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Václav Brožek
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Abstract—We study Markov decision processes (MDPs) with
multiple limit-average (or mean-payoff) functions. We consider
two different objectives, namely, expectation and satisfaction
objectives. Given an MDP with kkk reward functions, in the
expectation objective the goal is to maximize the expected limit-
average value, and in the satisfaction objective the goal is to
maximize the probability of runs such that the limit-average
value stays above a given vector. We show that under the
expectation objective, in contrast to the single-objective case, both
randomization and memory are necessary for strategies, and
that finite-memory randomized strategies are sufficient. Under
the satisfaction objective, in contrast to the single-objective case,
infinite memory is necessary for strategies, and that randomized
memoryless strategies are sufficient for εεε-approximation, for
all ε > 0ε > 0ε > 0. We further prove that the decision problems for
both expectation and satisfaction objectives can be solved in
polynomial time and the trade-off curve (Pareto curve) can be
εεε-approximated in time polynomial in the size of the MDP and 1
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,
and exponential in the number of reward functions, for all ε > 0ε > 0ε > 0.
Our results also reveal flaws in previous work for MDPs with
multiple mean-payoff functions under the expectation objective,
correct the flaws and obtain improved results.

I. INTRODUCTION

Markov decision processes (MDPs) are the standard models
for probabilistic dynamic systems that exhibit both prob-
abilistic and nondeterministic behaviors [14], [8]. In each
state of an MDP, a controller chooses one of several actions
(the nondeterministic choices), and the system stochastically
evolves to a new state based on the current state and the chosen
action. A reward (or cost) is associated with each transition
and the central question is to find a strategy of choosing the
actions that optimizes the rewards obtained over the run of the
system. One classical way to combine the rewards over the run
of the system is the limit-average (or mean-payoff) function
that assigns to every run the long-run average of the rewards
over the run. MDPs with single mean-payoff functions have
been widely studied in literature (see, e.g., [14], [8]). In many
modeling domains, however, there is not a single goal to be
optimized, but multiple, potentially dependent and conflicting
goals. For example, in designing a computer system, the goal is
to maximize average performance while minimizing average
power consumption. Similarly, in an inventory management
system, the goal is to optimize several potentially dependent
costs for maintaining each kind of product. These motivate the
study of MDPs with multiple mean-payoff functions.

Traditionally, MDPs with mean-payoff functions have been
studied with only the expectation objective, where the goal
is to maximize (or minimize) the expectation of the mean-
payoff function. There are numerous applications of MDPs
with expectation objectives in inventory control, planning, and
performance evaluation [14], [8]. In this work we consider
both the expectation objective and also the satisfaction objec-
tive for a given MDP. In both cases we are given an MDP with
k reward functions, and the goal is to maximize (or minimize)
either the k-tuple of expectations, or the probability of runs
such that the mean-payoff value stays above a given vector.

To get some intuition about the difference between the
expectation/satisfaction objectives and to show that in some
scenarios the satisfaction objective is preferable, consider a
filehosting system where the users can download files at
various speed, depending on the current setup and the number
of connected customers. For simplicity, let us assume that a
user has 20% chance to get a 2000kB/sec connection, and 80%
chance to get a slow 20kB/sec connection. Then, the overall
performance of the server can be reasonably measured by the
expected amount of transferred data per user and second (i.e.,
the expected mean payoff) which is 416kB/sec. However, a
single user is more interested in her chance of downloading
the files quickly, which can be measured by the probability
of establishing and maintaining a reasonably fast connection
(say, ≥ 1500kB/sec). Hence, the system administrator may
want to maximize the expected mean payoff (by changing
the internal setup of the system), while a single user aims at
maximizing the probability of satisfying her preferences (she
can achieve that, e.g., by buying a priority access, waiting till
3 a.m., or simply connecting to a different server; obviously,
she might also wish to minimize other mean payoffs such as
the price per transferred bit). In other words, the expectation
objective is relevant in situations when we are interested in
the “average” behaviour of many instances of a given system,
while the satisfaction objective is useful for analyzing and
optimizing particular executions.

In MDPs with multiple mean-payoff functions, various
strategies may produce incomparable solutions, and conse-
quently there is no “best” solution in general. Informally, the
set of achievable solutions

(i) under the expectation objective is the set of all vectors ~v



such that there is a strategy to ensure that the expected
mean-payoff value vector under the strategy is at least ~v;

(ii) under the satisfaction objective is the set of tuples (ν,~v)
where ν ∈ [0, 1] and ~v is a vector such that there is
a strategy under which with probability at least ν the
mean-payoff value vector of a run is at least ~v.

The “trade-offs” among the goals represented by the individual
mean-payoff functions are formally captured by the Pareto
curve, which consists of all minimal tuples (wrt. compo-
nentwise ordering) that are not strictly dominated by any
achievable solution. Intuitively, the Pareto curve consists of
“limits” of achievable solutions, and in principle it may contain
tuples that are not achievable solutions (see Section III). Pareto
optimality has been studied in cooperative game theory [12]
and in multi-criterion optimization and decision making in
both economics and engineering [11], [17], [16].

Our study of MDPs with multiple mean-payoff functions
is motivated by the following fundamental questions, which
concern both basic properties and algorithmic aspects of the
expectation/satisfaction objectives:
Q.1 What type of strategies is sufficient (and necessary) for

achievable solutions?
Q.2 Are the elements of the Pareto curve achievable solu-

tions?
Q.3 Is it decidable whether a given vector represents an

achievable solution?
Q.4 Given an achievable solution, is it possible to compute a

strategy which achieves this solution?
Q.5 Is it decidable whether a given vector belongs to the

Pareto curve?
Q.6 Is it possible to compute a finite representa-

tion/approximation of the Pareto curve?
We provide comprehensive answers to the above questions,
both for the expectation and the satisfaction objective. We
also analyze the complexity of the problems given in Q.3–Q.6.
From a practical point of view, it is particularly encouraging
that most of the considered problems turn out to be solvable
efficiently, i.e., in polynomial time. More concretely, our
answers to Q.1–Q.6 are the following:
1a. For the expectation objectives, finite-memory strategies

are sufficient and necessary for all achievable solutions.
1b. For the satisfaction objectives, achievable solutions re-

quire infinite memory in general, but memoryless ran-
domized strategies are sufficient to approximate any
achievable solution up to an arbitrarily small ε > 0.

2. All elements of the Pareto curve are achievable solutions.
3. The problem whether a given vector represents an achiev-

able solution is solvable in polynomial time.
4.a For the expectation objectives, a strategy which achieves

a given solution is computable in polynomial time.
4.b For the satisfaction objectives, a strategy which

ε-approximates a given solution is computable in poly-
nomial time.

5. The problem whether a given vector belongs to the Pareto
curve is solvable in polynomial time.

6. A finite description of the Pareto curve is computable in

exponential time. Further, an ε-approximate Pareto curve
is computable in time which is polynomial in 1/ε and
the size of a given MDP, and exponential in the number
of mean-payoff functions.

A more detailed and precise explanation of our results is
postponed to Section III.

Let us note that MDPs with multiple mean-payoff functions
under the expectation objective were also studied in [4],
and it was claimed that randomized memoryless strategies
are sufficient for ε-approximation of the Pareto curve, for
all ε > 0, and an NP algorithm was presented to find a
randomized memoryless strategy achieving a given vector. We
show with an example that under the expectation objective
there exists ε > 0 such that randomized strategies do require
memory for ε-approximation, and thus reveal a flaw in the
earlier paper (our results not only correct the flaws of [4], but
also significantly improve the complexity of the algorithm for
finding a strategy achieving a given vector).

