 1, . . . , k}. (7)

The above definition can be written as the matrix inequality
Hx ≤ L, where H ∈ Rk×m and L ∈ Rk. Forms (6) and (7)
are referred to as V - and H-representations of the polytope.

Given a matrix M ∈ Rm×m, the post image of polytope P
by M is defined as [12]:

Post(P|M) = {Mx | x ∈ P }.

This post image is a polytope itself under the linear trans-
formation M and can be computed as Post(P|M) =
conv

(
{MvP

i , 1 ≤ i ≤ nP}
)
.

IV. DISCRETE ABSTRACTIONS

In the first step of our approach to Problem 1, we model the
process in (1) as a SHS and then construct a discrete abstraction
of it in the form of an IMDP. This abstraction is based on
discretization of both time and space domains. That is, we
sample time at a fixed time interval ∆t > 0 and partition the
given safe set into polytopic regions. Such a discretization,
however, introduces an error, which needs to be accounted for
as detailed below.

A. Stochastic Hybrid System Modeling

We model the switched stochastic process in (1) as a SHS H
as defined in Section III-A. Each action of the process in (1) is
associated with a mode of H, and the drift and diffusion terms
in mode a are F (a) and G(a), respectively. In this model, each
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Figure 1: Hybrid system model of a switched diffusion process
with two actions.

mode of H contains a copy of the safe set Xsafe ⊂ Rm, and
hence, the hybrid safe set is

Ssafe = { (a, x) | x ∈ Xsafe and a ∈ A }. (8)

Therefore, the safety probability of process x(t) in (2) be-
comes

Psafe(s, Ssafe, τ | σH) =

Prob(ωH(t) ∈ Ssafe ∀t ∈ [0, τ ] | σH). (9)

for the process s(t) of the hybrid system H, and Problem 1
becomes equivalent to finding σH that maximizes (9).

Figure 1 illustrates a hybrid system representation of a
switched stochastic process with two actions. The hybrid
system has two modes denoted by a1 and a2. The blue surfaces
are the copies of set Xsafe in each mode, and the black
continuous trajectory is a sample path of the hybrid system
with two switches. Note that a segment of the path in mode a1

exits and re-enters the safe set. Lastly, the values of x(t) on the
trajectory do not change at the times of switching (illustrated
as dashed vertical lines); only the modes a(t) change.

B. IMDP Abstraction

We abstract the hybrid system H to an IMDP I =
(Q,A, P̌ , P̂ ) with the purpose of safety analysis. To this
end, we perform a discreitization of the hybrid state space
S by distinguishing between the safe and unsafe states and
exclusively focusing on Ssafe as described below.

For each mode a ∈ A, we partition the corresponding
safe set Xsafe into a set of cells (regions) that are non-
overlapping except for at most trivial sets of measure zero
(their boundaries). We assume that each region is a bounded
polytope. We denote by Qa = {qa1 , ..., qa|Qa|} the resulting set
of regions in mode a. To each cell qai , we associate a state of
the IMDP I. We overload the notation by using qai for both
a region in S, i.e., qai ⊆ {a} × Xsafe ⊆ Ssafe ⊆ S, and a
state of I, i.e., qai ∈ Q; the exact meaning of it should be
clear from the context. Therefore, Ssafe can be represented by
Qsafe =

⋃
a∈AQ

a. We define the set of IMDP states to be

Q = Qsafe ∪ {qunsafe} ,

where qunsafe is an IMDP state that represents the remaining
hybrid states in S \Qsafe.

We define the set of actions of I to be the set of modes
A of H and allow all actions to be available at each state of
I, i.e., A(q) = A for all q ∈ Q. To capture the safe behavior
of H by I, we define the one-step safe transition probability
from a continuous state x ∈ Xsafe to region q ∈ Qsafe under
action (mode) a ∈ A to be

Psafe(q | x, a,∆t) = Prob
(
x(∆t) ∈ q ∧ ∀t ∈ [0,∆t]

(a(t),x(t)) ∈ Ssafe

∣∣ x(0) = x,

a(t) = a ∀t ∈ [0,∆t]
)
.

(10)

In other words, Psafe(q | x, a,∆t) is the probability of
reaching q from x in ∆t without leaving the safe set. By
the application of the law of conditional probabilities we get:

Psafe(q | x, a,∆t) = T d(q | x, a,∆t)T c(∆t | x, q, a), (11)

where

T d(q | x, a,∆t) = Prob
(
x(∆t) ∈ q

∣∣ x(0) = x,

a(t) = a ∀t ∈ [0,∆t]
)

is the discrete transition kernel that determines the probability
of ending up in q after ∆t, as introduced in (3), and

T c(∆t | x, q, a) = Prob
(

(a(t),x(t)) ∈ Ssafe ∀t ∈ [0,∆t]∣∣ x(0) = x, x(∆t) ∈ q, a(t) = a

∀t ∈ [0,∆t]
)

is the continuous transition kernel that considers the safety of
the continuous trajectories over the time interval ∆t. Note that
T d considers all the paths that end up in q from x. This can be
viewed as an error caused by sampling time at intervals of ∆t,
i.e., a time discretization error. The term T c corrects this error
by considering those paths that exit and then re-enter the safe
set during the sampling time interval. As shown in Section
IV-D, the computation of T c reduces to quantify excursion
probabilities for Gaussian processes, which, in general, cannot
be obtained analytically [37]. Hence, in what follows we will
derive sound upper and lower bounds for T c.

We define the transitions in I by using the safe transition
probabilities in (11). The caveat is that the states of I
are regions in H, and there are uncountably many possible
(continuous) initial states in each region, giving rise to a range
of safe feasible transition probabilities to the other regions.
Therefore, the exact transition probability from one region
to another cannot be known, but its range is given by min
and max of (11) over all the possible points in the initial
region. That is, for qi, qj ∈ Qsafe and a ∈ A, the safe feasible
transition probability is bounded from below by

γaqi(qj) ≥ min
x∈qi

Psafe(qj | x, a,∆t)

= min
x∈qi

T d(qj | x, a,∆t)T c(∆t | x, qj , a) (12)

≥
(

min
x∈qi

T d(qj | x, a,∆t)
)(

min
x∈qi

T c(∆t | x, qj , a)
)
,

(13)
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and from above by

γaqi(qj) ≤ max
x∈qi

Psafe(qj | x, a,∆t)

= max
x∈qi

T d(qj | x, a,∆t)T c(∆t | x, qj , a) (14)

≤
(

max
x∈qi

T d(qj | x, a,∆t)
)(

max
x∈qi

T c(∆t | x, qj , a)
)
.

(15)

Therefore, we can define the transition probability bounds P̌
and P̂ of I according to these bounds. Ideally, they should be
the exact bounds given in (12) and (14), but they are usually
difficult to compute as discussed in Sec. IV-D. Instead, we set
the values of P̌ and P̂ according to the possibly looser bounds
in (13) and (15), i.e.,

P̌ (qi, a, qj) =
(

min
x∈qi

T d(qj | x, a,∆t)
) (

min
x∈qi

T c(∆t

| x, qj , a)
)
, (16)

P̂ (qi, a, qj) =
(

max
x∈qi

T d(qj | x, a,∆t)
) (

max
x∈qi

T c(∆t

| x, qj , a)
)
, (17)

for all a ∈ A and qi, qj ∈ Qsafe.
Similarly, we define the bounds of the feasible transition

probabilities to the unsafe state as

γaqi(qunsafe) ≥ 1−max
x∈qi

Psafe(Xsafe | x, a,∆t), (18)

γaqi(qunsafe) ≤ 1−min
x∈qi

Psafe(Xsafe | x, a,∆t), (19)

and set the bounds in I to be

P̌ (qi, a, qunsafe) = 1−max
x∈qi

Psafe(Xsafe | x, a,∆t), (20)

P̂ (qi, a, qunsafe) = 1−min
x∈qi

Psafe(Xsafe | x, a,∆t), (21)

for all a ∈ A and qi ∈ Qsafe. Finally, we make the unsafe
state qunsafe absorbing, i.e.,

P̌ (qunsafe, a, qunsafe) = P̂ (qunsafe, a, qunsafe) = 1,

for all a ∈ A.
Note that the ranges of transition probabilities can be viewed

as errors caused by the space discretization. The benefit of
using IMDP as the abstraction model is that its structure allows
one to encode both time and space discretization errors as
uncertainty into the abstraction. In the next three subsections,
we show an efficient method of computation for P̌ and P̂ , and
in Section V, we show how a safe strategy that is robust against
the uncertainty can be synthesized over I. Finally, we prove
that the synthesized strategy on I can be soundly mapped on
to the process in (1) in Section VI.

