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Living systems are inherently stochastic and operate in a noisy environment, yet despite all
these uncertainties they perform their functions in a surprisingly reliable way. The biochemical
mechanisms used by natural systems to tolerate and control noise are still not fully understood, and
this issue also limits our capacity to engineer reliable quantitative synthetic biological circuits. We
study how representative models of biochemical systems propagate and attenuate noise accounting
for intrinsic as well as extrinsic noise. We investigate three molecular noise filtering mechanisms,
study their noise reduction capabilities and limitations, and show that non-linear dynamics, such
as complex formation, are necessary for efficient noise reduction. We further suggest that the
derived molecular filters are widespread in gene expression and regulation and, particularly, that
microRNAs can serve as such noise filters. Our results provide new insight into how biochemical
networks control noise and could be useful to build robust synthetic circuits.

Biochemical processes such as gene expression are inher-
ently stochastic and must control noise, which presents
itself as stochastic fluctuations. These fluctuations can
be extrinsic, arising from interactions occurring with
other processes in the environment, or intrinsic, result-
ing from the random timing of the reactions themselves
[4, 13, 15, 19, 25, 33]. Molecular processes transform
noisy input signals from the environment into output sig-
nals through a number of stages, with signals represented
by chemical species and each stage implemented by a
molecular reaction network. Since each stage can com-
pound the noise, in order to obtain a reliable final output
natural systems must integrate mechanisms that, directly
or indirectly, reduce noise or otherwise confine it. Exam-
ples include signaling cascades, which have been shown to
reduce extrinsic fluctuations [46], and the role microRNA
plays in attenuating noise of protein expression [38].

Noise reduction has been studied extensively in elec-
tronics [39] and certain noise filtering principles have
been successfully applied to molecular systems [9, 37, 49].
For instance, negative feedback and feed-forward loops
have been shown to reduce noise [7, 24], and fundamen-
tal limits for noise suppression of feedback loops have
been derived using techniques from control and infor-
mation theory [22]. Analogues of mechanisms from sig-
nal processing such as low-pass filters, which transduce
low-frequency signals while attenuating high-frequency
signals, have also been observed in biochemical systems
[34]. However, these are not always true low-pass filters:
a low-pass filter must preserve the low frequencies, and
for example not amplify them while attenuating the high
frequencies. Moreover, the classical theory of filters in
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electronics does not account for intrinsic noise. There-
fore, difficulties arise when implementing such filters in
terms of stochastic biochemical networks, because it is
not clear how intrinsic noise may affect their noise re-
duction performance [4, 13, 19, 33].

Inspired by the concept of low-pass filters, we study
noise reduction capabilities of molecular filters in a
stochastic setting. We propose three fundamental filter
modules and their implementation as stochastic chemical
reaction networks. We account for intrinsic as well as ex-
trinsic noise, and derive principles holding for filters when
embedded in a general biochemical network, which may
include multiple feed-forward and feedback loops. First,
we consider linear filters (Figure 1A), implemented by
means of at most uni-molecular reactions, and we show
that, in case of positive correlation between the elements
of the network, they are limited by Poisson levels, that
is, the variance of the output signal is lower bounded by
its mean. We then show how the presence of feedback
loops may improve the performance of linear filters be-
low Poisson levels. Specific models of linear filters have
already been studied in the context of closed models of
gene expression [27, 47]. Here, while still providing ex-
act analysis based on the solution of the Chemical Master
Equation, we generalize the analysis in the referenced pa-
pers taking also into account the more general and com-
mon case where the dynamics of the other components of
the networks are left unspecified, and possibly involving
non-linearity and feedback loops. The limitations in the
noise suppression capabilities of linear filters motivate us
to consider non-linear filters. We introduce a non-linear
filter mechanism given by the co-expression of two species
that then bind together, called the annihilation module
(Figure 1B), which we demonstrate is able to reduce the
noise to below Poisson levels. We then propose the an-
nihilation filter (Figure 1C ), which combines the prop-



erties of the linear filter and annihilation module. We
show how the annihilation filter in particular can greatly
reduce molecular noise. We observe that co-expression
and non-linear degradation are key requirements for such
noise reduction. This is important to be stressed as theo-
retical analysis is usually restricted to linear degradation
[22]. Using analytical, numerical and stochastic simula-
tion techniques we demonstrate how the different filters
improve robustness of the systems in which they are em-
bedded.

Finally, we discuss that that the molecular filters we
derive are prevalent in gene expression. For instance,
the linear filter, implemented by simply producing and
degrading a species at a slow enough rate is a low-pass
filter mechanism widely deployed in gene expression to
increase robustness, both at the transcription and trans-
lation level [47]. Moreover, we find that the annihila-
tion module and annihilation filter are sound models of
microRNA regulated gene expression, in the case of cor-
related expression of microRNAs with the target gene.
This supports the hypothesis that microRNA may play
a role in increasing robustness and precision of gene ex-
pression. We stress how the focus of this paper is not to
offer new models of particular molecular processes, but
to identify fundamental and general mechanisms that, at
the molecular level, can reduce noise, and to understand
their properties and limitations. Thus, our results pro-
vide new insight into how biochemical networks control
noise.

MATERIALS AND METHODS

Detailed information about the modelling framework
and mathematical derivations can be found in the Sup-
plementary Material. CRNs and LNA simulations have
been performed using the Microsoft Visual GEC tool [30].
Details on the code can be found in SI Section G.

RESULTS

We first investigate filters composed from linear re-
actions and show their limitations; then we discuss non-
linear filters, showing how non-linearities can improve the
performances in terms of noise reduction. The techniques
used are detailed in Materials and Methods.

Linear filters and their limits in noise suppression

To model biological regulatory networks we focus
on the underlying molecular interactions represented as
Chemical Reaction Networks (CRNs). A CRN is a set
of biochemical species that interact according to the re-
action laws. Input and output signals are modeled as
biochemical species. In this paper, species A will always
represent the input signal/species. We assume A is a

FIG. 1. Molecular filters (Top row) along with plausible bio-
logical examples where such components can be found (Mid-
dle row). We stress that for many of these examples it has
yet to be verified experimentally that those systems behave as
our filters. We simply present them here to facilitate under-
standing (see Discussion). Dashed arrows represent catalytic
production/activation effects and continuous arrows molecu-
lar transitions. (A) First-order low-pass filter implemented
by means of slow production and degradation reactions (lin-
ear filter, Eqn (1)). These networks are present both at the
translation and transcription level to increase robustness of
gene expression. (B) annihilation module (Eqn (7)) given by
co-expression of two species that are then degraded together.
These networks may be a model for a class of microRNA reg-
ulated gene expression, where mRNA and target protein are
co-expressed. (C ) annihilation filter (Eqn (10)) based on the
annihilation module. Such a system may be a suitable model
for the c-Myc—E2F1—hsa-miR-20a circuit with its extension
to E2F2 [36] under the assumption that E2F1 activates E2F2,
except for the feed-forward loop between A and C which has
no influence on noise reduction. We stress that this assump-
tion needs further experiments to be confirmed. (D) Bio-
logical systems where the filters may play a role in reducing
noise.

noisy input with the noise identified by its Fano factor
(ratio between variance and mean). Thus, a molecular
filter is a CRN with input A and whose output has a
reduced Fano factor compared to A, but still maintains
certain features of its time evolution. In this paper, we fo-
cus on filters that maintain the same long term behaviour
of A, while reducing its Fano factor.

The CRN F (Eqn (1)), which we call a linear filter,
is composed of a production and a degradation reaction
with output species B

F : A→k1 A+B B →k2 , (1)

where k1, k2 ∈ R>0 are the rate parameters. We consider
the general scenario where the linear filter F (Eqn (1))
is embedded within an arbitrarily complex, possibly non-
linear, reaction network with the only constraint that the
output species B is changed only by the reactions in F .



We do allow B to act as a catalyst in arbitrarily many
reactions, and A to interact with the larger network with
no constraint. This scenario is very general and includes
the case where A is a function of B with feedback loops.

Classical frequency analysis

The transfer function of F is obtained by applying the
Fourier transform to the mass action rate equation corre-
sponding to B [17, 43]. As B is changed only by reaction
in F , we obtain

dΦB(t)

dt
= k1ΦA(t)− k2ΦB(t),

where ΦA and ΦB are the deterministic signals modeling
the time evolution of A and B. In the frequency domain,
we get

iωΦ̂B(ω) = k1Φ̂A(ω)− k2Φ̂B(ω)

where ω is the angular frequency, and Φ̂B(ω), Φ̂A(ω) are
the Fourier transforms of signals ΦB and ΦA. For k1 =
k2, we obtain

Φ̂B(ω)

Φ̂A(ω)
=

1

1 + iω
k1

, (2)

Eqn (2) is the transfer function of a first-order low-pass
filter (see SI Section A). This network attenuates fre-
quencies higher than the cutoff frequency by introducing
a delay and integrating the fast dynamics. From Eqn (2)
the cutoff frequency is exactly ω̄ = k1. This means that,
the higher the value of k1, the less noise is filtered out,
but the faster B tracks A.