Similarly to the related papers [5], [7], [9] (see Related
Work), we obtain our results by a characterization of the set
of achievable solutions by a set of linear constraints, and
from the linear constraints we construct witness strategies for
any achievable solution. However, our approach differs sig-
nificantly from the previous works. In all the previous works,
the linear constraints are used to encode a memoryless strategy
either directly for the MDP [5], or (if memoryless strategies
do not suffice in general) for a finite “product” of the MDP
and the specification function expressed as automata, from
which the memoryless strategy is then transfered to a finite-
memory strategy for the original MDP [7], [9], [6]. In our
setting new problems arise. Under the expectation objective
with mean-payoff function, neither is there any immediate
notion of “product” of MDP and mean-payoff function and
nor do memoryless strategies suffice. Moreover, even for
memoryless strategies the linear constraint characterization is
not straightforward for mean-payoff functions, as in the case of
discounted [5], reachability [7] and total reward functions [9]:
for example, in [4] even for memoryless strategies there was
no linear constraint characterization for mean-payoff function
and only an NP algorithm was given. Our result, obtained
by a characterization of linear constraints directly on the
original MDP, requires involved and intricate construction of
witness strategies. Moreover, our results are significant and
non-trivial generalizations of the classical results for MDPs
with a single mean-payoff function, where memoryless pure
optimal strategies exist, while for multiple functions both
randomization and memory is necessary. Under the satisfaction
objective, any finite product on which a memoryless strategy
would exist is not feasible as in general witness strategies for
achievable solutions may need an infinite amount of memory.
We establish a correspondence between the set of achievable
solutions under both types of objectives for strongly connected
MDPs. Finally, we use this correspondence to obtain our result
for satisfaction objectives.

Related Work. In [5] MDPs with multiple discounted reward
functions were studied. It was shown that memoryless strate-



gies suffice for Pareto optimization, and a polynomial time
algorithm was given to approximate (up to a given relative
error) the Pareto curve by reduction to multi-objective linear-
programming and using the results of [13]. MDPs with mul-
tiple qualitative ω-regular specifications were studied in [7].
It was shown that the Pareto curve can be approximated in
polynomial time; the algorithm reduces the problem to MDPs
with multiple reachability specifications, which can be solved
by multi-objective linear-programming. In [9], the results
of [7] were extended to combine ω-regular and expected total
reward objectives. MDPs with multiple mean-payoff functions
under expectation objectives were considered in [4], and our
results reveal flaws in the earlier paper, correct the flaws,
and present significantly improved results (a polynomial time
algorithm for finding a strategy achieving a given vector as
compared to the previously known NP algorithm). Moreover,
the satisfaction objective has not been considered in multi-
objective setting before, and even in single objective case it
has been considered only in a very specific setting [2].

II. PRELIMINARIES

We use N, Z, Q, and R to denote the sets of positive
integers, integers, rational numbers, and real numbers, respec-
tively. Given two vectors ~v, ~u ∈ Rk, where k ∈ N, we write
~v ≤ ~u iff ~vi ≤ ~ui for all 1 ≤ i ≤ k, and ~v < ~u iff ~v ≤ ~u and
~vi < ~ui for some 1 ≤ i ≤ k.

We assume familiarity with basic notions of probability
theory, e.g., probability space, random variable, or expected
value. As usual, a probability distribution over a finite or
countably infinite set X is a function f : X → [0, 1] such that∑
x∈X f(x) = 1. We call f positive if f(x) > 0 for every

x ∈ X , rational if f(x) ∈ Q for every x ∈ X , and Dirac if
f(x) = 1 for some x ∈ X . The set of all distributions over
X is denoted by dist(X).

Markov chains. A Markov chain is a tuple M = (L,→, µ)
where L is a finite or countably infinite set of locations,
→ ⊆ L× (0, 1]× L is a transition relation such that for each
fixed ` ∈ L,

∑
`
x→`′ x = 1, and µ is the initial probability

distribution on L.
A run in M is an infinite sequence ω = `1`2 . . . of locations

such that `i
x→ `i+1 for every i ∈ N. A finite path in M is a

finite prefix of a run. Each finite path w in M determines the
set Cone(w) consisting of all runs that start with w. To M we
associate the probability space (RunsM ,F ,P), where RunsM
is the set of all runs in M , F is the σ-field generated by all
Cone(w), and P is the unique probability measure such that
P(Cone(`1, . . . , `k)) = µ(`1) ·

∏k−1
i=1 xi, where `i

xi→ `i+1 for
all 1 ≤ i < k (the empty product is equal to 1).

Markov decision processes. A Markov decision process
(MDP) is a tuple G = (S,A,Act , δ) where S is a finite set
of states, A is a finite set of actions, Act : S → 2A \ ∅ is
an action enabledness function that assigns to each state s the
set Act(s) of actions enabled at s, and δ : S × A→ dist(S)
is a probabilistic transition function that given a state s and
an action a ∈ Act(s) enabled at s gives a probability distri-
bution over the successor states. For simplicity, we assume

that every action is enabled in exactly one state, and we
denote this state Src(a). Thus, henceforth we will assume that
δ : A→ dist(S).

A run in G is an infinite alternating sequence of states and
actions ω = s1a1s2a2 . . . such that for all i ≥ 1, Src(ai) = si
and δ(ai)(si+1) > 0. We denote by RunsG the set of all runs
in G. A finite path of length k in G is a finite prefix w =
s1a1 . . . ak−1sk of a run in G. For a finite path w we denote
by last(w) the last state of w.

A pair (T,B) with ∅ 6= T ⊆ S and B ⊆
⋃
t∈T Act(t) is an

end component of G if (1) for all a ∈ B, whenever δ(a)(s′) >
0 then s′ ∈ T ; and (2) for all s, t ∈ T there is a finite path
ω = s1a1 . . . ak−1sk such that s1 = s, sk = t, and all states
and actions that appear in w belong to T and B, respectively.
(T,B) is a maximal end component (MEC) if it is maximal
wrt. pointwise subset ordering. Given an end component C =
(T,B), we sometimes abuse notation by using C instead of
T or B, e.g., by writing a ∈ C instead of a ∈ B for a ∈ A.

Strategies and plays. Intuitively, a strategy in an MDP G is
a “recipe” to choose actions. Usually, a strategy is formally
defined as a function σ : (SA)∗S → dist(A) that given a finite
path w, representing the history of a play, gives a probability
distribution over the actions enabled in last(w). In this paper,
we adopt a somewhat different (though equivalent—see [1])
definition, which allows a more natural classification of vari-
ous strategy types. Let M be a finite or countably infinite set
of memory elements. A strategy is a triple σ = (σu, σn, α),
where σu : A×S×M→ dist(M) and σn : S×M→ dist(A)
are memory update and next move functions, respectively, and
α is an initial distribution on memory elements. We require
that for all (s,m) ∈ S×M , the distribution σn(s,m) assigns
a positive value only to actions enabled at s. The set of all
strategies is denoted by Σ (the underlying MDP G will be
always clear from the context).