C. Bounds on the Discrete Transition Kernel

Here, we focus on the values of

min
x∈qi

T d(qj |x, a,∆t), max
x∈qi

T d(qj |x, a,∆t), (22)

and introduce an efficient method for their exact computations.
To this end, we first define a hyper-rectangle in Rm to be an
m-dimensional rectangle defined by the intervals

[v
(1)
l , v(1)

u ]× [v
(2)
l , v(2)

u ]× · · · × [v
(m)
l , v(m)

u ],

where vectors vl, vu ∈ Rm capture the lower and upper values
of the vertices of the rectangle in each dimension, and v(i)

denotes the i-th component of vector v. Then, we characterize
T d analytically as follows.

Proposition 1. For process x under action a ∈ A for a
duration ∆t, let Ta = Λ

− 1
2

a V Ta be a transformation function
(matrix), where Λa = V Ta Covx(∆t)Va is a diagonal matrix
whose entries are eigenvalues of Covx(∆t) and Va is the cor-
responding orthonormal (eigenvector) matrix. For a polytopic
region q ⊂ Rm, if Post(q|Ta) is a hyper-rectangle given by
[v

(1)
l , v

(1)
u ]× · · · × [v

(m)
l , v

(m)
u ], then it holds that

T d(q | x, a,∆t) =

1

2m

m∏
i=1

(
erf(

y(i) − v(i)
l√

2
)− erf(

y(i) − v(i)
u√

2
)
)
, (23)

where erf(·) is the error function, and y(i) is the i-th compo-
nent of vector y = TaEx(∆t).

Proof. For a fixed a ∈ A and duration ∆t, recall that
T d(q | x, a,∆t) is given by (3). By applying a whitening trans-
formation through the transformation matrix Ta = Λ

− 1
2

a V Ta ,
we obtain that TaCovx(∆t)T Ta = I, where I is the identity
matrix. Thus, by working in the transformed space induced by
Ta, we obtain

T d(q | x, a,∆t) =

∫
Post(q|Ta)

N
(
z | TaEx(∆t), I

)
dz.

Under the assumption that Post(q|Ta) is a hyper-rectangle,
the above multidimensional integral can be separated and
expressed as a product of m integrals of uni-dimensional
normal distributions:

T d(q|x, a,∆t) =

∫
Post(q|Ta)

N
(
z | TaEx(∆t), I

)
dz

=

∫ v(1)
u

v
(1)
l

· · ·
∫ v(m)

u

v
(m)
l

N
(
z1 | y(1), 1

)
· · · N

(
zm |

y(m), 1
)
dz1 · · · dzm

=

m∏
i=1

1

2

(
erf(

y(i) − v(i)
l√

2
)− erf(

y(i) − v(i)
u√

2
)
)
,

where y = TaEx(∆t).

A direct consequence of Proposition 1 is that the optimiza-
tion problems in (22) can be performed on (23) through a
linear transformation, as stated by the following corollary.

Corollary 1. For polytopic regions qi, qj ⊂ Rm and process
x under action a for the duration of ∆t, assume Post(qj |Ta)
is a hyper-rectangle given by

[v
(1)
l , v(1)

u ]× · · · × [v
(m)
l , v(m)

u ],

and define q′i = Post(qi | eF (a)∆t) and

f(y) =
1

2m

m∏
i=1

(
erf(

y(i) − v(i)
l√

2
)− erf(

y(i) − v(i)
u√

2
)
)
.
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Then, it holds that

min
x∈qi

T d(qj | x, a,∆t) = min
y∈Post(q′i|Ta)

f(y),

max
x∈qi

T d(qj | x, a,∆t) = max
y∈Post(q′i|Ta)

f(y).

The above proposition and corollary show that, with a par-
ticular geometry for qj , an analytical form can be obtained for
the discrete kernel. This is an important observation because it
enables efficient computation for the min and max values of
the kernel. Therefore, we use a space discretization to satisfy
the condition in Proposition 1, as described below.

For each mode a ∈ A, we define the linear transformation
function (matrix) of

Ta = Λ
− 1

2
a V Ta ,

where Λa = V Ta Covx(∆t)Va is a diagonal matrix whose
entries are the eigenvalues of Covx(∆t), and Va is the corre-
sponding orthonormal (eigenvector) matrix. The discretization
of Xsafe in mode a is achieved by using a grid in the trans-
formed space by Ta. That is, we first transform Xsafe by Ta,
and then discretize it using a grid, and then transform it back to
the original space using T −1

a . This method of discretization
guarantees that, for each qa ∈ Qa, Post(qa|Ta) is a hyper-
rectangle. Hence, we can use the result of Proposition 1 and
Corollary 1 for the computation of the values in (22).

It is worth noting that, for an arbitrary geometry of Xsafe,
it may not be possible to obtain a discretization such that⋃
qa∈Qa q

a = Xsafe. Nevertheless, for the purpose of safety
analysis, a discretization that under-approximates Xsafe, i.e.,⋃
qa∈Qa q

a ⊆ Xsafe, is sufficient in each mode a. For a
better approximation, the grid can be non-uniform, allowing
in particular for smaller cells near the boundary of Xsafe, as
in [11].

In the next theorem, we use the result of Corollary 1 and
the Karush-Kuhn-Tucker (KKT) conditions [38] to compute
the exact values for (22).

Theorem 1. For polytopic regions qi, qj ⊂ Rm and transfor-
mation matrix Ta, let Post(qj |Ta) be a hyper-rectangle defined
by intervals

[v
(1)
l , v(1)

u ]× [v
(2)
l , v(2)

u ]× · · · × [v
(m)
l , v(m)

u ],

and
Post(q′i|Ta) = {y ∈ Rm | Hy ≤ b},

where q′i = Post(qi|eF (a)∆t), H ∈ Rk×m, b ∈ Rm, and
k ≥ m+ 1, and call

f(y) =
1

2m

m∏
i=1

(
erf(

y(i) − v(i)
l√

2
)− erf(

y(i) − v(i)
u√

2
)
)
. (24)

Introduce the following conditions:
• Condition1: y is at the center of Post(qj |Ta), i.e.,

y = (
v(1)
u +v

(1)
l

2 , . . . ,
v(m)
u +v(m)

u

2 ).
• Condition2: y is a vertex of Post(q′i|Ta).
• Condition3: y is on the boundary of Post(q′i|Ta),

where r ≥ 1 of the k half-spaces that define Post(q′i|Ta)
intersect, and

∇f(y) = H̄Tµ,

for vector µ = (µ1, . . . , µr) of non-negative constants,
and submatrix H̄ ∈ Rr×m that contains only the rows of
H that correspond to the r-intersecting half-spaces at y.