Stochastic analysis

The classical frequency analysis of F , based on the
Fourier transform of the rate equations, does not take
into account the intrinsic noise introduced by the reac-
tions firing in F : it only considers the extrinsic noise
modeled as fast fluctuations of the input. However, the
intrinsic noise cannot be simply neglected, as it may drive
the behavior of biological systems [34]. This is the case
in gene expression, where low molecular counts are often
involved, and deterministic modeling is generally unsat-
isfactory [15, 26]. To resolve this, we need to consider
the continuous time Markov chain (CTMC) induced by
F , whose transient evolution is described by the Chem-
ical Master Equation (CME) [48]. The evolution of the
moments of the CME can be described as a (possibly in-
finite) set of ODEs, so called moment equations [14, 42]
(SI Section B). We quantify the noise with the Fano fac-
tor (ratio between expectation and variance) and, under
the general scenario described in the previous section,

using moment equations the transient evolution of the
expectation of B at time t can be computed exactly as

dE[B(t)]

dt
= k1 · E[A(t)]− k2 · E[B(t)],

where E[A(t)] is the expectation of A at time t. We
call limt→∞E[A(t)] = E[A]∞ the steady-state solution
of E[A], and we assume it exists and is finite. The steady-
state solution of B, E[B]∞, can then be derived by solv-

ing dE[B(t)]
dt = 0, which results in

E[B]∞ =
k1

k2
E[A]∞ (3)

Eqn (3) guarantees that the expected value of B always
tracks the expectation of A, no matter which biochemical
system is producing A and what happens in the rest of
the system. Importantly, for V [A]∞, variance of A at
steady state, we can derive the following exact relation

V [B]∞ = E[B]∞ +
k1

k2
Cov[A,B]∞, (4)

where Cov[A,B]∞ = E[A · B]∞ − E[A]∞E[B]∞ is the
covariance of A and B at steady state, with E[A · B]∞
expectation of A · B at steady state. Full derivation of
Eqn (3) and (4) is shown in SI Section C . The idea is
that, even though B can participate in other reactions
as a catalyst and A may be a non-linear function of B,
in Eqn (3) all the non-linearities disappear, while in Eqn
(4), these are included in the term Cov[A,B]∞. Eqn
(4) shows that, for any input signal, the filtered signal B
has variance that is equal to its mean plus the covariance
between A and B. Assuming A and B are non-negatively
correlated, then we have E[A ·B]∞ ≥ E[A]∞E[B]∞. As
a result, in case of non-negative correlation between A
and B, for any k1, k2 ∈ R≥0, the following lower bound
holds

FB ≥ 1, (5)

where FB is the Fano factor of B at steady state. The
above lower bound has already been observed and studied
in the context of specific closed models of gene expression
for which mRNA and protein are positively correlated
[27, 31, 47]. However, in the more general scenario we
consider, we can observe that Eqn (5) holds only in the
case of non-negative correlation of the species, meaning
that a simple birth-death process of a downstream com-
ponent cannot reduce the noise of an input signal below
Poisson levels.
A and B being non-negatively correlated is natural

since A catalyzes the production of B. In fact, in SI
Section C we show that, for a large class of systems, A
and B are effectively positively correlated. However,in
the following example, we show that a negative feedback
loop between B and A may change the sign of their cor-
relation, potentially leading to noise reduction to below



FIG. 2. For the CRN in Eqn (6) we plot a stochastic simulation of B for three different values of kf and assuming initial
condition of all the species are 0. In all the plots P is a signal with Poisson noise and such that E[P ]∞ = E[A]∞. When the
feedback is weak (kf = 0.00277) the Fano factor of B is greater than one. For kf = 0.277 our analysis predicts a Fano foctor
for B of approximately 1. When the the feedback is strong (kf = 20.277) the Fano factor of B is smaller than 1, but there is
also a strong repression of E[B]∞.

Poisson levels. Thus, our analysis gives a further expla-
nation of why negative feedback regulation in gene ex-
pression may be a widely selected mechanism to reduce
noise and increase robustness [7] (see Discussion).

Example 1 We consider the following CRN where there
is a feedback between A and B and L is an auxiliary
species.

→1 L L→100 L+A+A; A→0.1

A→0.01 A+B; B →0.01; B + L→kf B, (6)

where kf > 0 is a rate constant. That is, a feedback
between A and B is present. The strength of the feed-
back can be controlled by changing the rate kf . B can
be thought as a protein that inhibits its expression. The
above CRN meets the condition of validity of Eqns (3)
and (4). Thus, Eqn (3) guarantees that for any possible
initial condition and value of kf

E[B]∞ = E[A]∞,

while Eqn (4) guarantees that FB = E[A]∞ +
Cov[A,B]∞. Thus, to compute the Fano factor of B at
steady state we need to estimate Cov[A,B]∞. The system
is non-linear. As a consequence, Cov[A,B]∞ cannot be
computed exactly, but can be estimated using the LNA.
We obtain that, for kf > 0.277368, Cov[A,B]∞ < 0.
Thus, FB < 1. This shows how strong feedback can reduce
the Fano factor of B to below Poisson levels. However,
strong feedback means strong repression of the mean of B
and A by Eqn (3). To confirm the mathematical analysis,
in Figure 2, for different values of kf , we plot a single
stochastic simulation of B compared with a signal with
the same mean of B but affected by Poisson noise.

One might think that greater noise reduction compared
to the linear filter (Eqn (1)) can be obtained by consid-
ering higher-order low-pass filters (i.e. low-pass filters
whose transfer function has order greater than 1). How-
ever, since such filters ( in case of real and non-positive

roots) can be implemented as cascades of linear filters (SI
Section C ), where all components are therefore limited by
Poisson noise, their noise reduction performance is sim-
ilarly limited. An example of such a mechanism can be
found in multi-step models of gene expression [31], where
protein expression is a sequence of linear reactions, thus
limited by Eqn (4). Another example can be observed in
signaling cascades, such as the mitogen-activated protein
kinase (MAPK) cascade [40], where non-linear filtering
mechanisms are necessary in order to reduce stochastic
fluctuations of a downstream process below Poisson levels
[46].

Correlated production and degradation can reduce
noise below Poisson levels

The noise filtering capability of linear filters can be
improved by using higher-order reactions. The simplest
second-order reaction is complex formation. We show
how complex formation of two molecules that are posi-
tively correlated in their expression can indeed work as an
efficient noise filter. The following network, which we call
annihilation module (Figure 1B), is based on binding and
degradation of two parallel synthesized molecules. The
annihilation module can be described by the following
two reactions

M : A→r1 A+B + C; B + C →r2 , (7)

where A is the input and B (or equivalently C) is the
output. In this module, B and C are co-expressed and
then they inhibit each other. To study how the annihi-
lation module behaves with respect to intrinsic and ex-
trinsic noise, we consider a general birth-death process
A affected by Poisson noise. That is, A is generated and
removed by the following reactions

→kp A; A→kd .

Thus, we have E[A(t)] = V [A(t)], t ∈ R≥0. Since Eqn
(7) is non-linear, a general and exact analysis, as in the



FIG. 3. Comparison of the actions of F (linear filter, Eqn (1)), M (annihilation module, Eqn (7)), and A (annihilation filter,
Eqn (10)) on noisy input A generated by reactions →kp A+A; A →kd . (Top row). (Middle row) Plots of expectation and
standard deviation of the respective species until time 1200, as estimated by the Linear Noise Approximation (LNA). (Bottom
row) Plots of the effect of each filter obtained from a single stochastic simulation until time 4000. (A) The linear filter (Eqn
(1)), for k1 = 0.0064, k2 = 0.0064, introduces a delay to buffer stochastic fluctuations and reduce the noise, but only to Poisson
levels. (B) For r1 = 0.005, r2 = 0.00005, the annihilation module (Eqn (7)) improves noise reduction performance but cannot
proportionally follow changes in the input. In fact, Eqn (8) predicts that the expectation of the output of the annihilation
module changes with the square root of input. Thus, changes on the average value of the input are attenuated in the output.
(C) For r1 = 100, r2 = 1000, r3 = 0.000055, the annihilation filter (Eqn (10)) not only improves the noise reduction capabilities
compared to the other modules, but also proportionally follows changes in the input.

linear case, cannot be performed, as the moment equa-
tions cannot be solved. Consequently, we make use of the
Linear Noise Approximation (LNA) [11, 48] and derive
analytical solution for the expectation and Fano factor of
B at steady state for such an input process A. We get
(see SI Section D)

E[B]∞ =

√
r1E[A]∞

r2
(8)

FB =
2r

3/2
1

√
r2kpkd + 4r1r2kp − r1k

2
d − k3

d

8r1r2kp − 2k3
d

, (9)

where FB stands for the Fano factor of B at steady state.
Assume r1 = rγ and r2 = r, with r, γ ∈ R>0, then for
r → 0 we have FB = 1

2 , thus halving the variance with
respect to Poisson noise. Moreover, for r →∞, we have

FC = 2+n
4 where n = E[B]∞

E[A]∞
. This leads to a surpris-

ing result: for n = 1, that is, E[B]∞ = E[A]∞ (perfect
tracking of the mean), the Fano factor is always smaller
than 1 for arbitrarily large values of r1 and r2. Thus,M
can reduce the noise even without introducing a delay in
its buffering action. This can be justified because this
architecture, where B and C are co-expressed, enables
attenuation of the low-frequency components of the in-

put signal. Therefore, we obtain noise reduction even if
the high-frequency components are not necessarily atten-
uated (SI Section D).