Let s ∈ S be an initial state. A play of G determined by s
and a strategy σ is a Markov chain Gσs (or just Gσ if s is clear
from the context) where the set of locations is S ×M × A,
the initial distribution µ is positive only on (some) elements
of {s}×M ×A where µ(s,m, a) = α(m) · σn(s,m)(a), and
(t,m, a)

x→ (t′,m′, a′) iff

x = δ(a)(t′) · σu(a, t′,m)(m′) · σn(t′,m′)(a′) > 0 .

Hence, Gσs starts in a location chosen randomly according
to α and σn. In a current location (t,m, a), the next action
to be performed is a, hence the probability of entering t′ is
δ(a)(t′). The probability of updating the memory to m′ is
σu(a, t′,m)(m′), and the probability of selecting a′ as the
next action is σn(t′,m′)(a′). We assume that these choices
are independent, and thus obtain the product above.

In this paper, we consider various functions over RunsG
that become random variables over RunsGσs after fixing
some σ and s. For example, for F ⊆ S we denote by
Reach(F ) ⊆ RunsG the set of all runs reaching F . Then
Reach(F ) naturally determines Reachσs (F ) ⊆ RunsGσs by
simply “ignoring” the visited memory elements. To simplify
and unify our notation, we write, e.g., Pσs [Reach(F )] instead



of Pσs [Reachσs (F )], where Pσs is the probability measure of
the probability space associated to Gσs . We also adopt this
notation for other events and functions, such as lrinf(~r) or
lrsup(~r) defined in the next section, and write, e.g., Eσs [lrinf(~r)]
instead of E[lrinf(~r)

σ
s ].

Strategy types. In general, a strategy may use infinite memory,
and both σu and σn may randomize. According to the use of
randomization, a strategy, σ, can be classified as
• pure (or deterministic), if α is Dirac and both the memory

update and the next move function give a Dirac distribu-
tion for every argument;

• deterministic-update, if α is Dirac and the memory update
function gives a Dirac distribution for every argument;

• stochastic-update, if α, σu, and σn are unrestricted.
Note that every pure strategy is deterministic-update, and
every deterministic-update strategy is stochastic-update. A
randomized strategy is a strategy which is not necessarily pure.
We also classify the strategies according to the size of memory
they use. Important subclasses are memoryless strategies, in
which M is a singleton, n-memory strategies, in which M has
exactly n elements, and finite-memory strategies, in which M is
finite. By ΣM we denote the set of all memoryless strategies.
Memoryless strategies can be specified as σ : S→dist(A).
Memoryless pure strategies, i.e., those which are both pure
and memoryless, can be specified as σ : S→A.

For a finite-memory strategy σ, a bottom strongly con-
nected component (BSCC) of Gσs is a subset of loca-
tions W ⊆ S ×M ×A such that for all `1 ∈ W and
`2 ∈ S ×M ×A we have that (i) if `2 is reachable from `1,
then `2 ∈ W , and (ii) for all `1, `2 ∈ W we have that `2 is
reachable from `1. Every BSCC W determines a unique end
component ({s | (s,m, a) ∈ W}, {a | (s,m, a) ∈ W}) of G,
and we sometimes do not strictly distinguish between W and
its associated end component.

As we already noted, stochastic-update strategies can
be easily translated into “ordinary” strategies of the form
σ : (SA)∗S → dist(A), and vice versa (see [1]). Note that
a finite-memory stochastic-update strategy σ can be easily
implemented by a stochastic finite-state automaton that scans
the history of a play “on the fly” (in fact, Gσs simulates this
automaton). Hence, finite-memory stochastic-update strate-
gies can be seen as natural extensions of ordinary (i.e.,
deterministic-update) finite-memory strategies that are imple-
mented by deterministic finite-state automata.
A running example (I). As an example, consider the MDP
G = (S,A,Act , δ) of Fig. 1a. Here, S = {s1, . . . , s4}, A =
{a1, . . . , a6}, Act is denoted using the labels on lines going
from actions, e.g., Act(s1) = {a1, a2}, and δ is given by
the arrows, e.g., δ(a4)(s4) = 0.3. Note that G has four end
components (two different on {s3, s4}) and two MECs.

Let s1 be the initial state and M = {m1,m2}. Consider
a stochastic-update finite-memory strategy σ = (σu, σn, α)
where α chooses m1 deterministically, and σn(m1, s1) =
[a1 7→ 0.5, a2 7→ 0.5], σn(m2, s3) = [a4 7→ 1] and otherwise
σn chooses self-loops. The memory update function σu leaves
the memory intact except for the case σu(m1, s3) where both

s1 s2

s3 s4

a1

a2

0.5
0.5

a4 0.3

0.7

a6a5

a3

(a) Running example

s1

s2

b a1

a2

(b) Example of insufficiency of mem-
oryless strategies

(s1,m1, a2) (s1,m1, a1)

(s3,m1, a5) (s2,m1, a3)

(s3,m2, a4) (s4,m2, a6)

0.5 0.5
0.5

0.5
1

0.5 1

0.5 0.3
0.7

1

(c) A play of the MDP (a)

Fig. 1: Example MDPs

m1 and m2 are chosen with probability 0.5. The play Gσs1 is
depicted in Fig. 1c.

III. MAIN RESULTS

In this paper we establish basic results about Markov
decision processes with expectation and satisfaction objectives
specified by multiple limit average (or mean payoff ) functions.
We adopt the variant where rewards are assigned to edges (i.e.,
actions) rather than states of a given MDP.

Let G = (S,A,Act , δ) be a MDP, and r : A→ Q a reward
function. Note that r may also take negative values. For every
j ∈ N, let Aj : RunsG → A be a function which to every
run ω ∈ RunsG assigns the j-th action of ω. Since the limit
average function lr(r) : RunsG → R given by

lr(r)(ω) = lim
T→∞

1

T

T∑
t=1

r(At(ω))

may be undefined for some runs, we consider its lower and
upper approximation lrinf(r) and lrsup(r) that are defined for
all ω ∈ Runs as follows:

lrinf(r)(ω) = lim inf
T→∞

1

T

T∑
t=1

r(At(ω)),

lrsup(r)(ω) = lim sup
T→∞

1

T

T∑
t=1

r(At(ω)).

For a vector ~r = (r1, . . . , rk) of reward functions, we similarly
define the Rk-valued functions

lr(~r) = (lr(r1), . . . , lr(rk)),

lrinf(~r) = (lrinf(r1), . . . , lrinf(rk)),

lrsup(~r) = (lrsup(r1), . . . , lrsup(rk)).

Now we introduce the expectation and satisfaction objectives
determined by ~r.
• The expectation objective amounts to maximizing or min-

imizing the expected value of lr(~r). Since lr(~r) may be
undefined for some runs, we actually aim at maximizing



the expected value of lrinf(~r) or minimizing the expected
value of lrsup(~r) (wrt. componentwise ordering ≤).

• The satisfaction objective means maximizing the prob-
ability of all runs where lr(~r) stays above or below a
given vector ~v. Technically, we aim at maximizing the
probability of all runs where lrinf(~r) ≥ ~v or lrsup(~r) ≤ ~v.

The expectation objective is relevant in situtaions when we
are interested in the average or aggregate behaviour of many
instances of a system, and in contrast, the satisfaction objective
is relevant when we are interested in particular executions of a
system and wish to optimize the probability of generating the
desired executions. Since lrinf(~r) = −lrsup(−~r), the problems
of maximizing and minimizing the expected value of lrinf(~r)
and lrsup(~r) are dual. Therefore, we consider just the problem
of maximizing the expected value of lrinf(~r). For the same
reason, we consider only the problem of maximizing the
probability of all runs where lrinf(~r) ≥ ~v.