• Condition4: y is as in Condition 3, and

∇f(y) = −H̄Tµ,

for vector µ = (µ1, . . . , µr) of non-negative constants,
and H̄ is defined as in Condition 3.

Then, it follows that the point y ∈ Post(q′i|Ta) that satisfies
Condition 1 necessarily maximizes f(y). If Condition 1 cannot
be satisfied, then the maximum is necessarily given by one
of the points that satisfy Condition 2 or 3. Furthermore, the
point y ∈ Post(q′i|Ta) that minimizes f(y) necessarily satisfies
Condition 2 or 4.

The proof of Theorem 1 can be found in Appendix A.
Theorem 1 identifies the arguments (points y in

Post(q′i|Ta)) that give rise to the optimal values of the discrete
transition kernel in (22). Then, the actual optimal values of
T d can be computed by (24) as guaranteed by Corollary 1.
Therefore, from Theorem 1, an algorithm can be constructed
to generate a set of finite candidate points based on Conditions
1-4 and to obtain the exact values of (22) by plugging those
points into (24).

In short, Condition 1 maximizes the unconstrained problem
and gives rise to the global maximum. Hence, if the center of
qj is contained in Post(q′i|Ta), no further check is required
for maximum. If not, the maximum is given by a point on the
boundary of Post(q′i|Ta). It is either a vertex (Condition 2)
or a boundary point that satisfies Condition 3. The minimum
is always given by a boundary point, which can be either a
vertex or a boundary point that satisfies Condition 4. Note that
Conditions 3 and 4 are similar and both state that the optimal
value of T d is given by a point where the gradient of T d

becomes linearly dependent on the vectors that are defined by
the intersecting half-spaces of Post(q′i|Ta) at that point. Each
of these two conditions defines a system of m equations and
r < m variables, which may have a solution only if some of
the equations are linear combinations of the others.

In order to give a better insight on the conditions and the
result of Theorem 3, an illustration on a 2-dimensional system
is provided in the example below.

Example 1. Consider a 2-dimensional system (m = 2), where
Post(qj |Ta) is a rectangle given by [v

(1)
l , v

(1)
u ] × [v

(2)
l , v

(2)
u ],

and Post(q′i|Ta) is defined by the following four inequalities
for y ∈ R2:

hi1 y
(1) + hi2 y

(2) ≤ b(i), i ∈ {1, 2, 3, 4}.

Theorem 1 guarantees that if point ȳ = (
v

(1)
l +v(1)

u

2 ,
v

(2)
l +v(2)

u

2 )
satisfies all the four inequalities (Condition 1), then

max
x∈qi

T d(qj | x, a,∆t) = f(ȳ).

If not, then the maximum is given by a point on the lines

hi1 y
(1) + hi2 y

(2) = b(i), i ∈ {1, 2, 3, 4}.
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That point is either a vertex, i.e., an intersection of two lines,
(Condition 2) or where

∂f(y)

∂y(1)
= hi1µi, and

∂f(y)

∂y(2)
= hi2µi

(Condition 3), resulting in

∂f(y)

∂y(2)
=
hi2
hi1

∂f(y)

∂y(1)
.

Note that hi2
hi1

is the slope of the line perpendicular to the
i-th boundary line. This means that a non-vertex candidate
point on line i is where the gradient of f(y) becomes per-
pendicular to the line. It is a valid candidate if it is on the
line segment that satisfies the four inequalities, i.e., on the
boundary of Post(q′i|T ). Let Y be the set containing all such
valid candidate points and the 4 vertices, i.e., 4 ≤ |Y | ≤ 8.
Then,

max
x∈qi

T d(qj | x, a,∆t) = max
ȳ∈Y

f(ȳ).

For the minimum, all four vertices need to be considered
(Condition 2) in addition to the valid points where the gradient
of −f(y) becomes perpendicular to the boundary line (Condi-
tion 4). Let Y ′ denote the set of these points, i.e., 4 ≤ |Y ′| ≤ 8.
Then,

min
x∈qi

T d(qj | x, a,∆t) = min
ȳ∈Y ′

f(ȳ).

It is important to note that Theorem 1 enables to find the
values for (22) without the need for sampling-based methods
and/or for over-approximations of the error, as currently done
in the literature, e.g., [1], [9], [12]. Thus, in addition to
computing the exact values for those quantities, it also speeds
up the process of building the abstraction.

D. Bounds on the Continuous Transition Kernel

Here, we derive bounds for the quantities

min
x1∈qi

T c(∆t | x1, qj , a), max
x1∈qi

T c(∆t | x1, qj , a). (25)

To this end, we first need to introduce the notion of bridge of
a stochastic process [39]. Intuitively, the bridge of a stochastic
process is also a stochastic process for which both initial and
final states are known. Formally, for x(t) with given initial
and final states x1, x2 ∈ Rm, fixed action a ∈ A, and duration
∆t ∈ R≥0, the bridge bx1,x2,a,∆t

x (t) (or simply bx(t) if the
context is clear) is defined as

bx1,x2,a,∆t
x (t) = x(t), conditioned on

x(0) = x1, x(∆t) = x2, a(t) = a ∀t ∈ [0,∆t].

The following proposition guarantees that bx(t) is a Gaussian
process and derives its expectation and covariance from those
of x [39], [40].

Proposition 2 (Proposition 4 in [41]). Let x be the stochastic
process described by (1). For a ∈ A, x1, x2 ∈ Rm, bx1,x2,a,∆t

x

is a Gaussian process with a probability measure Probbx such

that bx(t) ∼ N (Ebx(t), Covbx(t)), and with the following
expectation and covariance

Ebx(t) = Covx(∆t, t)Covx(∆t)−1
(
x2 − Ex(∆t)

)
+ Ex(t), (26)

Covbx(t) = Covx(t)− Covx(∆t, t)Covx(∆t)−1

Covx(∆t, t), (27)

where Covx(t1, t2) is the covariance of process x at times t1
and t2 given by

Covx(t1, t2) = E
[(
x(t1)− Ex(t1)

)(
x(t2)− Ex(t2)

)T ]
= eF (a)t2Covx(0)(eF (a)t1)T+∫ min(t1,t2)

0

eF (a)(t2−u)G(a)G(a)T

(eF (a)(t1−u))T du. (28)

Process bx describes the evolution of x during [0,∆t] given
that x(0) and x(∆t) are known. Since bx is Gaussian, we
can use the theory of Gaussian processes to derive bounds for
T c(∆t|x1, qj , a). Theorem 2 focuses on the upper bound.

Theorem 2. For polytopic regions qi, qj ⊆ Xsafe, it holds that

max
x1∈qi

T c(∆t | x1, qj , a) ≤ max
x̄∈q̄

∫
Xsafe

N (z | x̄, Covbx(
∆t

2
))dz,

(29)
where

q̄ = Post(qi|A1)⊕ Post(qj |A2),

A1 = eF (a) ∆t
2 − Covx(∆t,

∆t

2
)Covx(∆t)−1 eF (a)∆t,

A2 = Covx(∆t,
∆t

2
)Covx(∆t)−1,

and ⊕ is the Minkowski sum.

