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Abstract. Game theory provides an effective way to model strategic
interactions among rational agents. In the context of formal verification,
these ideas can be used to produce guarantees on the correctness of multi-
agent systems, with a diverse range of applications from computer secu-
rity to autonomous driving. Psychological games (PGs) were developed
as a way to model and analyse agents with belief-dependent motivations,
opening up the possibility to model how human emotions can influence
behaviour. In PGs, players’ utilities depend not only on what actually
happens (which strategies players choose to adopt), but also on what
the players had expected to happen (their belief as to the strategies that
would be played). Despite receiving much attention in fields such as eco-
nomics and psychology, very little consideration has been given to their
applicability to problems in computer science, nor to practical algorithms
and tool support. In this paper, we start to bridge that gap, proposing
methods to solve PGs and implementing them within PRISM-games, a
formal verification tool for stochastic games. We discuss how to model
these games, highlight specific challenges for their analysis and illustrate
the usefulness of our approach on several case studies, including human
behaviour in traffic scenarios.

1 Introduction

Probabilistic model checking is a well established technique for formally verifying
computerised systems that operate in uncertain or stochastic environments. In
order to verify systems comprising multiple autonomous agents and/or those in-
volving human interactions, various models and concepts from game theory have
been adapted for probabilistic model checking. Stochastic games, in particular,
have shown to be a versatile and useful formalism to model and study situations
involving collaboration or competition among agents, successfully applied to, for
example human-in-the-loop autonomous systems [12], robot navigation in the
presence of humans [18] and attack-defence scenarios [2].

While traditional game theory is often used to model human decision making,
it is unable to model situations such as emotional response and social norms,
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where the utilities that players aim to maximise can depend on their beliefs. This
inadequacy has been pointed out in [13], which proposed the seminal model of
psychological games (PGs). In these games, a player’s utility depends not only
on what actually happens in the game (i.e., which strategies are chosen by the
players), but also on what the players had expected to happen (i.e., their belief
as to the future behaviour of the other players).

This class of models makes it possible to consider different aspects that con-
tribute to human decision-making, such as regret, trust, fear, reciprocity and
fairness, and how these may influence player behaviour. Crucially, psychological
game predictions have been reproduced in human experiments, thus supporting
the notion of belief-dependent motivations [3]. This has been of particular rele-
vance in economics, when trying to predict and understand how people behave
regarding non-material payoffs. Naturally, though, as autonomous computerised
systems become more commonplace, ensuring that they interact safely and effi-
ciently with humans will also require this kind of reasoning.

In this paper, we make the first steps towards a more practical approach to
modelling and analysing PGs, and in applying them to other scenarios. We begin
with one-shot (normal form) games, considering the normal form psychological
games (NFPGs) proposed in [13]. We work with the commonly employed solu-
tion concept of Nash equilibria (NE), which establishes rational strategies for a
game to be those where no player has an incentive to unilaterally deviate from
their strategy. Using the psychological extension of NE from [13], we propose
an approach to finding optimal equilibria for NFPGs using support enumeration
and non-linear programming, and highlight why computing equilibria for such
games is more computationally challenging.

We next investigate extensive (multi-stage) games with psychological pay-
offs, under the assumption that beliefs are local and state-based. We do so by
considering an extension of concurrent stochastic games (CSGs) whose reward
functions can depend on both the actions taken and beliefs about those actions,
proposing a method to find equilibria for finite-horizon cumulative rewards using
backward induction. We develop prototype tool support for psychological games,
building on the PRISM-games model checker for stochastic games [23]. Using
this, we model and analyse a variety of psychological games, notably studying
human behaviour in several different traffic scenarios, and showcase the analysis
and insights made possible by our approach.

Related work. Psychological games were proposed in [13] and shown to ad-
mit standard game-theoretic techniques such as backward induction under some
restrictions. However, they assume a fixed payoff structure and do not support
belief inference or updating. Dynamic psychological games [5,4,6] address some
of these limitations by allowing belief update. More specifically, they remove
restrictions enforced in [13] that make beliefs endogenous to the games, and pro-
pose a forward induction algorithm with belief updates which allows for more
sophisticated analysis. In [31], fairness equilibria are introduced as an extension
of the framework established in [13], where the payoff of each player is defined
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as a combination of a material payoff and a psychological payoff whose value
depends on how fairly they think they are being treated.