We note that, in the annihilation module, the steady-
state value of the output signal is proportional not to the
steady-state value of the input signal, but to its square
root (Eqn (8)). This may be beneficial in molecular net-
works, where it may help maintain regulatory stability
under changes in initial conditions. However, this mech-
anism would not be appropriate in cases where the long-
term evolution of the upstream component should be fol-
lowed, because changes to the input would not be fol-
lowed proportionally (Figure 3B).

The annihilation module is closely related to the in-
coherent Feed Forward Loop motif (iFFL) [24], where
two species are co-expressed and one inhibits the other.
However, in SI Section D , we show that an iFFL with
mass action kinetics cannot reduce the noise below Pois-
son levels. Hence, having B and C degraded together is
essential for efficient noise reduction.

The annihilation module and the annihilation filter
(see next section) are also related to the antithetical in-
tegral feedback motif [9]. The main similarity lies in the
fact that all these modules have an annihilation reaction,
thus suggesting a key role for such a reaction in dealing



FIG. 4. We consider two networks with the same rate equa-
tions that differ only in how B and D are expressed. For both
figures we plot a stochastic simulation of an input signal A
affected by Poisson noise with the output of the filter. (A)
considers the annihilation filter (Eqn (10)). (B) considers a
network that is identical to the one in Figure A, except for
the fact that B and D are not co-expressed.

with noisy dynamics. However, we stress here how the
mechanisms differ: a key requirement of both our filters
for efficient noise reduction is the co-expression of the
molecules that will participate in the annihilation reac-
tion. This requirement cannot be implemented in the
antithetical integral feedback schema. Moreover, the an-
tithetical integral feedback motif is known to increase the
noise of the controlled network [10]. In fact, we argue
that one of the reasons why in the antithetical integral
feedback the noise increases is that the species that un-
dergo an annihilation reaction are not co-expressed. In
order to illustrate this point, in Figure 4, we compare
two networks: one is the annihilation filter, the other is
identical to the annihilation filter except for the fact that
B and D are not co-expressed, but only positively corre-
lated in their expression. The two networks, determin-
istically, behave identically (they have same rate equa-
tions). However, interestingly, the stochastic behavior is
completely different, thus demonstrating the importance
of co-expression.

Annihilation filter suppresses molecular noise

We propose a general architecture, called the annihila-
tion filter, which is based on the annihilation module but
also guarantees E[C]∞ = sE[A]∞ for a given constant
s, independently of E[A]∞ (in what follows, without any
loss of generality, we assume s = 1). We show how the
annihilation filter can asymptotically reduce molecular
noise to zero, that is, for appropriate limiting values for
the rates, the Fano factor of the output converges to zero
(Eqn (15)).

Our annihilation filter, A, is illustrated in Figure 3C.
A is composed of the following reactions

A : A→r1 A+B +D D →r1 E B + E →r2

B +A→r3 A+ C E + C →r3 (10)

A is the input species and C is the output filtered species.
The first three reactions are similar to the annihilation
module, but with an additional delay introduced by the
reactionD →r1 E. Eqn (3) guarantees thatD is a copy of
A, and the number of times that D molecules have been
produced or destroyed is stored respectively in B and E.
As the role of these reactions is to act as a sensor, high
values of r1 are more informative than small ones. If r2 is
large enough, the count of C is modified not any time a B
or E molecule is produced, but just by their difference.
The fourth and fifth reactions increase or decrease C.
The rate r3 controls the delay introduced by the filter,
and thus also the noise reduction.

Since the system is non-linear, to study the noise re-
duction capabilities of the annihilation filter we make use
of the LNA. We assume A is a general input process, with
extrinsic noise modeled by a Poisson process. That is, A
is generated and removed by the following reactions

→kp A; A→kd .

Thus, we have E[A(t)] = V [A(t)], t ∈ R≥0. Using the
LNA equations we can derive the following conditions
(SI Section E )

E[A]∞ = E[D]∞ (11)

E[C]∞ = E[D]∞
E[B]∞
E[E]∞

(12)

0 = r1E[D]∞ − r2E[B]∞E[E]∞ − r3E[E]∞E[C]∞
(13)

E[B(t)]− E[E(t)] =

E[B(0)]− E[E(0)] + E[D(t)]− E[C(t)]. (14)

Assuming the same initial concentration of B,E, at
steady state, C will always track A independently of the
value of r1, r2, r3. That is, E[A]∞ = E[C]∞.

We can now study the Fano factor of C at steady state,
FC . To do that, we assume r2 = γ

r , r3 = r, where γ, r are
constants. In order for the annihilation filter to work as
an efficient noise filter, as we discussed, we need large r2

and small r3. Thus, we study FC for r → 0. Under this
limit, we obtain the following elegant form for the Fano
factor of C

lim
r→0

FC =
kp

kp + r1
.

Hence, we have that

lim
r1→∞

(lim
r→0

FC) = 0. (15)

Thus, increasing r1, the noise can be made arbitrarily
small, showing how this architecture has ideal noise re-
duction capabilities: independently of the intrinsic noise



introduced the total noise can be made arbitrarily close
to 0.

Note that in the CRN (10) it is assumed that some
reactions have same rates. This assumption allows us to
obtain simpler analytic results. In order to show that
the above analysis remains valid also in the more gen-
eral scenario where the reactions have different rates, we
consider the following CRN, modifying (10)

A : A→r1,1 A+B +D D →r1,2 E B + E →r2

B +A→r3,1 A+ C E + C →r3,2 (16)

In Figure 5 we compute FC and E[C]∞ for different
values of r1,1, r1,2 and r3,1, r3,2. It is easy to observe
that Eqn (15) is confirmed: if r1,1, r1,2 are big enough
compared to r3,1, r3,2 the Fano Factor will decrease con-
verging to a value of 0. Nevertheless, if r1,1 6= r1,2 or
r3,1 6= r3,2, the noise will still be reduced, but this will
affect E[C]∞ which, may be different from E[A]∞.

The first two reactions of the annihilation filter (Eqn
(10)) can be thought as a model for co-expression of
molecules B and E at different rates. Such a model of
co-expression can be generalized, having B and E co-
expressed, and then interacting after a pathway of linear
reactions. For instance, this is the case of mRNA and
microRNA that, when co-expressed, undergo a series of
maturation steps before of interacting [5, 31]. In Figure
6 we show that these auxiliary reactions do not influence
the noise reduction capabilities of the annihilation filter.

Numerical analysis

While the mathematical analysis performed on linear
filters is exact and general, for annihilation module and
annihilation filter, our claims are based on the LNA and
for birth-death input processes. This is because those
filters are non-linear, hence exact analysis based on the
moment equations is not possible. Thus, we need to sup-
port our results about the noise suppression capabilities
of such networks with stochastic simulations of such fil-
ters for different classes of input. In order to do that, in
Figure 3, we consider a step-like perturbation, and in SI
Section F we consider oscillatory inputs. In both cases,
the annihilation filter outperforms the other filters: for
the same delay introduced it suppresses more noise at
the high frequencies while still maintaining similar long-
term behaviour. Instead, the annihilation module does
not follow the long term behaviour of the input propor-
tionally. In fact, Eqn (8) predicts that the expectation
of the output of the annihilation module changes with
the square root of input. Thus, changes of the input are
attenuated in the output.