Proof. Let D = {t1, t2, . . .} ⊂ [0,∆t] be a countable and
dense subset of [0,∆t] such that ∆t

2 ∈ D. The upper bound
on the continuous kernel from region qi to qj is the maximum
safety probability of the bridge over all the possible initial
points in qi and final points in qj :

max
x1∈qi

T c(∆t | qj , x1, a)

= max
(x1,x2)∈(qi.qj)

Probbx(bx(ti) ∈ Xsafe, ∀ti ∈ D)

≤ max
(x1,x2)∈(qi.qj)

Probbx(bx(
∆t

2
) ∈ Xsafe)

= max
(x1,x2)∈(qi.qj)

∫
Xsafe

N
(
z|Ebx(

∆t

2
), Covbx(

∆t

2
)
)
dz,

where in particular the first identity is due to the separability of
bx in [0,∆t] and the inequality is due to the fact that ∆t

2 ∈ D.
In the above optimization, the only term that depends on x1

and x2 is Ebx(∆t
2 ). By rearranging the terms in (26), we have

Ebx(
∆t

2
) =
(
eF (a) ∆t

2 − Covx(∆t,
∆t

2
)Covx(∆t)−1eF (a)∆t

)
x1 +

(
Covx(∆t,

∆t

2
)Covx(∆t)−1

)
x2.
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Therefore, Ebx(∆t
2 ) is the sum of linear transformations of

x1 and x2. Since x1 ∈ qi and x2 ∈ qj , the above optimization
can be defined as a maximization over all the points in the
Minkowski sum of the linear transformations of qi and qj .

Theorem 2 shows that the upper bound of T c is given
by a constrained maximization (over a convex region q̄) of
the integral of a normal distribution over Xsafe. An efficient
method of computation for this maximization problem is
similar to the one introduced in Section IV-C. That is to
solve the problem in the transformed space where Covbx(∆t

2 )
is the identity matrix. Then, through a grid discretization of
the transformed Xsafe (the discretization needs to be over-
approximating if a precise representation is not possible), the
integral of the normal distribution over Xsafe can be expressed
as a summation of closed-form functions, similar to (24).
Then, a straightforward extension of Theorem 1 can be used
to compute the max value of this summation. For details, see
Proposition 3 and the ensuing discussion.

In order to derive the lower bound of T c(∆t | qj , x1, a),
we employ the 1−norm distance of a point x ∈ Rm to a set
X ⊆ Rm, defined as

||x−X||1 = min
x′∈X

||x− x′||1 = min
x′∈X

m∑
i=1

|x(i) − x′(i)|,

where x(i) denotes the i-th component of vector x. Hence, the
minimum distance from a region q ⊆ Xsafe to the boundary
of Xsafe can be written as

εq = min
x∈q
||x− ∂Xsafe||1,

where ∂Xsafe is the boundary of Xsafe. Then, we can bound
T c from below by

min
x1∈qi

T c(∆t | x1, qj , a)

= 1− max
(x1,x2)∈(qi,qj)

Probbx(∃t ∈ [0,∆t] s.t. bx(t) /∈ Xsafe)

≥ 1− max
(x1,x2)∈(qi,qj)

Probbx
(
∃t ∈ [0,∆t] s.t. ||bx(t)− x1||1 ≥ εqi

∧ ||bx(t)− x2||1 ≥ εqj
)
. (30)

The inequality in (30) holds because the set of paths of bx

that remain within a distance εqi from x1 or within a distance
εqj from x2 is guaranteed to be safe during [0,∆t], and hence
the complement of this set contains all the paths that are not
safe during [0,∆t]. Theorem 3 (below) shows how to compute
a bound on (30), but in order to arrive to this theorem, the
following terms need to be defined first.

For i ∈ {1, . . . ,m}, let Lb(i) denote the maximum distance
that the expectation of the i-th component of the bridge can
travel. Formally,

Lb(i) = sup
(x1,x2,t1,t2)∈(qi,qj ,[0,∆t],[0,∆t])

|E
b

(i)
x

(t1)− E
b

(i)
x

(t2)|,

where b
(i)
x is the i-th component of bx, Ebx(0) = x1, and

Ebx(∆t) = x2. For i ∈ {1, ...m}, let b̄(i)
x (t) be the zero-mean

Gaussian process

b̄(i)
x (t) = b(i)

x (t)− E
b

(i)
x

(t).

Intuitively, b̄(i)
x (t) represents the i-th component of the bridge

with zero mean. Furthermore, for i ∈ {1, . . . ,m}, we use
Kd,i

b > 0 to denote the constant that bounds the expected
maximum variation of the process b̄

(i)
x (t). That is,

sup
t1,t2∈[0,∆t]

di(t1, t2) ≤ Kd,i
b ∆t,

where

di(t1, t2) =

√
E
[(
b̄

(i)
x (t1)− b̄

(i)
x (t2)

)2]
.

We can now state the following theorem, which shows how
to bound the inequality in (30).

Theorem 3. For regions qi, qj ⊆ Xsafe, i ∈ {1, . . . ,m}, let

ηi =
ε∗

m
−
(
Lb(i) + 12

∫ 1
2K

d,i
b ∆t

0

ln

(
2Kd,i

b ∆t

z
+ 1

) 1
2

dz
)
,

where ε∗ = max
{
εqi , εqj

}
. Assume ηi > 0,∀i ∈ {1, ...,m}.

Then, it holds that

min
x1∈qi

T c(∆t | x1, qj , a) ≥ 1− 2

m∑
i=1

e
− η2

i
2ξi ,

where ξi = supt∈[0,∆t] Covb̄(i)
x

(t).

The proof of Theorem 3 is given in Appendix B. It makes
use of the Borell-TIS inequality [37] and of Dudley’s theorem
[42] to bound (30).

Theorem 3 requires the computation of constant Lb(i) ,
which is always lower-bounded by

Lb(i) ≥ max
(x1,x2)∈(qi,qj)

|x(i)
1 − x

(i)
2 |.

For particular models, this bound can be tightened. For ex-
ample, if F and G are diagonal matrices, F is stable (i.e.,
all of its eigenvalues are negative), and Xsafe is centered on
the origin, then Lb(i) = 0. Intuitively, this is because Ebx(t)
always points towards the origin; hence, it is always moving
away from the unsafe set.

The term ηi in Theorem 3 is a constant, which represents
the difference between the larger distance between qi or qj and
the boundary of Xsafe, scaled by m, and a term that bounds
the expectation of the supremum of b

(i)
x (loosely speaking,

it is the maximum distance that the system can travel in the
duration of ∆t in expectation) given by the Dudley’s entropy
integral [37]. There are two scenarios when ηi can be non-
positive: (i) both qi and qj are very close to the boundary, and
(ii) qi and qj are far from each other. In either case, we set
the lower bound of T c to zero. Intuitively, when both qi and
qj are very close to the boundary, the chances that b(i)

x for all
i remains safe are very low. When qi and qj are far from each
other, the lower bound of the transition probability between
them is close to zero for small ∆t.

E. Bounds on the Transition Probabilities to the Unsafe Re-
gion

Here, we focus on the transition probabilities to the unsafe
state qunsafe in (20) and (21) and we consider the quantities

max
x∈qi

Psafe(Xsafe | x, a,∆t), min
x∈qi

Psafe(Xsafe | x, a,∆t).
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We can also efficiently compute bounds for these quantities
by using the results obtained above. The following proposition
shows this efficient method of computation.

Proposition 3. Let Qa and Q̄a be two sets of polytopic regions
in mode a such that⋃

q∈Qa
q ⊆ Xsafe ⊆

⋃
q∈Q̄a

q,

and Post(q|Ta) is a hyper-rectangle defined by

[v
(1)
l,q , v

(1)
u,q]× · · · × [v

(m)
l,q , v

(m)
u,q ]

for every q ∈ Qa ∪ Q̄a, and call

f(y, q) =
1

2m

m∏
i=1

(
erf(

y(i) − v(i)
l,q√

2
)− erf(

y(i) − v(i)
u,q√

2
)
)
.