From an application perspective, conventional game theory has been em-
ployed to model a range of road user behaviours [10,19,34,7,29,11], including
merging into traffic and speed selection, and has been able to explain how infor-
mal norms of behaviour can develop among road users and be sustained even if
these informal norms violate the formal regulations of the traffic code. In [19],
the authors point out that autonomous agents should have inferable behaviour
and model a pedestrian crossing interaction as a repeated bimatrix Stackelberg
game in order to measure and establish a bound to inferability loss. A more
complex interaction involving vehicles, pedestrians and cyclists at a crossing
was investigated as a non-zero sum game in [7], which showed that real life be-
haviour corresponded to an equilibrium strategy that went against Norwegian
traffic laws. This example served as inspiration for [29], which used Bayesian
games and examined possible differences in the strategies pedestrians and cy-
clists would be likely to adopt when considering autonomous and human drivers.
Another example is [11], which also considers a game-theoretic stochastic model
to analyse interactions among pedestrians, autonomous and regular vehicles and
investigates strategies for conflict resolution in uncontrolled traffic environments
based on Stackelberg equilibria. However, to the best of our knowledge, psycho-
logical games have not been explored in road user scenarios.

The verification community has developed various software tools with sup-
port for Nash equilibria, such as PRALINE [8], EAGLE [35] and EVE [17],
but we are aware of no tool support for psychological equilibria computation,
in either normal or extensive forms. For probabilistic systems, model checkers
such as PRISM [22] and Storm [16] support a wide range of probabilistic mod-
els, with partially observable Markov decision processes providing an alternative
way to reason about belief, over (unobservable) states rather than strategies.
PRISM-games [23] provides verification and equilibria synthesis for various types
of stochastic games including CSGs, but until now not for psychological variants.

2 Preliminaries

We first recall normal form games (NFGs), over which we define Nash equilibria
(NE), and then proceed by defining the psychological equivalents: normal form
psychological games (NFPGs) and psychological Nash equilibria (PE).

Classical games. We will write Dist(X) for the set of probability distributions
over a finite set X.

Definition 1 (Normal form game). A (finite, n-person) normal form game
(NFG) is a tuple N = (N,A, u) where:

– N = {1, . . . , n} is a finite set of players;
– A = A1 × · · · × An, Ai is a finite set of actions available to player i ∈ N

and Ai ∩Aj = ∅ for i ̸= j ∈ N ;
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– u = (u1, . . . , un) and ui : A → Q is a utility function for player i ∈ N .

In an NFG, each player i ∈ N simultaneously chooses an action ai ∈ Ai from
their action set and each player j then receives utility uj(a1, . . . , an). Two-player
NFGs are often called bimatrix games since they can be represented by two
matrices Z1,Z2 ∈ Ql×m where A1 = {a1, . . . , al}, A2 = {b1, . . . , bm}, Z1(i, j) =
u1(ai, bj) and Z2(i, j) = u2(ai, bj). Below, we assume a fixed NFG N = (N,A, u).

Definition 2 (Strategy and strategy profile). A (mixed) strategy for player
i of NFG N is a distribution σi ∈ Dist(Ai), specifying the probability of choosing
each action in its action set. A strategy profile of N (or just profile) is a tuple
σ = (σ1, . . . , σn) of strategies for all players.

The expected utility of player i under strategy profile σ = (σ1, . . . , σn) is:

ui(σ)
def
=
∑

(a1,...,an)∈A ui(a1, . . . , an) ·
(∏n

j=1 σj(aj)
)
.

We let Σi
N = Dist(Ai) denote the set of all player i strategies, ΣN =

∏
i∈N Σi

N

the set of all strategy profiles and Σ−i
N =

∏
j ̸=i Σ

j
N the set of strategy tuples for

all players except i. For strategy profile σ = (σ1, . . . , σn) and player i strategy
σ′
i, we define the strategy tuple σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) and strategy

profile σ−i[σ
′
i] = (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn).

Definition 3 (Support). The support Qi ⊆ Ai of a strategy σi for player i
is the set of actions it chooses with positive probability, i.e., Qi = {ai ∈ Ai |
σi(ai) > 0}. The support of a profile σ is the product of the supports of its
individual strategies σi.

We now define the notion of Nash equilibria (NE), which are strategy profiles for
which there is no incentive for any player to unilaterally change their strategy.

Definition 4 (Best response). For strategy tuple σ−i ∈ Σ−i
N , a best response

to σ−i for player i is a strategy σ⋆
i ∈ Σi

N such that ui(σ−i[σ
⋆
i ]) ⩾ ui(σ−i[σi]) for

all σi ∈ Σi
N.

Definition 5 (Nash equilibrium). A strategy profile σ⋆ is a Nash equilibrium
(NE) and ⟨ui(σ

⋆)⟩i∈N NE values if σ⋆
i is a best response to σ⋆

−i for all i ∈ N .

Since multiple NE can exist for an NFG, we are also interested in finding the
optimal equilibrium for a given criterion. In this paper, we focus on social welfare
NE, which are those that maximise the sum of the players’ utilities.

Definition 6 (Social welfare NE). An NE σ⋆ is a social welfare optimal NE
(SWNE) and ⟨ui(σ

⋆)⟩i∈N corresponding SWNE values if u1(σ
⋆)+ · · ·+un(σ

⋆) ⩾
u1(σ)+ · · ·+un(σ) for all NE σ.