To further confirm the mathematical analysis, using
stochastic simulations we compare the power spectral
density (PSD) (see Method Section) of the input species
affected by Poisson noise with the PSD of the output

species of the annihilation filter (Eqn(10)), and of the
linear filter (Eqn(1)), both for the same input (see Fig-
ure 7A). We can see that both filters are indeed low-pass
filters in the sense that they attenuate the high frequen-
cies. However, although they behave similarly at the
high-frequencies, the linear filter is less robust to intrinsic
noise, and such intrinsic noise amplifies the low frequen-
cies, resulting in noise reduction being lower bounded by
Poisson dynamics. That is, the reactions of the linear
filter, introduce slow and medium time variations of the
output leading to an amplification of the low frequency
components of its spectrum. The annihilation filter en-
ables a much better reduction of the intrinsic noise, lead-
ing to a smaller amplification of the low frequencies. The
connection between the noise of a process and its PSD
is explained in detail in the Supplementary Material (SI
Section A).

In Figure 7B, we consider again input species A af-
fected by Poisson noise, and, on this input, we compare
the action of the annihilation filter (Eqn (10)), annihila-
tion module (Eqn (7)), and linear filter (Eqn (1)). In or-
der to reduce the number of free variables in the system,
we constrain the output of the filters to have the same
mean as A. Then, we plot the Fano factor as a function
of the remaining free rate parameters. As expected, our
key observations are that the annihilation module is the
only mechanism that guarantees noise reduction for any
value of the parameter rate, confirming the theoretical
result of Eqn (9) that it is able to reduce the noise even
without introducing a delay in its buffering action. Also,
for an arbitrarily long delay, the annihilation filter con-
verges to a Fano factor of 0, showing the ability of this
network to remove all the noise (variance tends to 0 when
delay tends to infinity). On the other hand, the linear
filter converges to a Fano factor of 1, corresponding to
Poisson levels, thus confirming Eqn (5).

DISCUSSION

Gene and protein expression can work as linear filters

Gene expression is often modeled as a two or three-
stage process, where mRNA is transcribed from a tran-
scription factor TF, and the protein P is translated from
the mRNA [41]

TF →km TF +mRNA; mRNA→dm ;

mRNA→kP mRNA+ P ; P →dP ;

Under this modeling assumption, the linear filtering
mechanism (Eqn (1)) may be present both at the tran-
scription (top two reactions) and translation level (bot-
tom two reactions) to buffer noise and increase robust-
ness by slowing down transcription or translation. At the
transcription level, inefficient transcription that follows
fast promoter activation is a mechanism that has been
widely observed to buffer fluctuations in the mRNA time



FIG. 5. For the CRN in Eqn (16), the figure shows how the Fano Factor of C, FC , and the mean value of C at steady state,
E[C]∞ depends on r1,1, r1,2 and r3,1, r3,2. For all figures we consider an input species A such that E[A]∞ = 100 and A is
affected by Poisson noise. It is possible to observe that, as predicted by the theoretical analysis, the Fano Factor tends to
decrease either when both r1,1, r1,2 increases or when both r3,1, r3,2 decreases. Interestingly, note that FC tends to be smaller
when there is a strong suppression of the mean. Thus, when a low number of molecules is involved, the noise has more influence
on the behaviour of the system. (A,C) We plot FC and E[C]∞ for r1,1 = r1,2 = 10 and r2 = 100. The non-linearity of the
reactions involved is such that FC and E[C]∞ are robust with respect to parameters variation. (B,D) We plot FC and E[C]∞
for r3,1 = r3,2 = 0.001 and r2 = 100. In this case, E[C]∞ changes linearly with the rates. FC tends to increase when there is a
strong amplification of E[C]∞.

evolution [35]. At the translation level, the linear filter-
ing mechanism reduces the noise in protein expression, as
supported by experimental evidence on B. subtilis and S.
cerevisiae [8, 29]. Eqn (4) guarantees that, independently
of the presence of arbitrarily many feed-forward or feed-
back loops between P and transcription factor or mRNA,
we have

V [P]∞ = E[P]∞ +
kP
dP

Cov[mRNA,P]∞. (17)

Thus, if mRNA and protein are positively correlated,
then the stochastic fluctuations in protein expression can-
not be reduced below Poisson levels, and this limit is
approached for slow translation. Hence, Eqn (17) may
explain why in yeast and E. coli the translation rates
tend to be slower than the transcription rates [16, 35],
and also suggests that mechanisms to induce a negative
correlation between protein and mRNA may have been
selected to enhance robustness. This is the case for neg-
ative feedback, which may thus enable noise reduction
below Poisson levels, as again confirmed by experimen-
tal evidence [7]. We note that a more realistic model

of gene expression requires representation of transcrip-
tion and translation as multi-step processes. However,
since such processes can still be modeled as a sequence
of first-order reactions [31], our analysis and the linear
filter mechanism still applies.

MicroRNAs can serve as annihilation filters

Slow translation/transcription is a very simple mech-
anism of noise reduction. Since gene expression involves
low molecular counts and highly stochastic signals, dif-
ferent (and more complex) network architectures may
have been selected to deal with scenarios where greater
noise reduction is needed [18]. A simple example can be
found in microRNA-regulated post-transcriptional regu-
lation. MicroRNAs (miRNAs) are short RNAs that are
widely conserved in biological networks [6]. In animals,
it is common that miRNAs and their target mRNAs are
co-expressed or positively correlated in their expression
[12, 32, 36]. For example, c-myc induces the expression
of the microRNAs miR-17-5p and miR-20a together with



FIG. 6. (A) Annihilation filter for an input process A affected
by Poisson noise. (B) Generalization of the annihilation filter
where co-expression of molecules requires more intermediate
steps. Reaction rates are chosen such E[A]∞ = E[C]∞. We
can observe that the Fano factor of the output remains con-
stant for both networks.

their target E2F1 [28]. Furthermore, the system where
miRNAs repress gene expression by binding with the tar-
get mRNAs, and either inhibiting translation of mRNA
or promoting mRNA decay [1, 21], leads to a pattern
that can be modelled with the annihilation module (Fig-
ure 1B). Although it is well accepted that microRNAs
confer robustness on gene expression [12, 20, 38], it is
still not clear what aspects of their inhibitory mecha-
nisms are used to gain efficient noise reduction [3] , and
previous analysis has focused on microRNAs that are not
co-expressed with the target proteins [38]. One hypoth-
esis is that co-expression of microRNAs with their tar-
gets has a role in increasing robustness of gene expression
[18]. This is also supported by experimental evidence
[45]. Our mathematical analysis confirms such a hypoth-
esis, and shows that correlated expression of microRNAs
and mRNA, followed by translational repression of the
mRNA when bound to the microRNA, may lead to noise
reduction below Poisson levels. This result suggests that
microRNA regulation may have been selected to post-
regulate highly noisy genes. One specific example of such
a pattern can be found in the Drosophila eye, where miR-
7 and its target protein are co-expressed, and experimen-
tal studies have suggested the role of miR-7 in buffering
fluctuations [23, 32]. A particular network involving
miR-7 and verified experimentally in [23] is shown in
Figure 8. This network is responsible for sensory organ
precursor (SOP) fate. An annihilation module between
Ato, miR-7, and E(slp) genes may have a role in increas-
ing robustness. We stress that it has yet to be verified
experimentally that miR-7 works as an annihilation filter,
especially due to the lack of experiments concerning the
joint degradation of micro-RNA and mRNA in different
organisms [2].

FIG. 7. (A) Power Spectral Density (PSD) of input affected
by Poisson noise (green), compared with the output of the
linear filter (Eqn (1)) applied on such input (blue), and of
the annihilation filter (Eqn (10)) (red). For the linear filter
we fix the following parameters k1 = k2 = 0.008, while for
the annihilation filter we have r1 = 1, r2 = 10, r3 = 0.00008.
Poisson input is generated by the following reactions: →100

Input; Input →1. The power spectrum is estimated using
the Blackman-Tukey Spectral Estimate algorithm with fre-
quency deep resolution [44], as implemented in Matlab, over
300000 data points with sampling time of 0.1 seconds. For
each system, we plot the 99% confidence interval (CI). (B)
Fano factor of annihilation module (blue), annihilation filter
(yellow), and linear filter (red) for an input affected by Pois-
son noise (dotted line). Outputs of the filters are constrained
to have the same expectation as the input species at steady
state. Plots are of the function of the remaining free rate
parameters. Fano factor is estimated by means of the LNA.

FIG. 8. The network controlling sensory organ precursor
(SOP) fate [23]. miR-7 participates in an annhilation module
highlighted in black. The annhilation module is also intercon-
nected with a double-negative feedback loop between Ato and
E(spl), with miR-7 as an effector of Ato, and E(spl) directly
inhibiting Ato.



We have also found that the annihilation filter (Eqn
(10)) may be a suitable model for the c-Myc/E2F1/hsa-
miR-20a circuit, with its extension to E2F2 in the case
when E2F1 activates E2F2 [28, 36] (Figure 1C ). This
may suggests that miR-20a, by repressing both E2F1 and
E2F2, confers greater robustness on E2F2 expression. We
note, however, that there is no experimental evidence
yet for whether E2F1 activates or represses E2F2. Note
that the annihilation filter link between A (c-Myc) and C
(E2F2) is not present here: its role is to regulate the mean
of the output, but it has no influence on noise reduction.