If k (the dimension of ~r) is at least two, there might be
several incomparable solutions to the expectation objective;
and if ~v is slightly changed, the achievable probability of all
runs satisfying lrinf(~r) ≥ ~v may change considerably. There-
fore, we aim not only at constructing a particular solution,
but on characterizing and approximating the whole space of
achievable solutions for the expectation/satisfaction objective.
Let s ∈ S be some (initial) state of G. We define the sets
AcEx(lrinf(~r)) and AcSt(lrinf(~r)) of achievable vectors for
the expectation and satisfaction objectives as follows:

AcEx(lrinf(~r)) = {~v | ∃σ ∈ Σ : Eσs [lrinf(~r)] ≥ ~v},
AcSt(lrinf(~r)) = {(ν,~v) | ∃σ ∈ Σ : Pσs [lrinf(~r) ≥ ~v] ≥ ν}.

Intuitively, if ~v, ~u are achievable vectors such that ~v > ~u,
then ~v represents a “strictly better” solution than ~u. The set of
“optimal” solutions defines the Pareto curve for AcEx(lrinf(~r))
and AcSt(lrinf(~r)). In general, the Pareto curve for a given
set Q ⊆ Rk is the set P of all minimal vectors ~v ∈ Rk such
~v 6< ~u for all ~u ∈ Q. Note that P may contain vectors that
are not in Q (for example, if Q = {x ∈ R | x < 2}, then
P = {2}). However, every vector ~v ∈ P is “almost” in Q in
the sense that for every ε > 0 there is ~u ∈ Q with ~v ≤ ~u+ ~ε,
where ~ε = (ε, . . . , ε). This naturally leads to the notion of an
ε-approximate Pareto curve, Pε, which is a subset of Q such
that for all vectors ~v ∈ P of the Pareto curve there is a vector
~u ∈ Pε such that ~v ≤ ~u+ ~ε. Note that Pε is not unique.
A running example (II). Consider again the MDP G of
Fig. 1a, and the strategy σ constructed in our running ex-
ample (I). Let ~r = (r1, r2), where r1(a6) = 1, r2(a3) = 2,
r2(a4) = 1, and otherwise the rewards are zero. Let

ω = (s1,m1, a2)(s3,m1, a5)
(
(s3,m2, a4)(s4,m2, a6)

)ω
Then lr(~r)(ω) = (0.5, 0.5). Considering the expectation ob-
jective, we have that Eσs1 [lrinf(~r)] = ( 3

52 ,
22
13 ). Considering

the satisfaction objective, we have that (0.5, 0, 2) ∈ AcSt(~r)
because Pσs1 [lrinf(~r) ≥ (0, 2)] = 0.5. The Pareto curve for
AcEx(lrinf(~r)) consists of the points {( 3

13x,
10
13x+ 2(1−x)) |

0 ≤ x ≤ 0.5}, and the Pareto curve for AcSt(lrinf(~r)) is
{(1, 0, 2)} ∪ {(0.5, x, 1− x) | 0 < x1 ≤ 10

13}.

Now we are equipped with all the notions needed for
understanding the main results of this paper. Our work is
motivated by the six fundamental questions given in Section I.
In the next subsections we give detailed answers to these
questions.

A. Expectation objectives

The answers to Q.1-Q.6 for the expectation objectives are
the following:
A.1 2-memory stochastic-update strategies are sufficient for

all achievable solutions, i.e., for all ~v ∈ AcEx(lrinf(~r))
there is a 2-memory stochastic-update strategy σ satisfy-
ing Eσs [lrinf(~r)] ≥ ~v.

A.2 The Pareto curve P for AcEx(lrinf(~r)) is a subset of
AcEx(lrinf(~r)), i.e., all optimal solutions are achievable.

A.3 There is a polynomial time algorithm which, given
~v ∈ Qk, decides whether ~v ∈ AcEx(lrinf(~r)).

A.4 If ~v ∈ AcEx(lrinf(~r)), then there is a 2-memory
stochastic-update strategy σ constructible in polynomial
time satisfying Eσs [lrinf(~r)] ≥ ~v.

A.5 There is a polynomial time algorithm which, given
~v ∈ Rk, decides whether ~v belongs to the Pareto curve
for AcEx(lrinf(~r)).

A.6 AcEx(lrinf(~r)) is a convex hull of finitely many vectors
that can be computed in exponential time. The Pareto
curve for AcEx(lrinf(~r)) is a union of all facets of
AcEx(lrinf(~r)) whose vectors are not strictly dominated
by vectors of AcEx(lrinf(~r)). Further, an ε-approximate
Pareto curve for AcEx(lrinf(~r)) is computable in time
polynomial in 1

ε , |G|, and maxa∈A max1≤i≤k |~ri(a)|, and
exponential in k.

Let us note that A.1 is tight in the sense that neither memory-
less randomized nor pure strategies are sufficient for achiev-
able solutions. This is witnessed by the MDP of Fig. 1b with
reward functions r1, r2 such that ri(ai) = 1 and ri(aj) = 0
for i 6= j. Consider a strategy σ which initially selects between
the actions a1 and b randomly (with probability 0.5) and
then keeps selecting a1 or a2, whichever is available. Hence,
Eσs1 [lrinf((r1, r2))] = (0.5, 0.5). However, the vector (0.5, 0.5)
is not achievable by a strategy σ′ which is memoryless or
pure, because then we inevitably have that Eσ′s1 [lrinf((r1, r2))]
is equal either to (0, 1) or (1, 0).

On the other hand, the 2-memory stochastic-update strategy
constructed in the proof of Theorem 1 can be efficiently trans-
formed into a finite-memory deterministic-update randomized
strategy, and hence the answers A.1 and A.4 are also valid for
finite-memory deterministic-update randomized strategies (see
[1]). Observe that A.2 can be seen as a generalization of the
well-known result for single payoff functions which says that
finite-state MDPs with mean-payoff objectives have optimal
strategies (in this case, the Pareto curve consists of a single
number known as the “value”). Also observe that A.2 does
not hold for infinite-state MDPs (a counterexample is trivial
to construct).

Finally, note that if σ is a finite-memory stochastic-update
strategy, then Gσs is a finite-state Markov chain. Hence, for



almost all runs ω in Gσs we have that lr(~r)(ω) exists and it
is equal to lrinf(~r)(ω). This means that there is actually no
difference between maximizing the expected value of lrinf(~r)
and the expected value of lr(~r).

B. Satisfaction objectives

The answers to Q.1-Q.6 for the satisfaction objectives are
presented below.
B.1 Achievable vectors require strategies with infinite mem-

ory in general. However, memoryless randomized strate-
gies are sufficient for ε-approximate achievable vectors,
i.e., for every ε > 0 and (ν,~v) ∈ AcSt(lrinf(~r)), there is
a memoryless randomized strategy σ with

Pσs [lrinf(~r) ≥ ~v − ~ε] ≥ ν − ε.

Here ~ε = (ε, . . . , ε).
B.2 The Pareto curve P for AcSt(lrinf(~r)) is a subset of

AcSt(lrinf(~r)), i.e., all optimal solutions are achievable.
B.3 There is a polynomial time algorithm which, given

ν ∈ [0, 1] and ~v ∈ Qk, decides whether (ν,~v) ∈
AcSt(lrinf(~r)).