(31)
Then, it holds that

max
x∈qi

Psafe(Xsafe | x, a,∆t) ≤ max
y∈Post(q′i|Ta)

∑
q∈Q̄a

f(y, q),

(32)

min
x∈qi

Psafe(Xsafe | x, a,∆t) ≥ α min
y∈Post(q′i|Ta)

∑
q∈Qa

f(y, q),

(33)

where q′i = Post(qi|eF (a)∆t),

α =


max{0, 1− 2

∑m
i=1 e

−
η2
x,i

2ξx } if ηx,i > 0,

∀i ∈ {1, . . . ,m}
0 otherwise,

ηx,i = εqi −
(
L(i)
x + 12

∫ 1
2K

d,i
x ∆t

0

ln

(
Kd,i

x ∆t

2z
+ 1

) 1
2

dz
)
,

and ξx,i,Kd
x,i and L(i)

x are the constants introduced in Section
IV-D, but computed for process x(i).

The proof of this proposition is in Appendix C.
Intuitively, Proposition 3 states that, with a particular choice

of discretization, i.e., a grid in the transformed space, the
safe transition probability to Xsafe is equal to the sum of
the transition probabilities to the discrete regions, where each
discrete transition kernel is given by the close-form function
f(y, q) in (31). If Xsafe cannot be precisely discretized with
a grid (in the transformed space), then the upper and lower
bounds of the transition probabilities are given by the over-
and under-approximating grids (Q̄a and Qa), respectively.
In both cases, the bounds need to be scaled by the time
discretization error, which is captured by α in (33) for the
lower bound. For the upper bound in (32), the maximum time
discretization error is taken to be one. Theoretically, a tighter
upper bound can be obtained by extending Theorem 2 for
the time discretization error. In the experimental evaluations,
however, it made no practical improvement to the bounds
whilst drastically increasing the burden of computations.

Note that, for the computation of the values in (32) and (33),
a straightforward extension of Theorem 1 can be used. In the

extended version, the point y at which
∑
q∈Q̄a ∇f(y, q) = 0

needs to be considered instead of the center point in Con-
dition 1. Condition 2 remains the same, and in Conditions
3 and 4, ∇f(y) needs to be replaced with

∑
q∈Q̄a ∇f(y, q)

and
∑
q∈Qa ∇f(y, q), respectively. This leads to an efficient

computation of the transition probability bounds to qunsafe,
finalizing the construction of the abstraction I.

V. SYNTHESIS

Given the IMDP abstraction I, our goal is to synthesize a
strategy that is robust against all the introduced uncertainties
(errors) by the discretization of time and space domains. These
uncertainties can be viewed as the nondeterministic choice of a
feasible transition probability from one IMDP state to another
under a given action. Therefore, we interpret the evolution
of the IMDP as a 2-player stochastic game, where Player 1
chooses an action a ∈ A at state q ∈ Q, and Player 2 chooses a
feasible transition probability distribution γaq ∈ Γaq . This game
is adversarial, where the objectives of Players 1 and 2 are to
maximize and minimize the probability of remaining in the
safe set, respectively. Hence, the goal becomes to synthesize
a strategy for Player 1 that is robust against all adversaries.

It is worth noting that, in this 2-player stochastic game, the
choice for Player 2 is from a continuous set, and hence the
classical algorithms for 2-player games, e.g., [43] cannot be
used. In [12], a synthesis algorithm for reachability for IMDPs
is introduced. Since reachability and safety problems are dual,
one can adapt that algorithm to solve for the safety problem.
The dual reachability problem of safety is to find a strategy that
minimizes the probability of reaching the unsafe state under
all possible adversaries. We introduce a synthesis algorithm
that directly solves the safety problem in this section.

Recall that τ is the required time duration for the system to
remain safe. Let kτ = d τ∆te be the equivalent number of time
steps, where d·e is the ceiling function. Also note that, given
the IMDP abstraction I, under a strategy σ, the probability of
remaining safe from each state is necessarily a range for all
the available choices of Player 2 or adversaries. Let p̌kσ(q) and
p̂kσ(q) denote the lower and upper bounds of the probability
of remaining safe in k time steps starting from state q ∈ Q
under strategy σ, respectively. Derived from Bellman equation,
we can compute the optimal lower bound by kτ recursive
evaluations of

p̌kσ∗(q) = max
a∈A(q)

min
γaq∈Γaq

∑
q′∈Q

γaq (q′) p̌k−1
σ∗ (q′) (34)

with initial values of p̌0
σ∗(q) = 1 for q ∈ Qsafe and

p̌0
σ∗(qunsafe) = 0.
The minimization over the adversaries can be computed

iteratively through an ordering of the states of I [12], [35]. Let
O↑ = o1, . . . , o|Q|, where oi ∈ Q, be an ascending ordering
of the states in Q with respect to the safety probability. Then,
the adversary that minimizes the safety probability in one
transition is the one that assigns as much transition probability
mass as possible to the states early in the ordering O↑. For the
state-action pair (q, a), let r be the state index 1 ≤ r ≤ |Q|
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in the ordering O↑ that maximizes the following expression
without letting it exceed 1:

r−1∑
i=1

P̂ (q, a, oi) +

|Q|∑
i=r

P̌ (q, a, oi).

Then, the minimizing adversary at (q, a) is:

γ∗aq (oi) =

{
P̂ (q, a, oi) if i < r

P̌ (q, a, oi) if i > r
,

γ∗aq (or) = 1−
|Q|∑

i=1,i6=r

γ∗aq (oi).

(35)

Once these adversaries are obtained for all a ∈ A(q), then a
maximization over the actions can be performed to complete
the computation for one time step in (34). This operation can
be achieved by a matrix-vector multiplication followed by a
maximization, as detailed in [12]. After kτ iterations of this
algorithm, the robust strategy σ∗ and the lower bound safety
probability p̌kτσ∗(q) for each q ∈ Q are obtained. The upper
bounds are then given by recursive evaluations of

p̂kσ∗(q) = max
γ
σ∗(q)
q ∈Γ

σ∗(q)
q

∑
q′∈Q

γσ
∗(q)

q (q′) p̂k−1
σ∗ (q′), (36)

with the initial values of p̂0
σ∗(q) = 1 for q ∈ Qsafe and

p̂0
σ∗(qunsafe) = 0. The maximization over adversaries is

obtained through (35) with a descending ordering O↓ of the
states.

The complexity of the above strategy synthesis algorithm
is polynomial in the size of the IMDP I, and the obtained
strategy is a (time-dependent) Markov strategy for finite kτ
[12]. Even though this extension is beyond the scope of this
work, it is worth noting that the Bellman equations in (34)
and (36) are guaranteed to converge as k → ∞ [12], [44].
Therefore, the safety computations can also be performed for
unbounded (safety) time durations, i.e., τ →∞, in which case
the obtained strategy becomes stationary (memoryless).

VI. CORRECTNESS GUARANTEES AND COMPLETENESS
ANALYSIS

The computed strategy σ∗ and probability bounds p̌kτσ∗
and p̂kτσ∗ on I also hold for the hybrid system H. Let
L : PathsfinH → Pathsfin be a function that maps the
sample paths of the hybrid system H to the finite paths
of the IMDP I through sampling time at intervals ∆t, i.e.,
L(ωk∆t

H ) = q0, q1, . . . , qk for all k ≥ 0, where qi is the state
in I that corresponds to the region q

a(i∆t)
i in mode a(i∆t)

of H such that x(i∆t) ∈ q
a(i∆t)
i for all 0 ≤ i ≤ k. Then,

the IMDP strategy σ∗ correctly maps to a piecewise-constant
switching strategy σ∗H of H through

σ∗H(ωk∆t
H ) = σ∗(L(ωk∆t

H )). (37)

Using this construction of the switching strategy σ∗H, the
following theorem shows that the safety probability bounds
p̌kτσ∗ and p̂kτσ∗ are guaranteed to hold for the safety of process
s in H under σ∗H for the duration of τ .