In conclusion, we analyzed three simple molecular
noise filters and derived their properties and limitations.
These filters can be related to biological mechanisms. We
show, for example, that gene expression with slow trans-
lation/transcription can reduce noise, but only down to
Poisson levels (Eqn (17)), even when considering linear
multiple-step models [31]. In contrast, the annihilation
module (Eqn (7)), which relies on co-expression and joint
degradation, can drive the noise below Poisson levels.
Such mechanisms can be related to microRNA regulated
systems, where a key requirement for effective noise re-
duction is the co-expression of mRNA with its microR-
NAs. Our analysis suggests how a trade-off between per-
formance and resources arises: simpler circuits can re-
duce less noise, but also require fewer resources. In this
sense, it is interesting to emphasize that complex noise
reduction mechanisms, such as the annihilation module,
tend to be found in highly regulated systems. In fact, co-

expression of mRNA and microRNA, followed by trans-
lation inhibition, is a pattern that is common in animals
but much less prevalent in plants [1].

While biological systems deal with noise in a variety of
ways, in this paper we focused on scenarios where noise
should be controlled. It remains an interesting endeavor
to similarly discover and analyze the basic principles that
allow biological systems to exploit noise functionally and
use it to their benefit [13]. We believe that a systematic
analysis of noise reduction in molecular systems, together
with evidence of widespread noise reduction capabilities
in biological systems, such as in gene expression, are fun-
damental to obtain new insights into the structure and
evolutionary origin of noise reduction mechanisms.
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SUPPLEMENTARY INFORMATION

L. Laurenti, A. Csikasz-Nagy, M. Kwiatkowska,
and L. Cardelli

In Section A we introduce low-pass filters. In Section B
we formally define Chemical Reaction Networks (CRNs)
and the mathematical results we use in the main paper.
linear filters are discussed in Section C, where we give
the mathematical details of their analysis. In Sections
D and E we include detailed analysis of the annihilation
module and annihilation filter. In Section F we study
our molecular filters against time-varying inputs, while
in Section G we report details on the software and on
the code used to generate the figures in the text.

Appendix A: SI Low Pass Filters

A low-pass filter is a filter that preserves signals with
a frequency lower than a certain cutoff frequency and
attenuates signals with frequencies higher than such a
frequency. Low-pass filters can be analyzed in the fre-
quency domain by considering their transfer function,
which describes the relationship between the input and
the output in the Fourier domain [43]. The frequency
response can be described by means of the Bode dia-
gram, which is usually a combination of the Bode magni-
tude diagram, expressing the magnitude of the frequency
response, and the Bode phase diagram, expressing the
phase shift. Given an output signal o(t) and an input
signal i(t), first-order low-pass filters are characterized
by the following transfer function

ô(ω)

î(ω)
=

1

1 + k · iω
, (A1)

where î(ω), ô(ω) are the Fourier transform of i(t) and
o(t), and k ∈ R>0. The cutoff frequency is defined as
the frequency for which the signal has an attenuation of
3 decibel (see Figure S1), corresponding to halving the
amplitude. For a filter with the above transfer function,
the cutoff frequency is ω̄ = 1

k . Higher-order low-pass
filters are characterized by a higher-order transfer func-
tion, and they perform a sharper attenuation of the high
frequency of a signal [43].

Noise filtering and low-pass filters

Consider a stochastic process X(t), t ∈ R≥0, with val-
ues in R≥0. The autocorrelation function of X at time t,
for τ ∈ R≥0, is defined as

RX(t, τ) = E[X(t)X(t+ τ)].

Note that RX(t, 0) is the second moment of X at time t.
Under the assumption that X is stationary, RX(t, τ) does

FIG. S1. Plots of the Bode diagram of the transfer function
of a first-order low-pass filter with cutoff frequency ω̄ = k1.
If an input signal has a frequency lower than the cutoff fre-
quency, then the output of the filter has the same amplitude.
If instead the input signal has a higher frequency, then the
output signal is attenuated and a delay is introduced.

not depend on t, so we write directly RX(τ). Provided
that RX(τ) is absolutely integrable, the Power Spectral
Density (PSD) of X is defined for each angular frequency
ω in R as

SX(ω) =

∫ +∞

−∞
RX(τ) exp−iωτ dτ.

That is, the PSD of a signal is the Fourier transform of
its autocorrelation function. From the definition of PSD
the following dual relation can be derived

Rx(τ) =
1

2π

∫ +∞

−∞
SX(ω) expiωτ dω.

Setting τ = 0, we have

Rx(0) = E[X2(t)] =
1

2π

∫ +∞

−∞
SX(ω)dω.

If X is zero mean, we have Rx(0) = V [X(t)] =

E[X2(t)] = 1
2π

∫ +∞
−∞ SX(ω)dω. That is, the variance of X

at time t is given by the summation of all the frequency
components of its spectrum. As a result, given two sig-
nals X1, X2 with the same spectrum up to frequency ω∗,
but with all frequencies ω̄ > ω∗ such that SX1

(ω̄) <
SX2

(ω̄), then, necessarily, V [X1(t)] < V [X2(t)]. There-
fore, attenuating some frequency components of a signal
without introducing any amplification at the other fre-
quencies automatically reduces the variance.

Appendix B: SI Chemical Reaction Network (CRN)

A chemical reaction network (CRN) C = (Λ,R) is a
pair of finite sets, where Λ is a set of species, |Λ| denotes
its size, and R is a set of reactions. Species in Λ inter-
act according to the reactions in R. A reaction τ ∈ R
is a triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is the re-
actant complex, pτ ∈ N|Λ| is the product complex and



kτ ∈ R>0 is the coefficient rate. rτ and pτ represent the
stoichiometry of reactants and products. Given a reac-
tion τ1 = ([1, 1, 0], [0, 0, 2], k1), where Λ = {A,B,C}, we
often refer to it as τ1 : A+B →k1 2C. The state change
associated to τ is defined by υτ = pτ − rτ . For example,
for τ1 as above, we have υτ1 = [−1,−1, 2].

1. SI Stochastic Model of CRNs

Given a CRN C = (Λ,R), the stochastic model of C is
given by a continuous-time discrete-space Markov process
(CTMC) (X(t), t ≥ 0), whose transient evolution can be
described by the Chemical Master Equation (CME) [48].
The state of the system at time t is given by the number
of molecules of each species at that time, and it stays con-
stant until a reaction τ happens, when the state jumps by
υτ . Given A ∈ Λ, with an abuse of notation we identify
the number of molecules of A at time t as A(t). Comput-
ing the transient evolution of the CME requires solving
a system of ODEs whose size is equal to the number
of possible configurations. This number grows exponen-
tially with the number of species if the species counts are
bounded, and is infinite when the species counts are finite
but unbounded. As a consequence, obtaining a solution
of the CME is generally infeasible, even numerically.

Given a CRN C = (Λ,R) and a polynomial function
T : N|Λ| → R over the species of Λ, it is possible to show
that the evolution of the expectation of T over time can
be described by the following system of ODEs, which can
be derived from the CME [42]

d(E[T (X(t))])

dt
=∑

τ∈R
E[ατ (X(t))(T (X(t) + υτ )− T (X(t)))].

(B1)

where ατ (X(t)) is the propensity rate of reaction τ in
state (X(t)). We assume mass action kinetics. That
is, for τ :→k A, we have ατ (X(t)) = k, for A →k,
we have ατ (X(t)) = kA(t), and for A + B →k, we
have ατ (X(t)) = kA(t)B(t), assuming A 6= B, while

for A + A →k, we have ατ (X(t)) = kA(t)2

2 . Eqn (B1)
can be used to describe the moments of X; for instance,
for T (X(t)) = A2(t), Eqn (B1) describes the time evolu-
tion of the second moment of A. If all the reactions in
R are at most uni-molecular, then the equations for the
kth moment depend on moments of order smaller than
or equal to k. This leads to a system of ODEs in number
polynomial with the respect to the number of species,
and independent of the molecular counts, ensuring much
greater scalability with respect to solving the CME. If,
instead, there is at least one multi-molecular reaction,
then the equations for the kth moment will depend on
the higher-order moments. This leads to an infinite sys-
tem of ODEs. However, approximations of the solutions
can still be obtained by using moment closure techniques

[42], additionally guaranteeing much greater scalability
with respect to numerical solutions of the CME.