B.4 If (ν,~v) ∈ AcSt(lrinf(~r)), then for every ε > 0 there
is a memoryless randomized strategy σ constructible in
polynomial time such that Pσs [lrinf(~r) ≥ ~v − ~ε] ≥ ν−ε.

B.5 There is a polynomial time algorithm which, given
ν ∈ [0, 1] and ~v ∈ Rk, decides whether (ν,~v) belongs
to the Pareto curve for AcSt(lrinf(~r)).

B.6 The Pareto curve P for AcSt(lrinf(~r)) may be neither
connected, nor closed. However, P is a union of finitely
many sets whose closures are convex polytopes, and,
perhaps surprisingly, the set {ν | (ν,~v) ∈ P} is always
finite. The sets in the union that gives P (resp. the
inequalities that define them) can be computed. Fur-
ther, an ε-approximate Pareto curve for AcSt(lrinf(~r))
is computable in time polynomial in 1

ε , |G|, and
maxa∈A max1≤i≤k |~ri(a)|, and exponential in k.

The algorithms of B.3 and B.4 are polynomial in the size of
G and the size of binary representations of ~v and 1

ε .
The result B.1 is again tight. One can show (see [1]) that

memoryless pure strategies are insufficient for ε-approximate
achievable vectors, i.e., there are ε > 0 and (ν,~v) ∈
AcSt(lrinf(~r)) such that for every memoryless pure strategy
σ we have that Pσs [lrinf(~r) ≥ ~v − ~ε] < ν − ε.

As noted in B.1, a strategy σ achieving a given vector
(ν,~v) ∈ AcSt(lrinf(~r)) may require infinite memory. Still, our
proof of B.1 reveals a “recipe” for constructing such a σ by
simulating the memoryless randomized strategies σε which
ε-approximate (ν,~v) (intuitively, for smaller and smaller ε,
the strategy σ simulates σε longer and longer; the details are
discussed in Section V). Hence, for almost all runs ω in Gσs we
again have that lr(~r)(ω) exists and it is equal to lrinf(~r)(ω).

IV. PROOFS FOR EXPECTATION OBJECTIVES

The technical core of our results for expectation objectives
is the following:

Theorem 1: Let G = (S,A,Act , δ) be a MDP, ~r =
(r1, . . . , rk) a tuple of reward functions, and ~v ∈ Rk. Then

1s0(s) +
∑
a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya + ys for all s ∈ S (1)

∑
s∈S

ys = 1 (2)∑
s∈C

ys =
∑

a∈A∩C

xa for all MEC C of G (3)∑
a∈A

xa · δ(a)(s) =
∑

a∈Act(s)

xa for all s ∈ S (4)

∑
a∈A

xa · ~ri(a) ≥ ~vi for all 1 ≤ i ≤ n (5)

Fig. 2: System L of linear inequalities. (We define 1s0(s) = 1
if s = s0, and 1s0(s) = 0 otherwise.)

there exists a system of linear inequalities L constructible in
polynomial time such that
• every nonnegative solution of L induces a 2-memory

stochastic-update strategy σ satisfying Eσs0 [lrinf(~r)] ≥ ~v;
• if ~v ∈ AcEx(lrinf(~r)), then L has a nonnegative solution.
As we already noted in Section I, the proof of Theorem 1

is non-trivial and it is based on novel techniques and observa-
tions. Our results about expectation objectives are corollaries
to Theorem 1 and the arguments developed in its proof. For the
rest of this section, we fix an MDP G, a vector of rewards,
~r = (r1, . . . , rk), and an initial state s0 (in the considered
plays of G, the initial state is not written explicitly, unless it
is different from s0).

Consider the system L of Fig. 2 (parametrized by ~v).
Obviously, L is constructible in polynomial time. Probably
most demanding are Eqns. (1) and Eqns. (4). The equations
of (1) are analogous to similar equalities in [7], and their
purpose is clarified at the end of the proof of Proposition 2.
The meaning of Eqns. (4) is explained in Lemma 1.

As both directions of Theorem 1 are technically involved,
we prove them separately as Propositions 1 and 2.

Proposition 1: Every nonnegative solution of the system L
induces a 2-memory stochastic-update strategy σ satisfying
Eσs0 [lrinf(~r)] ≥ ~v.

Proof of Proposition 1: First, let us consider Eqn. (4)
of L. Intuitively, this equation is solved by an “invariant”
distribution on actions, i.e., each solution gives frequencies of
actions (up to a multiplicative constant) defined for all a ∈ A,
s ∈ S, and σ ∈ Σ by

freq(σ, s, a) := lim
T→∞

1

T

T∑
t=1

Pσs [At = a] ,

assuming that the defining limit exists (which might not be the
case—cf. the proof of Proposition 2). We prove the following:

Lemma 1: Assume that assigning (nonnegative) values x̄a
to xa solves Eqn. (4). Then there is a memoryless strategy ξ
such that for every BSCCs D of Gξ, every s ∈ D ∩ S, and
every a ∈ D∩A, we have that freq(ξ, s, a) equals a common
value freq(ξ,D, a) := x̄a/

∑
a′∈D∩A x̄a′ .

A proof of Lemma 1 is given in [1]. Assume that the system
L is solved by assigning nonnegative values x̄a to xa and ȳχ



to yχ where χ ∈ A ∪ S. Let ξ be the strategy of Lemma 1.
Using Eqns. (1), (2), and (3), we will define a 2-memory
stochastic update strategy σ as follows. The strategy σ has two
memory elements, m1 and m2. A run of Gσ starts in s0 with
a given distribution on memory elements (see below). Then σ
plays according to a suitable memoryless strategy (constructed
below) until the memory changes to m2, and then it starts
behaving as ξ forever. Given a BSCC D of Gξ, we denote
by Pσs0 [switch to ξ in D] the probability that σ switches from
m1 to m2 while in D. We construct σ so that

Pσs0 [switch to ξ in D] =
∑

a∈D∩A
x̄a . (6)

Then freq(σ, s0, a) = Pσs0 [switch to ξ in D] · freq(ξ,D, a) =
x̄a. Finally, we obtain the following:

Eσs0 [lrinf(~ri)] =
∑
a∈A

~ri(a) · x̄a . (7)

A complete derivation of Eqn. (7) is given in [1]. Note that
the right-hand side of Eqn. (7) is greater than or equal to ~vi
by Inequality (5) of L.

So, it remains to construct the strategy σ with the desired
“switching” property expressed by Eqn. (6). Roughly speak-
ing, we proceed in two steps.

1. We construct a finite-memory stochastic update strategy σ̄
satisfying Eqn. (6). The strategy σ̄ is constructed so that
it initially behaves as a certain finite-memory stochastic
update strategy, but eventually this mode is “switched”
to the strategy ξ which is followed forever.

2. The only problem with σ̄ is that it may use more than two
memory elements in general. This is solved by applying
the results of [7] and reducing the “initial part” of σ̄ (i.e.,
the part before the switch) into a memoryless strategy.
Thus, we transform σ̄ into an “equivalent” strategy σ
which is 2-memory stochastic update.

Now we elaborate the two steps.
Step 1. For every MEC C of G, we denote by yC the number∑
s∈C ȳs =

∑
a∈A∩C x̄a. By combining the solution of L

with the results of Sections 3 and 5 of [7] (the details are
given in [1]), one can construct a finite-memory stochastic-
update strategy ζ which stays eventually in each MEC C with
probability yC .