Theorem 4. Let s be the execution associated to the hybrid
system H and I be the IMDP abstraction of H for sampling
time ∆t > 0, as described in Section IV. Furthermore, let σ∗

be the strategy on I computed by solving (34) and (36) with
safety probability bounds p̌kτσ∗ and p̂kτσ∗ , where kτ = d τ∆te for
time duration τ ∈ R≥0. For switching strategy σ∗H constructed
from σ∗ per (37) and initial hybrid state s(0) = s0 = (a0, x0)
with x0 ∈ q0 in mode a0 ∈ A, it holds that

Psafe(s, Ssafe, τ | σ∗H, s0) ∈
[
p̌kτσ∗(q0), p̂kτσ∗(q0)

]
, (38)

where Psafe(s, Ssafe, τ | σ∗H, s0) is the safety probability for
the process s initialized at s0 under σ∗H.

Proof. By Theorems 1, 2 and 3, it holds that Γaq0 contains all
the feasible distributions of s = (a,x) during [0,∆t] given
a(t) = a and x(0) = x, for all x ∈ q0. Bounds p̌kτσ∗(q0) and
p̂kτσ∗(q0) are computed by solving (34) and (36). Thus, given
that the system is Markov, by induction over all the discrete
time intervals we have that p̌kτσ∗(q0) is the lower bound over
all possible distributions of s during [0, τ ], and p̂kτσ∗(q0) is the
upper bound on the same set.

Theorem 4 guarantees that the safety probability of the pro-
cess s is contained in the safety probability interval computed
on the abstraction I. The size of this interval depends on the
difference of the one-step transition probability bounds of P̌
and P̂ in I, which can be viewed as the error induced by
time and space discretization of H cast into the abstraction I.
Both of these errors can be tuned: for time, the discretization
variable is ∆t; for space, the discretization variable is the
largest volume of the discrete cells (partitions) denoted by
Vqmax. Similar to the proof in [1] for switching diffusions, it
can be shown that, as both ∆t→ 0 and Vqmax → 0, the error of
the abstraction goes to 0, and the IMDP abstraction becomes
an MDP, i.e., P̌ (q, a, q′) → P (q, a, q′) ← P̂ (q, a, q′) for all
q, q′ ∈ Q and a ∈ A(q); hence, p̌kτσ (q0) → Psafe(s, Ssafe, τ |
σH, s0) ← p̂kτσ (q0). As a consequence, the synthesized strat-
egy is optimal for ∆t→ 0 and Vqmax → 0.

Note that the underlying assumption in Theorem 4 is that
partitions

⋃
q∈Qsafe

q = Ssafe. If Qsafe is a conservative
under approximation of Ssafe, i.e.,

⋃
q∈Qsafe

q ⊂ Ssafe, the
lower bound in (38) still holds, but the upper bound may
be smaller than the actual upper bound. Nevertheless, both
bounds always hold for Qsafe, i.e., Psafe(s, Qsafe, τ | σ∗H, s0) ∈[
p̌kτσ∗(q0), p̂kτσ∗(q0)

]
. Also note that, for an initial continuous

state x(0) = x0, there are |A| choices for the initialization of
the hybrid system H, i.e., the choice of a0 in s0 = (a0, x0).
Let qa0 denote the region that contains x0 in mode a ∈ A.
Then, the optimal choice of mode for s0 is the one that
corresponds to the IMDP state with maximum lower bound,
i.e., a0 = arg maxa∈A p̌kτσ∗(q

a
0 ).

An interesting question in the analysis of the proposed
framework is how changes in the discretization variables
affect the error. In the case of time discretization, Theorem
3 guarantees that the error due to the continuous transition
kernel T c for a single transition step goes to zero exponentially
with ∆t. However, a smaller ∆t causes the distribution of the
discrete transition kernel T d to have a smaller variance, which
can lead to an increase in the space discretization error due to
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Vqmax. Therefore, in order to obtain a smaller overall error, a
finer space discretization is required, causing an increase in the
number of states in the abstraction IMDP. This gives rise to a
trade-off in error contribution by time and space discretization,
which is empirically studied in the next section. A thorough
analysis on how to tune the discretization parameters is the
subject of future work.

Finally, it is important to note that, in order to obtain an
IMDP abstraction of process x, a hybrid system modeling
of x is not necessarily required. One can always partition
Xsafe and compute the transition probability bounds P̌ and
P̂ through evaluations of T c and T d as in (20) and (21).
The computations for T c and T d, however, are difficult for
arbitrary geometry of discrete cells. As a matter of fact,
this step is known to be the bottleneck of verification and
synthesis for continuous stochastic processes. In our approach,
we overcome this burden by a particular choice of geometry
for the discretization that is dependent on the dynamics of
the stochastic process under each action. The hybrid system
modeling allows this unique discretization of Xsafe under
each action (mode). Therefore, we are able to obtain closed-
form solutions for T c and T d, allowing the exact and fast
computation for their values. This of course comes at the
cost of increasing the number of states in the abstraction I,
which is a much smaller burden given the low (polynomial)
computational complexity of the IMDP synthesis algorithm.

VII. EXPERIMENTAL RESULTS

We implemented our abstraction and synthesis algorithms
in MATLAB and tested the performance of the framework on
a set of case studies. We first considered a stochastic process
with a single mode to illustrate the efficacy and scalability of
the approach in the formal analysis of SDEs (Case Study 1).
Then, we analyzed the trade-off between space and time
discretization parameters and their effects on the overall error
(Case Study 2). Finally, we considered a strategy synthesis
problem on a two-mode switched stochastic process (Case
Study 3). The case studies presented in this section have been
distilled as particular instances of a model for a multi-room
heating system, where the continuous dynamics represent the
evolution of the temperature in a set of rooms (with number
equal to the state space dimension), and the discrete modes
represent the different heating actions, which may be turned on
or off according to the selected strategy [20]. All the compu-
tations were performed on an Intel Dual Core i5 machine with
8 GB of RAM using a single thread program. Nevertheless,
the implementation of the abstraction construction is highly
parallelizable, allowing significant speedups.

A. Case Study 1 - Verification

We consider a stochastic process in the form of (1) with
A = {a1},

F (a1) =

(
−1 0
0 −0.5

)
, G(a1) = I,

and Xsafe = [−8, 8] × [−8, 8]. We are interested in the
computation of the safety probability for every possible initial

state of this model for the duration τ = 1. In order to perform
this analysis, we abstract the model to an IMDP. We use
a sampling time of ∆t = 0.1 and discretize Xsafe in the
transformed space induced by transformation function Ta1

, i.e.,
Post(Xsafe|Ta1

), by a grid such that the size of each cell in the
original space is ∆x = 0.5 per side. This results in an IMDP
abstraction with |Q| = 1025 states, and the discrete safety time
steps kτ = 10. We then run our IMDP (synthesis) algorithm to
obtain the lower and upper bounds of the probability of safety,
i.e., p̌10(q) and p̂10(q), for each possible initial state q ∈ Q.

Figure 2a shows Xsafe and the space discretization, where
the lower bound of the probability of safety p̌10 is marked as
a shade of gray. The obtained upper bound probabilities were
p̂10(q) ≥ 0.97 for all q ∈ Q. It took a total of 175 seconds to
compute the abstraction and the safety probability bounds.