2. SI Deterministic Model for CRNs

Given a CRN C = (Λ, R) its time evolution is often
described as a deterministic function Φ : R≥0 → R|Λ|,
which is given by the solution of the following ODEs,
called the rate equations

dΦ(t)

dt
=

∑
τ=(p,r,k)

k
∏
A∈Λ

ΦA(t)
rA (B2)

where ΦA is the component of Φ relative to species A, and
rA is the component of r relative to A. Φ approximates
the evolution of C as a deterministic system, neglecting
stochastic fluctuations. It can been shown that this is
accurate in the limit of large populations, where X, the
CTMC induced by C, tends to behave deterministically,
and the CME solution converges to Φ [15].

3. SI linear Noise Approximation (LNA)

The linear Noise Approximation (LNA) is a continu-
ous state space approximation of the CTMC induced by
a CRN in terms of a Gaussian process. As a Gaussian
process depends just on its first two moments, the LNA
can also be seen as a moment closure technique for Eqn
(B1). Given a CRN C = (Λ, R), the LNA at time t ap-
proximates the distribution of X(t) with the distribution
of the random vector Y (t) such that

X(t) ≈ Y (t) = NΦ(t) +N
1
2G(t) (B3)

where N is the volume of the system, G(t) =
(G1(t), G2(t), ..., G|Λ|) is a random vector, independent
of N , representing the stochastic fluctuations at time t
and Φ(t) is the solution of the rate equations. The proba-
bility distribution of G(t) is then given by the solution of
a linear Fokker-Planck equation. As a consequence, for
every time instant t, G(t) has a multivariate normal dis-
tribution whose expected value E[G(t)] and covariance
matrix C[G(t)] are the solution of the following differen-
tial equations:

dE[G(t)]

dt
= JF (Φ(t))E[G(t)] (B4)

dC[G(t)]

dt
= JF (Φ(t))C[G(t)]+C[G(t)]JTF (Φ(t))+W (Φ(t))

(B5)
where JF (Φ(t)) is the Jacobian of F (Φ(t)), JTF (Φ(t))
its transpose, W (Φ(t)) =

∑
τ∈R υτυτ

Tατ (Φ(t)) and
Fj(Φ(t)) the jth component of F (Φ(t)). Note that, since
G is a Gaussian process, Y is still Gaussian with expec-
tation and variance given by

E[X(t)] ≈ E[Y (t)] = NΦ(t)



C[X(t)] ≈ C[Y (t)] = NC[G(t)]

Thanks to the Central Limit Theorem, it is possible to
show that, by increasing N , X(t) converges in distribu-
tion to Y (t) [15].

Appendix C: SI linear Filters

We begin this section with an illustrative example to
show the noise reduction capabilities of linear filters.

Example 2 Consider the following CRN

C : →kp A+A; A→kd .

This may model a highly noisy signal A from the envi-
ronment, with production rate kp and degradation rate
kd. Expectation and variance of A at steady state can be
derived by solving Eqn (B1) at steady state, and we get

E[A]∞ = 2
kp
kd

; V [A]∞ = 3
kp
kd
.

Note that the fact that expectation and variance stops
changing does not imply that a stochastic realization of
A will eventually stop changing. We ask if it is possible
to somehow generate a noiseless version of A, that is, a
copy of the A signal preserving the mean but with reduced
variance. In order to answer this question, consider the
following CRN, which we call F

F : A→k1 A+B B →k1 ,

where k1 is the rate constant. That is, A catalyzes the
production of B, which is then degraded with the same
rate. Then, composing F and C, we have

E[B]∞ = 2
kp
kd

; V [B]∞ =
kp(5k1 + 2kd)

kd(k1 + kd)
.

The steady state expectation of B does not depend on
the choice of k1: it is always equal to E[A]∞. However,
V [B]∞ does depends on k1. As a consequence, we ask
if there are values of k1 for which B has less variance
than A. This would yield a filter that is able to reduce
the variance of a signal while still maintaining the same
average value. It is easy to show that

If 2k1 < kd then V [B]∞ < V [A]∞.

An interesting question is what is the minimum value of
V [B]∞ that can be obtained. By minimizing V [B]∞ with
respect to k1 we have

Infk1∈R≥0
(V [B]∞) = 2

kp
kd
,

which is obtained for k1 → 0. This means that the best
that we can achieve with F is to produce an output species
B with V B]∞ = E[A]∞, hence behaving as a Poisson
process.

We can also derive an analytic solution for the tran-
sient evolution of the expectation of A and B. For A we
have that

E[A(t)] = 2
kp
kd

(1− expkdt),

while for B

E[B(t)] = 2
kp

kd(k1 − kd)
(−kd+kdexp−k1t+k1−k1 exp−kdt).

As expected, for t → ∞ we have E[B(t)] = E[A(t)].
Moreover, k1 and kd control how fast ED[B(t)] tracks
E[A(t)]. It is also easy to see that for k1 → ∞ we have
E[A(t)] = E[B(t)], for any t ≥ 0. This shows a trade-off
between how fast B keeps tracking A and the quantity of
noise that is filtered out. F acts as a buffer, which intro-
duces a delay to filter the fast dynamics of A. F is indeed
a molecular implementation of a first-order low-pass fil-
ter, that is, a molecular circuit that enables attenuating
the high frequency components of a signal by introduc-
ing a delay. However, despite its simplicity, the perfor-
mance of F is limited by Poisson noise, in the sense that
V [B(∞)] ≥ E[A(∞)]. More specifically, noise reduction
is lower bounded by the expectation of A.

By using a more complex filter with non-linear dynam-
ics (in the form of bi-molecular reactions), we can obtain
much better performance in term of noise reduction at
the cost of a more complex circuit. This annihilation fil-
ter, A, is given by the following CRN with mass action
kinetics

A : A→r1 A+B +D D →r1 E B + E →r2

B +A→r3 A+ C E + C →r3

where A is the input species and C is the output filtered
species. The filter is composed of two feed-forward loops
[24]: a coherent one and an incoherent one. The two
feed-forward loops are used to make C follow A with a de-
lay. The annihilation reaction between B and E, which is
supposed to be fast compared to the other reactions, and
the fact that the production of B and E are correlated,
enables noise reduction. In fact, consuming both B and
E, this reaction acts as a selector which selectively en-
ables only one feed-forward loop at the time according of
whether C must be increased or decreased. The resulting
network is therefore able to follow the long term evolution
of a signal and, at the same time, to filter the noise. In
Figure S2 we compare the performance of F and A for
k1 = 0.025, r1 = 1, r2 = 10, r3 = 0.0008.

1. SI Stochastic Analysis of First-Order Low-Pass
Filters

Consider the CRN F given by the following reactions

τ1 : A→k1 A+B τ2 : B →k2 (C1)



where A is the input species and B is the output species.
Suppose F is embedded in an arbitrary CRN C = (Λ, R),
with the restriction that B is changed only through F .
That is, {A,B} ⊆ Λ, υτ,B = 0 for τ 6= τ1 and τ 6= τ2,
where υτ,B is the state change of reaction τ relative to
species B. We do allow the use of B as a catalyst in arbi-
trarily many reactions (i.e. C +B → B +D). Assuming
the steady state solution of the CME exists, the steady
state solution of the kth moment of B can be derived
using Eqn (B1) as

0 = E[
∑
τ∈R

ατ (X)((B + υτ,B)k −Bk)]∞ =

E[
∑

τ∈Rs.t. υτ,B 6=0

ατ (X)((B + υτ,B)k −Bk)]∞+

E[
∑

τ∈Rs.t. υτ,B=0

ατ (X)((B)k −Bk)]∞ =

E[k1A((B + 1)k −Bk)]∞ + E[k2B((B − 1)k)−Bk]∞.

For k = 1, we can derive the analytical form of the ex-
pectation of B at steady state as

E[B]∞ =
k1

k2
E[A]∞.

That is, B follows A, but with an amplification factor de-
pendent on the parameter rates. The second moment of
B at steady state can be derived using k = 2. Moreover,
as E[B]∞ = k1

k2
E[A]∞, we have

E[B2]∞ =
k1

k2
E[AB]∞ + E[B]∞,

which leads to the following form for the variance of B
at steady state

V [B]∞ = E[B2]∞ − E[B]2∞ = E[B]∞ +
k1

k2
Cov[A,B]∞

(C2)

where Cov[A,B]∞ = E[AB]∞ −E[A]∞E[B]∞ is the co-
variance between A and B. Assuming, A and B are non-
negatively correlated, this leads to the following lower
bound for the variance of B: for any A, the variance of
B is such that

V [B]∞ ≥ E[B]∞.

The assumption that the correlation between A and B is
positive seems natural, as A catalyzes the production of
B. In fact, in the next subsection we show that this is
true for a large class of inputs. However, we then show
that, if a negative feedback between A and B is present
in the larger network, then the correlation between A
and B may become negative, and the noise of B can be
reduced below Poisson levels.