The strategy σ̄ works as follows. For a run initiated in s0,
the strategy σ̄ plays according to ζ until a BSCC of Gζ is
reached. This means that every possible continuation of the
path stays in the current MEC C of G. Assume that C has
states s1, . . . , sk. We denote by x̄s the sum

∑
a∈Act(s) x̄a. At

this point, the strategy σ̄ changes its behavior as follows: First,
the strategy σ̄ strives to reach s1 with probability one. Upon
reaching s1, it chooses (randomly, with probability x̄s1

yC
) either

to behave as ξ forever, or to follow on to s2. If the strategy σ̄
chooses to go on to s2, it strives to reach s2 with probability
one. Upon reaching s2, the strategy σ̄ chooses (randomly, with
probability x̄s2

yC−x̄s1
) either to behave as ξ forever, or to follow

on to s3, and so, till sk. That is, the probability of switching
to ξ in si is x̄si

yC−
∑i−1
j=1 x̄sj

.

Since ζ stays in a MEC C with probability yC , the prob-
ability that the strategy σ̄ switches to ξ in si is equal to x̄si .
However, then for every BSCC D of Gξ satisfying D∩C 6= ∅
(and thus D ⊆ C) we have that the strategy σ̄ switches to ξ
in a state of D with probability

∑
s∈D∩S x̄s =

∑
a∈D∩A x̄a.

Hence, σ̄ satisfies Eqn. (6).
Step 2. Now we show how to reduce the first phase of σ̄

(before the switch to ξ) into a memoryless strategy, using the
results of [7, Section 3]. Unfortunately, these results are not
applicable directly. We need to modify the MDP G into a new
MDP G′ as follows: For each state s we add a new absorbing
state, ds. The only available action for ds leads to a loop
transition back to ds with probability 1. We also add a new
action, ads , to every s ∈ S. The distribution associated with ads
assigns probability 1 to ds.

Let us consider a finite-memory stochastic-update strategy,
σ′, for G′ defined as follows. The strategy σ′ behaves as σ̄
before the switch to ξ. Once σ̄ switches to ξ, say in a state
s of G with probability ps, the strategy σ′ chooses the action
ads with probability ps. It follows that the probability of σ̄
switching in s is equal to the probability of reaching ds in G′

under σ′. By [7, Theorem 3.2], there is a memoryless strategy,
σ′′, for G′ that reaches ds with probability ps. We define σ in
G to behave as σ′′ with the exception that, in every state s,
instead of choosing an action ads with probability ps it switches
to behave as ξ with probability ps (which also means that the
initial distribution on memory elements assigns ps0 to m2).
Then, clearly, σ satisfies Eqn. (6) because

Pσs0 [switch in D] =
∑
s∈D

Pσ
′′

s0

[
fire ads

]
=
∑
s∈D

Pσ
′

s0

[
fire ads

]
= Pσ̄s0 [switch in D] =

∑
a∈D∩A

x̄a.

This concludes the proof of Proposition 1.
Proposition 2: If ~v ∈ AcEx(lrinf(~r)), then L has a nonneg-

ative solution.
Proof of Proposition 2: Let % ∈ Σ be a strategy

such that E%s0 [lrinf(~r)] ≥ ~v. In general, the frequencies
freq(%, s0, a) of the actions may not be well defined, be-
cause the defining limits may not exist. A crucial trick to
overcome this difficulty is to pick suitable “related” val-
ues, f(a), lying between lim infT→∞

1
T

∑T
t=1 P%s0 [At = a]

and lim supT→∞
1
T

∑T
t=1 P%s0 [At = a], which can be safely

substituted for xa in L. Since every infinite sequence contains
an infinite convergent subsequence, there is an increasing
sequence of indices, T0, T1, . . ., such that the following limit
exists for each action a ∈ A

f(a) := lim
`→∞

1

T`

T∑̀
t=1

P%s0 [At = a] .

Setting xa := f(a) for all a ∈ A satisfies Inqs. (5)
and Eqns. (4) of L. Indeed, the former follows from
E%s0 [lrinf(~r)] ≥ ~v and the following inequality, which holds for
all 1 ≤ i ≤ k: ∑

a∈A

~ri(a) · f(a) ≥ E%s0 [lrinf(~ri)] . (8)



A proof of Inequality (8) is given in [1]. To prove that Eqns. (4)
are satisfied, it suffices to show that for all s ∈ S we have∑

a∈A

f(a) · δ(a)(s) =
∑

a∈Act(s)

f(a). (9)

A proof of Eqn. (9) is given in [1].
Now we have to set the values for yχ, χ ∈ A ∪ S, and

prove that they satisfy the rest of L when the values f(a) are
assigned to xa. Note that every run of G% eventually stays
in some MEC of G (cf., e.g., [6, Proposition 3.1]). For every
MEC C of G, let yC be the probability of all runs in G% that
eventually stay in C. Note that

∑
a∈A∩C

f(a) =
∑

a∈A∩C

lim
`→∞

1

T`

T∑̀
t=1

P%s0 [At = a]

= lim
`→∞

1

T`

T∑̀
t=1

∑
a∈A∩C

P%s0 [At = a]

= lim
`→∞

1

T`

T∑̀
t=1

P%s0 [At ∈ C] = yC .

(10)

Here the last equality follows from the fact that
lim`→∞ P%s0 [AT` ∈ C] is equal to the probability of all
runs in G% that eventually stay in C (recall that almost every
run stays eventually in a MEC of G) and the fact that the
Cesàro sum of a convergent sequence is equal to the limit of
the sequence.

To obtain ya and ys, we need to simplify the behavior of %
before reaching a MEC for which we use the results of [7]. As
in the proof of Proposition 1, we first need to modify the MDP
G into another MDP G′ as follows: For each state s we add a
new absorbing state, ds. The only available action for ds leads
to a loop transition back to ds with probability 1. We also add
a new action, ads , to every s ∈ S. The distribution associated
with ads assigns probability 1 to ds. By [7, Theorem 3.2], the
existence of % implies the existence of a memoryless pure
strategy ζ for G′ such that∑

s∈C

Pζs0 [Reach(ds)] = yC . (11)

Let Ua be a function over the runs in G′ returning the (possibly
infinite) number of times the action a is used. We are now
ready to define the assignment for the variables yχ of L.

ya := Eζs0 [Ua] for all a ∈ A
ys := Eζs0

[
Uads

]
= Pζs0 [Reach(ds)] for all s ∈ S.

Note that [7, Lemma 3.3] ensures that all ya and ys are
indeed well-defined finite values, and satisfy Eqns. (1) of L.
Eqns. (3) of L are satisfied due to Eqns. (11) and (10).
Eqn. (11) together with

∑
a∈A f(a)=1 imply Eqn. (2) of L.

This completes the proof of Proposition 2.

The item A.1 in Section III-A follows directly from The-
orem 1. Let us analyze A.2. Suppose ~v is a point of the
Pareto curve. Consider the system L′ of linear inequalities
obtained from L by replacing constants ~vi in Inqs. (5) with
new variables zi. Let Q ⊆ Rn be the projection of the set
of solutions of L′ to z1, . . . , zn. From Theorem 1 and the

definition of Pareto curve, the (Euclid) distance of ~v to Q
is 0. Because the set of solutions of L′ is a closed set, Q is
also closed and thus ~v ∈ Q. This gives us a solution to L with
variables zi having values ~vi, and we can use Theorem 1 to
get a strategy witnessing that ~v ∈ AcEx(lrinf(~r)).