In order to thoroughly analyze the error introduced by the
discretization variables, we consider the local error term

εq = p̂kτ (q)− p̌kτ (q),

and introduce the error metrics of εmed, which is the median
of εq for all q ∈ Q, and εave, which is the average of εq per
unite volume given by

εave =

∑
q∈Q εq Vq∑
q∈Q Vq

,

where Vq is the area (volume) of the region associated to
state q. For the chosen discretization variables ∆t = 0.1 and
∆x = 0.5, we obtain εmed = 0.08 and εave = 0.35. The
smaller median error (than the average error) means that at
least half of the cells have small errors εq ≤ 0.08, and a
small number of the cells have very large errors. This can be
explained by analyzing Figure 2a. It is easy to observe that
p̌10(q) ≈ 0 for the cells q ∈ Q near ∂Xsafe, the boundary
of Xsafe, i.e., εq ≈ 1. In turn, for the cells q ∈ Q that are
not close to the boundary, εq ≈ 0. This observation is aligned
with the theory and the intuition as expressed in (32) and (33).
That is, x is a continuous-time diffusion process with a stable
drift term F (a1) (the real eigenvalues are negative); hence,
the process gets a strong pull towards the center, resulting in
large upper bounds for safety probability in snapshots of ∆t
(discrete transition kernel), as suggested by (32). However,
during this time, the probability of its continuous trajectory
leaving Xsafe is high due to the stochastic nature of the
process if x starts near ∂Xsafe, resulting in near-zero lower
bound for the continuous transition kernel, i.e., α ≈ 0 in (33).
This suggests that the use of smaller cells near ∂Xsafe can
potentially reduce the spread of this effect (large error) to the
nearby states, i.e., adaptive (non-uniform) gridding, as in [11].

B. Case Study 2 - Analysis of Error Trade-off

In order to explore the trade-offs between the time and space
discretization parameters and their effects on the overall error,
we consider the same system as in Case Study 1 (Section
VII-A) and perform safety analysis for the duration τ = 1 with
various values for ∆t ∈ {0.05, 0.10, 0.15, 0.20, 0.25} and
∆x ∈ {0.20, 0.32, 0.40, 0.50, 0.64}. The obtained results are
shown in Figure 3, illustrating the change in the distribution
of εq for the different values of ∆t and ∆x.
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(a) Verification, mode a1 (b) Synthesis, mode a1 (c) Synthesis, mode a2

Figure 2: Verification and synthesis results for case studies 1 and 3. The safe set Xsafe is a rectangle, and the shades of gray
correspond to the lower bound of the safety probability, where black and white correspond to values 0 and 1, respectively.

Figure 3a is the box plot of εq , showing the distribution of
εq ∀q ∈ Q for each pair (∆x,∆t) along with εmed (indicated
with a red line) and εave (indicated with a black star). A general
observation is that, by decreasing ∆x, the distribution of the
error becomes narrower and its average value decreases. In
Figure 3b, we plot εave as a function of ∆x and ∆t. For
each ∆t, εave tends to decrease linearly with ∆x. This is
intuitive because a smaller ∆x means a smaller error due to
space discretization for the same ∆t. However, if we fix ∆x
and consider different values of ∆t, we have a substantially
different behavior: the error curve becomes parabolic. That is,
for each ∆x, there is an optimal value of ∆t that minimizes
εave, and this value of ∆t is not necessarily the smallest
one. This is due to the fact that, as discussed in Section
VI, decreasing ∆t causes a smaller variance in the discrete
transition kernel, which means smaller cells are required to
obtain a smaller overall error. Moreover, the smaller the ∆x
is, the smaller the optimal value of ∆t becomes. This means
that, for a given finite ∆x, if ∆t is chosen to be too small,
some of the dynamics of the system may not be appropriately
reflected in the abstraction, hence resulting in large errors.

This case study shows that the choice of values for dis-
cretization parameters ∆t and ∆x in order to obtain a de-
sired overall error is not trivial. One possible approach in
tuning these parameters is to adapt a refinement technique to
iteratively refine ∆t and ∆x to arrive at the desired overall
error value. The proposed framework enables such an approach
due to the low computation cost of abstraction and synthesis
algorithms. Another approach is to obtain a conservative
approximation of the optimal value of ∆x for a given ∆t
before performing the computations, as shown in [1]. However,
since such approaches tend to be very conservative compared
to our approach, this results in a very small ∆x to guarantee
a given overall error, leading to state explosion.

C. Case Study 3 - Switching Strategy Synthesis

We add a second mode a2 to the process in Case Study 1
in Section VII-A, i.e., A = {a1, a2}, where

F (a2) =

(
−0.5 0.1

0 −1

)
, G(a2) = I.

We are interested in synthesizing a switching strategy that
maximizes the probability of safety at every possible initial
state with the duration of τ = 1 for the same Xsafe as in
Case Study 1. In abstraction, we again use a sampling time
∆t = 0.1. For space discretization, we use an adaptive grid
such that the resulted cells have the maximum and minimum
cells sizes of ∆xmax = 0.5 and ∆xmin = 0.1 in the original
space. Our adaptive grid algorithm first over-approximates
Post(Xsafe|Tai) for i ∈ {1, 2} by using a uniform grid with
the allowed maximum-sized cells. Then, it refines the cells
that are partly unsafe up to the resolution of the minimum-
sized cells to under-approximate the safe set. Figures 2b and
2c show the discretization of modes a1 and a2, respectively.
Note that, in mode a2, the cells are rotated which indicate that
the transformation function Ta2

includes a rotation in addition
to translation. The IMDP has a total of |Q| = 2947 states
with |Qa1 | = 1024, |Qa2 | = 1922, and one qunsafe. The total
abstraction took 54 minutes.

We then run our synthesis algorithm to obtain the robust
strategy σ∗ with its corresponding safety probability bounds
p̌10
σ∗(q) and p̂10

σ∗(q) for all q ∈ Q. In Figures 2b and 2c
the lower bounds p̌10

σ∗ are shown as shades of gray. The
upper bounds were p̂10

σ∗(q) ≥ 0.93 ∀q ∈ Q. The synthesis
computation took 15 seconds.

Call σ̄ the strategy that always picks action a1. This strategy
gives rise to the results obtained in Case Study 1 and presented
in Figure 2a. Comparing it with the results of the strategy σ∗

in Figure 2b, it becomes evident that σ∗ improves the safety
probability bounds, especially for the states near the top and
bottom sides of Xsafe. This means that σ∗ takes advantage
of the drift in mode a2 to keep the process safe in those
sections of Xsafe. More precisely, the median and average
errors obtained for mode a1 under σ∗ are εmed = 0.01 and
εave = 0.28, which show a reduction from the errors under σ̄
where εmed = 0.08 and εave = 0.35.

VIII. CONCLUSIONS

In this work, we proposed a theoretical and computational
framework for analysis and synthesis for switched stochastic
systems that evolve in continuous time. The framework miti-
gates the problem of state explosion through a suitable choice
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(a) (b)

Figure 3: Error distribution for the process in Case Study 2 with different values of ∆t and ∆x. (a) Box plot of εq (blue
boxes), εmed (red lines), and εave (black stars). (b) 3-D plot of εave as a function of ∆t and ∆x.

of the abstraction model and the derivation of discretization
methods for both time and space domains that result in
tight error bounds (exact for space). The latter is specifically
enabled by stochastic hybrid system modeling and a novel
dynamic-dependent space discretization. This leads to fine and
compact abstractions, whose computation is fast. Even though
the framework is presented for synthesis problems with safety
properties, it can be extended, in a straightforward manner, to
verification and synthesis for more complex and even multi-
objective properties expressed in, e.g., PCTL and CSL.