2. Systems Without Feedback Loops

Consider a molecular signal A produced by the follow-
ing class of reactions

τ1 :→p1 mA

τ2 : lA→p2 nA

where m, l, n ∈ N and n < l. That is, A is co-expressed
with a certain rate p1, and can degrade non-linearly
with rate p2. For instance, C1 :→p1 A;A →p2 yields a
Poisson process, while C2 :→p1 A + A;A →p2 yields a
super-Poisson process (variance greater than mean), and
C3 :→p1 A;A+A→p2 yields a sub-Poisson process (vari-
ance smaller than mean). The resulting CRN is in general
non-linear. As a consequence, Eqn (B1) cannot be used
directly, because it would lead to an infinite system of
ODEs. Therefore, to analyze the system we consider the
LNA. The rate equations of A (Eqn (B2)) can be written
as

dΦA(t)

dt
= FA(t) = mp1 − (l − n)p2ΦA(t)l (C3)

The partial derivative of FA(t) with respect to ΦA(t) is

JA(t) = −l(l − n)p2ΦA(t)l−1. (C4)

Assume A is the input of the linear filter F (Eqn (C1)),
then using Eqn (B5) we can describe the covariance of
the system, Cov(t), as solution of the following ODEs

Cov(t) = J(t)Cov(t) + Cov(t)JT +W (t) (C5)

where

Cov(t) =

(
V [A(t)] Cov[A(t), B(t)]

Cov[A(t), B(t)] V [B(t)]

)
,

J(t) =

(
JA(t) 0
k1 −k2

)

W (t) =(
m2p1 + (l − n)2(p2ΦA(t)l) 0

0 k1ΦA(t) + k2ΦB(t)

)
Solving Eqn (C5) at steady state, we obtain the following
equations for Cov[A,B]∞

0 = Cov[A,B]∞JA + V [A]∞k1 − Cov[A,B]∞k2 (C6)

where JA = limt→∞ JA(t). Eqn (C6) can be rewritten as

Cov[A,B]∞ = V [A]∞
k1

k2 − JA
.

JA is always non positive. As a consequence, we have
that, for any k1, k2 ∈ R≥0, Cov[A,B]∞ ≥ 0. Moreover,
as

V [B]∞ = E[B]∞ +
k1

k2
Cov[A,B]∞,



FIG. S2. Comparison of the actions of F and A on CRN C for k1 = 0.025, r1 = 1, r2 = 10, r3 = 0.0008. Plots compare expected
value and variance of A with species B in F (A) and with species C in A (B). (C and D) Stochastic simulation plots of A
(red) with B (blue) and C (green).

we have that, as expected

V [B]∞ ≥ E[B]∞ for any k1, k2 ∈ R≥0.

Also, assume k1 = k and k2 = km, m ∈ R≥0, then we
have

lim
k→0

V [B]∞ = E[B]∞

and

lim
k→∞

V [B]∞ = E[B]∞+
k1

k2
V [A]∞ = E[B]∞+

1

m
V [A]∞.

This shows that the noise is lower bounded by Poisson
dynamics, which is approached for rates slow enough.
Instead, if the rates of the filter are fast, then a noise
term is added dependent on the variance of the input
process.

3. Higher-Order linear Filters

We have considered first-order low-pass filters and
demonstrated that their molecular implementation is sur-
prisingly simple, yet they have many appealing proper-
ties. However, the price to pay for their simplicity is that
the performance of noise reduction may be unsatisfactory
in some cases, and it may also happen that the output
signal is more noisy than input. For instance, if A is
produced as a birth-death process

→kp A A→kd ,

then for the output species B of F we have that
E[B(t)] ≥ E[A(t)], t ≤ R≥0, for any possible rate pa-
rameters. Thus, a simple first-order filter cannot reduce
the stochastic fluctuations of A in this case.

A possible way to improve first-order filters could be to
consider second-order filters, that is, filters with transfer
function of the type

F (s) =
c

(s+ a)(s+ b)
.

In fact, these filters are known to guarantee better per-
formance because of their sharper Bode diagram. A pos-
sible molecular implementation of such filters is given by
a cascade of first-order low-pass filters

A→k1 A+ C C →k1 C →k2 C +B B →k2 .

In fact, the transfer function of such a CRN is

k1 · k2

(s+ k1)(s+ k2)

However, a frequency characterization of such systems
does not take into account the intrinsic noise introduced
by the filter itself. In fact, each of the filters in the
cascade, being linear, is still limited by Poisson noise.
Therefore, higher-order filters, if linear, do not improve
the performance of first-order filters (see Figure S3) since
they are limited by Poisson noise.



FIG. S3. Comparison of the evolution of species A,B,C for
A a birth-death process with mean at steady state of 100
and C,B internal and output species of a second-order low-
pass filter for k1 = 0.1 and k2 = 0.01. (A) Plots of the time
evolution of expectation and variance. Note that the variance
of C is not reduced with respect to the variance of B. (B)
Comparison of the species in terms of stochastic simulation.

Appendix D: SI annihilation module

The annihilation module, M, is composed of the fol-
lowing reactions:

M : A→r1 A+B + C; B + C →r2 .

In order to study the stochastic properties of such a sys-
tem, we consider an input species A that implements a

Poisson process. That is, A is generated by the following
reactions

C : →kA A; A→kP .

Using Eqn (B1), it is easy to see that

E[A]∞ = V [A]∞ =
kA
kP

.

To study the variance of C, we cannot use Eqn (B1)
directly, because it would lead to an infinite system of
ODEs. Instead, we make use of the LNA (Eqn (B4)
and Eqn (B5)), which allows us to derive a closed form
system for mean and variance of B and C. For the ex-
pectation we have the following relation, which holds at
steady state

r1E[A]∞ = r2E[B]∞E[C]∞ (D1)

In order to obtain a finite number of solutions we in-
troduce the following additional constraint, which holds
assuming B and C start from the same initial condition

E[B]∞ = E[C]∞.
Now, it is easy to see that

E[B]∞ = E[C]]∞ =

√
r1

r2
E[A]∞.

For the variance, solving Eqn (B5) at steady state, we
obtain the following equations

− E[B]∞Cov[A,C]∞r2 − E[C]∞Cov[A,B]∞r2 + V [A]∞r1 − Cov[A,B]∞kP = 0

− E[B]∞Cov[A,C]∞r2 − E[C]∞Cov[A,B]∞r2 + V [A]∞r1 − Cov[A,C]∞kP = 0

E[A]∞r1 + E[B]∞E[C]∞r2 − E[B]∞V [B]∞r2 − E[B]∞V [C]∞r2−
CV [B]∞r2 − E[C]∞Cov[B,C]∞r2 + Cov[A,B]∞r1 + Cov[A,C]∞r1 = 0

Ar1 + E[B]∞E[C]∞r2 − 2E[B]∞Cov[B,C]∞r2 − 2E[C]∞V [B]∞r2 + 2Cov[A,B]∞r1 = 0

E[A]∞r1 + E[B]∞E[C]∞r2 − 2E[B]∞V [C]∞r2 − 2E[C]∞Cov[B,C]∞r2 + 2Cov[A,C]∞r1 = 0

In order to derive a system of ODEs with a finite num-
ber of solutions we need to introduce an additional con-
straint, which will depend on the initial conditions. Since
initially all the variances and covariances are 0 (we start
from a known initial condition), from Eqn (B5) we can
add the following constraint

2V [B]∞ = Cov[B,C]∞ + E[C]∞.

Solving the resulting system of equations, we obtain the
following solution for the Fano factor of C and B at

steady state

FC = FB =
2r

3/2
1

√
r2kAkP + 4r1r2kA − r1k

2
P − k3

P

8r1r2kA − 2k3
P

(D2)

Assume r1 = r, r2 = rm, r,m ∈ R≥0, then for r → 0 we
obtain

FC = FB =
−k3

p

−2k3
P

=
1

2
,



FIG. S4. Comparison of the PSD of the input signal A
affected by Poisson noise for different implementations of
the annihilation filter, varying the parameter rates, and for
E[A]∞ = E[B]∞. The power spectrum is estimated using the
Blackman-Tukey Spectral Estimate algorithm with frequency
deep resolution, as implemented in Matlab, over 300000 data
points with sampling time of 0.1 seconds. In all the different
cases, the annihilation module attenuates the low frequency
components of the input signal, while it can amplify the high
frequency if the rates are faster than those of the input signal.

while for r →∞, we get

FC = FB =
2r

3/2
1

√
r2kAkP + 4r1r2kA

8r1r2kA
=

1

4

√
k1kP
k2kA

+
1

2
=

2 + n

4
,

where n = E[C]∞
E[A]∞

=
√

k1kA
k2kP

kP
kA
.