Now consider the items A.3 and A.4. The system L is
linear, and hence the problem whether ~v ∈ AcEx(lrinf(~r)) is
decidable in polynomial time by employing polynomial time
algorithms for linear programming. A 2-memory stochastic-
update strategy σ satisfying Eσs [lrinf(~r)] ≥ ~v can be computed
as follows (note that the proof of Proposition 1 is not fully con-
structive, so we cannot apply this proposition immediately).
First, we find a solution of the system L, and we denote by
x̄a the value assigned to xa. Let (T1, B1), . . . , (Tn, Bn) be
the end components such that a ∈

⋃n
i=1Bi iff x̄a > 0, and

T1, . . . , Tn are pairwise disjoint. We construct another system
of linear inequalities consisting of Eqns. (1) of L and the
equations

∑
s∈Ti ys =

∑
s∈Ti

∑
a∈Act(s) x̄a for all 1 ≤ i ≤ n.

Due to [7], there is a solution to this system iff in the MDP G′

from the proof of Proposition 1 there is a strategy that for every
i reaches ds for s ∈ Ti with probability

∑
s∈Ti

∑
a∈Act(s) x̄a.

Such a strategy indeed exists (consider, e.g., the strategy σ′

from the proof of Proposition 1). Thus, there is a solution to
the above system and we can denote by ŷs and ŷa the values
assigned to ys and ya. We define σ by

σn(s,m1)(a) = ȳa/
∑
a′∈Act(s) ȳa′

σn(s,m2)(a) = x̄a/
∑
a′∈Act(s) x̄a′

and further σu(a, s,m1)(m2)=ys, σu(a, s,m2)(m2)=1, and
the initial memory distribution assigns (1 − ys0) and
ys0 to m1 and m2, respectively. Due to [7] we have
Pσs0 [change memory to m2 in s] = ŷs, and the rest follows
similarly as in the proof of Proposition 1.

The item A.5 can be proved as follows: To test that ~v ∈
AcEx(lrinf(~r)) lies in the Pareto curve we turn the system L
into a linear program LP by adding the objective to maximize∑

1≤i≤n
∑
a∈A xa·~ri(a). Then we check that there is no better

solution than
∑

1≤i≤n ~vi.
Finally, the item A.6 is obtained by considering the system

L′ above and computing all exponentially many vertices of
the polytope of all solutions. Then we compute projections of
these vertices onto the dimensions z1, . . . , zn and retrieve all
the maximal vertices. Moreover, if for every ~v ∈ {`·ε | ` ∈ Z∧
−Mr ≤ ` ·ε ≤Mr}k where Mr = maxa∈A max1≤i≤k |~ri(a)|
we decide whether ~v ∈ AcEx(lrinf(~r)), we can easily construct
an ε-approximate Pareto curve.

V. PROOFS FOR SATISFACTION OBJECTIVES

In this section we prove the items B.1–B.6 of Section III-B.
Let us fix a MDP G, a vector of rewards, ~r = (r1, . . . , rk),
and an initial state s0. We start by assuming that the MDP G
is strongly connected (i.e., (S,A) is an end component).

Proposition 3: Assume that G is strongly connected and
that there is a strategy π such that Pπs0 [lrinf(~r) ≥ ~v] > 0.
Then the following is true.

1. There is a strategy ξ satisfying Pξs[lrinf(~r) ≥ ~v] = 1 for
all s ∈ S.



2. For each ε>0 there is a memoryless randomized strategy
ξε satisfying Pξεs [lrinf(~r) ≥ ~v − ~ε] = 1 for all s ∈ S.

Moreover, the problem whether there is some π such that
Pπs0 [lrinf(~r) ≥ ~v] > 0 is decidable in polynomial time. Strate-
gies ξε are computable in time polynomial in the size of G,
the size of the binary representation of ~r, and 1

ε .
Proof: By [3], [10], Pπs0 [lrinf(~r) ≥ ~v] > 0 implies that

there is a strategy ξ such that Pξs0 [lrinf(~r) ≥ ~v] = 1 (the
details are given in [1]). This gives us item 1. of Proposition 3
and also immediately implies ~v ∈ AcEx(lrinf(~r)). It follows
that there are nonnegative values x̄a for all a ∈ A such that
assigning x̄a to xa solves Eqns. (4) and (5) of the system L
(see Fig. 2). Let us assume, w.l.o.g., that

∑
a∈A x̄a = 1.

Lemma 1 gives us a memoryless randomized strategy ζ such
that for all BSCCs D of Gζ , all s ∈ D ∩ S and all a ∈
D∩A we have that freq(ζ, s, a) = x̄a∑

a∈D∩A x̄a
. We denote by

freq(ζ,D, a) the value x̄a∑
a∈D∩A x̄a

.
Now we are ready to prove the item 2 of Proposition 3. Let

us fix ε > 0. We obtain ξε by a suitable perturbation of the
strategy ζ in such a way that all actions get positive proba-
bilities and the frequencies of actions change only slightly.
There exists an arbitrarily small (strictly) positive solution
x′a of Eqns. (4) of the system L (it suffices to consider a
strategy τ which always takes the uniform distribution over
the actions in every state and then assign freq(τ, s0, a)/N to
xa for sufficiently large N ). As the system of Eqns. (4) is
linear and homogeneous, assigning x̄a + x′a to xa also solves
this system and Lemma 1 gives us a strategy ξε satisfying
freq(ξε, s0, a) = (x̄a+x′a)/X . Here X =

∑
a′∈A x̄a′+x′a′ =

1+
∑
a′∈A x

′
a′ . We may safely assume that

∑
a′∈A x

′
a′ ≤ ε

2·Mr

where Mr = maxa∈A max1≤i≤k |~ri(a)|. Thus, we obtain∑
a∈A

freq(ξε, s0, a) · ~ri(a) ≥ ~vi − ε. (12)

A proof of Inequality (12) is given in [1]. As Gξε is strongly
connected, almost all runs ω of Gξε initiated in s0 satisfy

lrinf(~r)(ω) =
∑
a∈A

freq(ξε, s0, a) · ~r(a) ≥ ~v − ~ε.

This finishes the proof of item 2.
Concerning the complexity of computing ξε, note that

the binary representation of every coefficient in L has only
polynomial length. As x̄a’s are obtained as a solution of (a part
of) L, standard results from linear programming imply that
each x̄a has a binary representation computable in polynomial
time. The numbers x′a are also obtained by solving a part
of L and restricted by

∣∣∑
a′∈A x

′
a′

∣∣ ≤ ε
2·Mr

which allows to
compute a binary representation of x′a in polynomial time. The
strategy ξε, defined in the proof of Proposition 3, assigns to
each action only small arithmetic expressions over x̄a and x′a.
Hence, ξε is computable in polynomial time.

To prove that the problem whether there is some ξ such
that Pξs0 [lrinf(~r) ≥ ~v] > 0 is decidable in polynomial time,
we show that whenever ~v ∈ AcEx(lrinf(~r)), then (1, ~v) ∈
AcSt(lrinf(~r)). This gives us a polynomial time algorithm
by applying Theorem 1. Let ~v ∈ AcEx(lrinf(~r)). We show

that there is a strategy ξ such that Pξs[lrinf(~r) ≥ ~v] = 1. The
strategy σ needs infinite memory (an example demonstrating
that infinite memory is required is given in [1]).