One of the main results of this study is the inherent trade-off
in the error contribution by the time and space discretization
parameters. An empirical analysis of this trade-off is per-
formed in this work. An interesting direction for future work
is a thorough analysis on how the discretization parameters
can be tuned to obtain a desired overall error. One potential
candidate is sequential adaptive griding in space discretization
and iterative refinement of the parameters.
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APPENDIX A
Proof of Theorem 1. We first consider the maximum case and
then discuss the minimum case. The KKT conditions guarantee
that if y ∈ Post(q′i|Ta) is a local maximum for f , then
there must exist a vector of constants µ = (µ1, . . . , µk) such
that ∇f(y) = HTµ, µi ≥ 0 for all i ∈ {1, ..., k}, and
µi(
∑m
j=1H

(i,j)y(j) −bi) = 0, where H(i,j) is the component
in the i-th row and j-th column of matrix H . Note that we
have a constant µi, i ∈ {1, . . . , k}, for each of the half-paces
defining Post(q′i|Ta). Thus, there are three possible cases:

Case 1: x∗ is not in the boundary of Post(q′i|Ta). In this
case the KKT conditions imply that y is a maximum only if
∇f(y) = 0. For a normal distribution with identity covariance,

this point is exactly y =
( v(i)

u +v
(1)
l

2 , ...,
v(m)
u +v

(m)
l

2

)
. If y ∈

Post(q′i|Ta), then this is the global maximum, because it is
the global maximum of the unconstrained problem.

Case 2: x∗ is a vertex of Post(q′i|Ta). We call a vertex
an intersection of m half-spaces. As a consequence, we
have that the KKT conditions are satisfied in y, vertex of
Post(q′i|Ta), if and only if ∇f(y) = H̄Tµ, where H̄ is the
submatrix that contains only the m rows of H representing
the half-spaces interesting at y, and vector µ contains only
the m corresponding constants. Thus, we have a system of
m equations and m variables that has solution for µi ∈ R.

However, since the set of vertices is finite, it is generally faster
to just include all the vertices as possible candidate solutions
instead of solving the system of equations.

Case 3: y is in the boundary of Post(q′i|Ta), but
is not a vertex. In this case only r < m of the half-
spaces in H intersect at y. Thus, if y is a maximum then
∇f(y) = H̄Tµ, where H̄ is the submatrix of H containing
the r < m half-spaces intersecting at y, and µ contains only
the r corresponding constants. Note that this is a system with
more equations than variables. Therefore, only when some of
constraints become linearly dependent, there may be a solution
for y ∈ Post(q′i|Ta), if at all.

The minimum case is identical except that condition
∇f(y) = HTµ is replaced with ∇f(y) = −HTµ.

APPENDIX B
Proof of Theorem 3. By definition of T c(∆t|qj , x1, a) we
have that

min
x1∈qi

T c(∆t|x1, qj , a)

≥1− max
(x1,x2)∈(qi,qj)

Probbx(∃t ∈ [0,∆t],bx(t) 6∈ Xsafe)

≥1− max
(x1,x2)∈(qi,qj)

Probbx
(
∃t ∈ [0,∆t] s.t. ||bx(t)− x1||1 ≥ εqi

∧ ||bx(t)− x2||1 ≥ εqj
)
.

The last inequality exploits the fact that each path of bx that
reaches a state outside Xsafe during [0,∆t] travels a distance
of at least εq = max{εqi , εqj}. Without any loss of generality,
assume εq = εqi . Then, we have

min
x1∈qi

T c(∆t|x1, qj , a)

=1− max
(x1,x2)∈(q1,q2)

Probbx( sup
t∈[0,∆t]

||bx(t)− x1||1 ≥ εq)

≥1− max
(x1,x2)∈(q1,q2)

Probbx(∨i∈{1,...,m}
(

sup
t∈[0,∆t]

|b(i)
x (t)− x(i)

1 | ≥
εq
m

)
)

≥1− max
(x1,x2)∈(q1,q2)

∑
i∈{1,...,m}

Probbx( sup
t∈[0,∆t]

|b(i)
x (t)− x(i)

1 | ≥
εq
m

).

The last inequality holds due to the union bound. By the lin-
earity of Gaussian processes, we can write bx(t) = Ebx(t) +
b̄x(t), where b̄x(t) is a normally distributed random variable
with zero-mean and covariance equal to the one of bx(t). By
the application of the triangle inequality, we then have

min
x1∈qi

T c(∆t|x1, qj , a)

≥1− max
(x1,x2)∈(qi,qj)

∑
i∈{1,...,m}

Probb̄x(( sup
t∈[0,∆t]

|E
b

(i)
x

(t)− x(i)
1 |+ |b̄(i)

x (t1)| ≥ εq
m

)

=1− max
(x1,x2)∈(qi,qj)

∑
i∈{1,...,m}

Probb̄x( sup
t∈[0,∆t]

|b̄ix(t1)|1 ≥

εq
m
− sup
t1∈[0,∆t]

|E
b

(i)
x

(t1)− xi1|)

≥1− 2
∑

i∈{1,...,m}

Probb̄x( sup
t∈[0,∆t]

b̄(i)
x (t1) ≥ ε̄q,i),
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where ε̄q,i =
εq
m − Lb(i) for Lb(i) =

sup(x1,x2,t)∈[qi,qj ,[0,∆t]] |Eb
(i)
x

(t) − x
(i)
1 |. The last inequality

holds because Covbx(t, s) is independent of x1, x2, Thus,
the only term depending on x1, x2 is εq. Since b̄

(i)
x (t) is a

uni-dimensional Gaussian Process (GP), we can bound its
supremum during [0,∆t] by using the Borell-TIS inequality
[37]. For D > E

[
supt∈[0,∆t] b̄

(i)
x (t)

]
, the Borell-TIS

inequality [37] guarantees that

Probb̄x

(
sup

t∈[0,∆t]

b̄(i)
x (t) > D

)
≤ e−

(
D−E

[
supt∈[0,∆t] b̄

(i)
x (t)

])2

2ξ(i) ,

where ξ(i) = supt∈[0,∆t] Covb̄(i)
x

(t).

In order to bound E
[
supt∈[0,∆t]b̄

(i)
x (t)

]
, we consider the

pseudometric di and constant Kd,i
b as defined in Sec. IV-D.

By the Dudley’s entropy integral [37], we obtain

E

[
sup

t∈[0,∆t]

b̄(i)
x (t)

]
≤ 12

∫ K
d,i
b

∆t

2

0

ln

(
2Kd,i

b ∆t

x
+ 1

) 1
2

dx.

By substituting this expression in the Borell-TIS inequality
and picking D =

ε̄q,i
m , we arrive to the result.

APPENDIX C
Proof of Proposition 3. For the upper bound, we have that for
qi ∈ Qsafe and a ∈ A,

max
x∈qi

Psafe(Xsafe,∆t | x, a)

≤
(

max
x∈qi

T d(Xsafe | x, a,∆t)
)(

maxT c(∆t|x,Xsafe, a)
)

≤ max
x∈qi

T d(Xsafe | x, a,∆t)

≤ max
x∈qi

∫
Xsafe

N (z | Ex(∆t), Covx(∆t)) dz

≤ max
y∈Post(q′i|Ta)

∑
q∈Q̄a

∫
Post(q|Ta)

N (z | y, I) dz

= max
y∈Post(q′i|Ta)

∑
q∈Q̄a

f(y, q).

For the lower bound, we have that

min
x∈qi

Psafe(Xsafe,∆t | x, a)

≥
(

min
x∈qi

T d(Xsafe | x, a,∆t)
)(

min
x∈qi

T c(∆t|x,Qsafe, a)
)
.

Similarly to the upper bound, we have that

min
x∈qi

T d(Xsafe | x, a,∆t) ≥ min
y∈Post(q′i|Ta)

∑
q∈Qa

f(y, q).

For T c, by using a similar reasoning as in the one in Theorem
3, we have that

min
x∈qi

T c(∆t|x,Qsafe, a) ≥max{0, 1− 2
∑m
i=1 e

−
η2
x,i

2ξx } if ηx,i > 0,∀i ∈ {1, . . . ,m}
0 otherwise.
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