1. Noise Reduction Performance of the
annihilation module

In the previous subsection we show that the annihi-
lation module can reduce the Fano factor of an input
signal bolow Poisson levels (Fano Factor smaller than 1)
and independently of the delay introduced. In order to
explain why this is possible, we consider an input process

A described by the following reactions

τ1 :→1 A; τ2 : A→0.01,

that is, A is affected by Poisson noise. In Figure S4, we
compare the Power Spectral Density (PSD) of the input
A with that of the output B of the annihilation filter,
for different rate parameters. We select r1, r2 such that
E[B]∞ = E[A]∞. For any choice of r1 we have that B
attenuates the low frequency components of the input
signal. This causes a reduction of the Fano factor inde-
pendently of the value of r1. However, if r1 is large, the
high frequency components tend to be amplified, while
for r1 small enough these are attenuated. This explains
why noise attenuation is greater for small rates. There-
fore, the annihilation module reduces the noise by atten-
uating the low frequency components of a signals, and, if
its dynamics are slow enough, it reduces the noise further
by integrating the fast dynamics.
2. SI Incoherent Feed-Forward Loop is Limited by

Poisson Levels

The annihilation module has many similarities with
the incoherent feed-forward module [24], which, in its
linear form, can be described by the following reactions

A→k1 A+B + C

B + C →k2 C

C →k3

where A is the input species and B is the output. That
is, B and C are co-expressed, and then C represses B.
We assume A is affected by Poisson noise, that is, A is
produced by the following reactions

→kA A; A→kD .

Then, using the LNA, we can calculate the expectation
and Fano factor of B at steady state as

E[B]∞ =
k3

k2

FB =
k1

2k2kAkDn+ k1
2kD

3n+ k1
2kD

3 + k1k2
2kA

2n3 + 2k1k2kAkD
2n2(

k2kAn+ kD
2
) (
k1

2kD + k1k2kAn2 + k1kD
2n+ k2kAkDn3

) +

k1kD
4n+ k2

2kA
2kDn

4 + k2kAkD
3n3(

k2kAn+ kD
2
) (
k1

2kD + k1k2kAn2 + k1kD
2n+ k2kAkDn3

)

where, in the Fano factor, we constrain E[B]∞ =
nE[A]∞ for a constant n ∈ R>0. From now on, for

simplicity, and without loss of generality, we assume
kA
kD

= 100, and in Figure S5 we plot the Fano factor of



FIG. S5. Plot of FB for n = 1 (A) and n = 10 (B)

B at steady state as a function function of k1 and k2 for
different values of n. The Fano factor is lower bounded
by 1 (Poisson dynamics). This shows the importance of
having B and C degraded together, in order to reduce
fluctuations below Poisson statistics. Note also that in
this case the expectation of the output does not depend
on the input.

Appendix E: annihilation Filter

1. Stochastic Analysis of annihilation Filter

To study the noise reduction capabilities of the anni-
hilation filter, we make use of the LNA. We assume A is
a general input process, with extrinsic noise modeled by
a Poisson process. That is, A is generated and removed
by the following reactions

→kp A; A→kd .

Thus, we have E[A(t)] = V [A(t)], t ∈ R≥0. Using the
LNA equations for the mean we can describe the time

evolution of the species in Fp with the following ODEs

dE[D(t)]

dt
= r1E[A(t)]− r1E[D(t)]

dE[B(t)]

dt
=

r1E[A(t)]− r2E[B(t)]E[E(t)]− r3E[B(t)]E[A(t)]

dE[E(t)]

dt
=

r1E[D(t)]− r2E[B(t)]E[E(t)]− r3E[E(t)]ΦC(t)

dE[C(t)]

dt
= r3E[B(t)]E[A(t)]− r3E[E(t)]E[C(t)]

From these equations we can derive the following rela-
tions at steady state:

E[A]∞ = E[D]∞ (E1)

E[C]∞ = E[D]∞
E[B]∞
E[E]∞

(E2)

0 = r1E[D]∞ − r2E[B]∞E[E]∞ − r3E[E]∞E[C]∞.
(E3)

It is easy to see that we have an infinite number of pos-
sible solutions depending on the initial conditions. By
integrating the differential equations for E[B] and E[E],
we get

E[B(t)]− E[E(t)] =

(E[B(0)]− E[E(0)]) +

∫ t

0

r1E[A(s)]− r1E[D(s)]ds−∫ t

0

r3E[B(s)]E[A(s)]− r3E[E(s)]E[C(s)]ds,

which, assuming E[D(0)] = E[C(0)], leads to the follow-
ing relation

E[B(t)]− E[E(t)] =

E[B(0)]− E[E(0)] + E[D(t)]− E[C(t)] (E4)

By solving Eqn (E4),Eqn (E1),Eqn (E2),Eqn (E3) at
steady state for E[B(0)] − E[E(0)] = 0, we obtain that
E[D]∞ = E[C]∞ = EA]∞, that is, perfect tracking of
the A.

Now, from the moment equations (Eqn (B1)), we get
the following exact expression for E[C(t)],

dE[C(t)]

dt
= r3E[B(t)A(t)]− r3E[E(t)C(t)],

which leads to

E[BA]∞ = E[EC]∞.

The above relation, for E[D(0)] = E[C(0)] = E[B(0)] =
E[E(0)] = 0 with Eqn (E2), which holds under the LNA
assumption, leads to

Cov[B,A]∞ = Cov[E,C]∞. (E5)



Solving (E5) with Equations (B5), we can derive a closed
form for the Fano Factor of C at steady state. However,
the resulting expression is too complex to be useful. Nev-
ertheless, we can assume r2 = T

r , r3 = r, where T, r are
constants. Then, for r → 0, we obtain the following form
for the Fano factor of C

lim
r→0

FC =
kp

kp + r1
.

As r1 acts as a sensor, we have that increasing r1, the
noise can be made arbitrarily small.

a. Frequency Analysis of annihilation Filter

For C, output of the annihilation filter, the following
linearized ODE can be derived

dΦC(t)

dt
=

− r3ΦE(t)Ceq − r3E
eqΦC(t) + r3ΦB(t)Aeq + r3B

eqΦA(t)

where Aeq, Ceq, Beq, Eeq are the values of the species at
the equilibrium point. In the equilibrium point we have
that Aeq = Ceq, that is, C tracks A and Beq = Eeq = b.
As a consequence, for dynamics near to the equilibrium,
we can write

dΦC(t)

dt
= −r3E

eqΦC(t) + r3B
eqΦA(t)

Fourier transforming both terms, we get

C(ω) =
1

1 + iω
r3b

A(ω),

where C(ω) is the Fourier transform of ΦC . Therefore,
C acts as a first-order low-pass filter on the input A with
cutoff frequency ω̄ = r3b. The spectrum of the transfer
function between C and A, near to the equilibrium point,

is as shown in Figure 1 in the main text: a delay depen-
dent on r3 is introduced in order to reduce the noise at
the high frequencies.

Appendix F: SI Time-Varying Input Analysis

In Figure S6 we compare the action of linear filter
(CRN (1)), annihilation module (CRN (7)), and anni-
hilation filter (CRN (10)) for an oscillatory input A, de-
scribed by the following reactions

X1 →1 X1 +X1

X1 +A→0.01 A+A

A→1 (F1)

where X1 is an auxiliary species for initial condition of X1

and A of respectively 200 and 100 molecules. The above
reactions implement a Lotka-Volterra oscillator. Hence,
the Fano factor of A is due to two components: phase
and amplitude of the oscillations, which may change at
any oscillation period, and the fast fluctuations that cor-
rupt the oscillatory behaviour. In this case, the goal of
the filtering process should be to produce an output pro-
cess with the same oscillatory behaviour of A, but with
reduced fast fluctuations. Hence, the alone annihilation
module cannot perform well for such a goal. In fact, we
showed that the annihilation module reduces the low fre-
quency components of the spectrum of A. This implies
that the output of the annihilation module will have at-
tenuated oscillations compared toA. The annihilation fil-
ter, instead, correctly reduces the fast fluctuations while
still maintaining similar profile of the oscillations and not
introducing any other noise, as it happens for the linear
filter.

Appendix G: SI Code

In Figure S7 we report the code used for stochastic
simulations and LNA computation in Figure 3. In Figure
S8 we report the code used for stochastic simulations and
LNA computation in Figure S6. The figures are obtained
using the Microsoft Visual GEC tool [30].



FIG. S6. Comparison of linear filter (A), annihilation module (B), and annihilation filter (C) for an oscillatory input as
described in Eqns (F1). Details of the parameters used are shown in Figure S8. In the second row we plot the expectation and
standard deviation of input and output of each filter according to the LNA. In the third row we show a stochastic simulation
of input and output of each filter.

FIG. S7. Microsoft VisualGEC code for stochastic simulations (A) and LNA computation (B) of Figure 3.



FIG. S8. Microsoft VisualGEC code for stochastic simulations (A) and LNA computation (B) of Figure S6.