Since ~v ∈ AcEx(lrinf(~r)), there are nonnegative rational
values x̄a for all a ∈ A such that assigning x̄a to xa solves
Eqns. (4) and (5) of the system L. Assume, without loss of
generality, that

∑
a∈A x̄a = 1.

Given a ∈ A, let Ia : A → {0, 1} be a function given by
Ia(a) = 1 and Ia(b) = 0 for all b 6= a. For every i ∈ N,
we denote by ξi a memoryless randomized strategy satisfying
Pξis
[
lrinf(Ia) ≥ x̄a − 2−i−1

]
= 1. Note that for every i ∈ N

there is κi ∈ N such that for all a ∈ A and s ∈ S we get

Pξis

[
inf
T≥κi

1

T

T∑
t=0

Ia(At) ≥ x̄a − 2−i

]
≥ 1− 2−i.

Now let us consider a sequence n0, n1, . . . of numbers where
ni ≥ κi and

∑
j<i nj

ni
≤ 2−i and κi+1

ni
≤ 2−i. We define ξ to

behave as ξ1 for the first n1 steps, then as ξ2 for the next n2

steps, then as ξ3 for the next n3 steps, etc. In general, denoting
by Ni the sum

∑
j<i nj , the strategy ξ behaves as ξi between

the Ni’th step (inclusive) and Ni+1’th step (non-inclusive).
Let us give some intuition behind ξ. The numbers in the

sequence n0, n1, . . . grow rapidly so that after ξi is simulated
for ni steps, the part of the history when ξj for j < i were
simulated becomes relatively small and has only minor impact
on the current average reward (this is ensured by the condition∑

j<i nj

ni
≤ 2−i). This gives us that almost every run has

infinitely many prefixes on which the average reward w.r.t.
Ia is arbitrarily close to x̄a infinitely often. To get that x̄a
is also the limit average reward, one only needs to be careful
when the strategy ξ ends behaving as ξi and starts behaving as
ξi+1, because then up to the κi+1 steps we have no guarantee
that the average reward is close to x̄a. This part is taken
care of by picking ni so large that the contribution (to the
average reward) of the ni steps according to ξi prevails over
fluctuations introduced by the first κi+1 steps according to
ξi+1 (this is ensured by the condition κi+1

ni
≤ 2−i).

Let us now prove the correctness of the definition of ξ
formally. We prove that almost all runs ω of Gξ satisfy

lim inf
T→∞

1

T

T∑
t=0

Ia(At(ω)) ≥ x̄a.

Denote by Ei the set of all runs ω = s0a0s1a1 . . . of Gξ such
that for some κi ≤ d ≤ ni we have

1

d

Ni+d∑
j=Ni

Ia(aj) < x̄a − 2−i.

We have Pξs0 [Ei] ≤ 2−i and thus
∑∞
i=1 Pξs0 [Ei] = 1

2 <∞. By
Borel-Cantelli lemma [15], almost surely only finitely many
of Ei take place. Thus, almost every run ω = s0a0s1a1 . . . of
Gξ satisfies the following: there is ` such that for all i ≥ `
and all κi ≤ d ≤ ni we have that

1

d

Ni+d∑
j=Ni

Ia(aj) ≥ x̄a − 2−i.



Consider T ∈ N such that Ni ≤ T < Ni+1 where i > `. The
following equation is proved in [1]:

1

T

T∑
t=0

Ia(at) ≥ (x̄a − 2−i)(1− 21−i). (13)

Since the above sum converges to x̄a as i (and thus also T )
goes to ∞, we obtain

lim inf
T→∞

1

T

T∑
t=0

Ia(at) ≥ x̄a.

We are now ready to prove the items B.1, B.3 and B.4. Let
C1, . . . , C` be all MECs of G. We say that a MEC Ci is good
for ~v if there is a state s of Ci and a strategy π satisfying
Pπs [lrinf(~r) ≥ ~v] > 0 that never leaves Ci when starting in
s. Using Proposition 3, we can decide in polynomial time
whether a given MEC is good for a given ~v. Let C be the union
of all MECs good for ~v. Then, by Proposition 3, there is a
strategy ξ such that for all s ∈ C we have Pξs[lrinf(~r) ≥ ~v] = 1
and for each ε > 0 there is a memoryless randomized strategy
ξε, computable in polynomial time, such that for all s ∈ C we
have Pξεs0 [lrinf(~r) ≥ ~v − ~ε].

Consider a strategy τ , computable in polynomial time,
which maximizes the probability of reaching C. Denote by
σ a strategy which behaves as τ before reaching C and as ξ
afterwards. Similarly, denote by σε a strategy which behaves
as τ before reaching C and as ξε afterwards. Note that σε is
computable in polynomial time.

Clearly, (ν,~v) ∈ AcSt(lrinf(~r)) iff Pτs0 [Reach(C)] ≥ ν
because σ achieves ~v with probability Pτs0 [Reach(C)]. Thus,
we obtain that ν ≤ Pτs0 [Reach(C)] ≤ Pξεs0 [lrinf(~r) ≥ ~v − ~ε].

Finally, to decide whether (ν,~v) ∈ AcSt(lrinf(~r)), it suffices
to decide whether Pτs0 [Reach(C)] ≥ ν in polynomial time.

Now we prove item B.2. Suppose (ν,~v) is a vector of the
Pareto curve. We let C be the union of all MECs good for
~v. Recall that the Pareto curve constructed for expectation
objectives is achievable (item A.2). Due to the correspondence
between AcSt and AcEx in strongly connected MDPs we
obtain the following. There is λ > 0 such that for every MEC
D not contained in C, every s ∈ D, and every strategy σ that
does not leave D, it is possible to have Pσs [lrinf(~r) ≥ ~u] > 0
only if there is i such that ~vi− ~ui ≥ λ, i.e., when ~v is greater
than ~u by λ in some component. Thus, for every ε < λ and
every strategy σ such that Pσs0 [lrinf(~r) ≥ ~v − ~ε] ≥ ν−ε it must
be the case that Pσs0 [Reach(C)] ≥ ν − ε. Because for single
objective reachability the optimal strategies exist, we get that
there is a strategy τ satisfying Pτs0 [Reach(C)] ≥ ν, and by
using methods similar to the ones of the previous paragraphs
we obtain (ν,~v) ∈ AcSt(lrinf(~r)).

The polynomial-time algorithm mentioned in item B.5
works as follows. First check whether (ν,~v) ∈ AcSt(lrinf(~r))
and if not, return “no”. Otherwise, find all MECs good for ~v
and compute the maximal probability of reaching them from
the initial state. If the probability is strictly greater than ν,
return “no”. Otherwise, continue by performing the following

procedure for every 1 ≤ i ≤ k, where k is the dimension
of ~v: Find all MECs C for which there is ε > 0 such that
C is good for ~u, where ~u is obtained from ~v by increasing
the i-th component by ε (this can be done in polynomial time
using linear programming). Compute the maximal probability
of reaching these MECs. If for any i the probability is at least
ν, return “no”, otherwise return “yes”.

The first claim of B.6 follows from Running example (II).
The other claims of item B.6 require further observations and
they are proved in [1].
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