We are now ready to discuss normal form psychological games (NFPGs) [13], a
generalisation of NFGs in which a player’s utility can depend not only on the
game’s outcome (actions taken), but also on the player’s belief as to the outcome.
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The notions of actions, strategies and strategy profiles remain the same as for
NFGs and, for NFPG NP, we use the same notation Σi

NP
, ΣNP

and Σ−i
NP

.

Beliefs and coherence. The first-order beliefs for player i represent their belief
as to the (mixed) strategies that will be taken by the other players. So, the set
of all first-order beliefs for player i is defined as B1

i = Dist(Σ−i
NP

). Higher-order
beliefs are beliefs about the beliefs of other players. We will denote the kth order
beliefs for player i by Bk

i and write Bk
−i =

∏
j ̸=i B

k
j for the set of kth order beliefs

for all players other than i. Higher-order beliefs are then defined inductively by:

Bk+1
i

def
= Dist(Σ−i

NP
×B1

−i × · · · ×Bk
−i) .

Notice that information about beliefs appears multiple times. This allows for
correlation between different orders of belief, e.g., second-order beliefs B2

i assign
probabilities to combinations of the strategies Σ−i

NP
and first-order beliefs B1

−i of
the other players. As in [13], we will assume that beliefs are coherent, meaning
that this information is consistent. For example, the marginal of player i’s second-
order beliefs with respect to Σ−i

NP
should coincide with i’s first-order beliefs. The

same condition is applied inductively to higher-order belief sets.
Furthermore, since players are rational and know that other players are also

rational, coherency is assumed to be common knowledge and we will require be-
liefs to be collectively coherent. In other words, each player i only ever believes
that another player j’s beliefs are coherent, that player j believes other players
to be coherent, and so on. We will write Bi for the set for all collectively coher-
ent higher-order beliefs for player i, and define B =

∏
i∈N Bi to be the set of

collectively coherent belief profiles, i.e., the set of beliefs for all players.

Psychological games. We can now formally define the psychological variant
of normal form games, where the key difference is that the utility for player i
now also depends on their (collectively coherent) belief bi ∈ Bi about the other
players, as well as the actions they actually take.

Definition 7 (Normal form psychological game). A (finite, n-person) nor-
mal form psychological game (NFPG) is a tuple NP = (N,A, u) where:

– N = {1, . . . , n} is a finite set of players;
– Ai is a finite set of actions available to player i ∈ N and Ai ∩ Aj = ∅ for

i ̸= j ∈ N ;
– u = (u1, . . . , un) and ui : (Bi×A) → Q is a utility function for player i ∈ N .

As for NFGs, we can define the expected utility of player i for a given strategy
profile σ. However, here we must now also include beliefs. More precisely, for
belief bi ∈ Bi for player i and strategy profile σ, we write ui(bi, σ) for the
expected utility of player i under bi and σ.

We can now define the notion of psychological Nash equilibrium (PE). While
an NE for an NFG N is a strategy profile σ ∈ ΣN, a PE for an NFPG NP is
a pair (b, σ) ∈ B × ΣNP

comprising a belief profile b and a strategy profile σ.
Crucially, as explained in [13], it is assumed that, in equilibrium, the beliefs b of
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the players match a commonly held view of reality. In other words, each player
i believes, with probability 1, that each other player j follows strategy σj , that
player j’s beliefs match σ−j , and so on. For strategy profile σ, this matching
belief profile for all n players is denoted β(σ).

Definition 8 (Psychological Nash equilibrium). A pair (b⋆, σ⋆) of belief
profile b⋆ = (b⋆1, . . . , b

⋆
n) ∈ B and strategy profile σ⋆ = (σ⋆

1 , . . . , σ
⋆
n) ∈ ΣNP

for
NFPG NP is a psychological Nash equilibrium (PE) if:

b⋆ = β(σ⋆) (1)

ui(b
⋆
i , σ

⋆) ⩾ ui(b
⋆
i , σ−i[σi]) for all σi ∈ Σi

NP
and i ∈ N. (2)

The first condition (1) implies that, as discussed above, the players’ beliefs match
a commonly held view of reality. The second condition (2) matches the corre-
sponding requirements for NEs of NFGs (see Definitions 4 and 5). As for NEs,
we will generally aim to find a PE that is social welfare optimal, where the sum
of the players’ utilities is maximised.

Defining utility functions. Since we focus on psychological Nash equilibria,
condition (1) above, combined with the assumption of collective coherence for
higher-order beliefs, allows us to adopt a simpler formulation of an NFPG’s
utility functions in practice. Although player i’s utility function ui depends on
its (collectively coherent, higher-order) beliefs about the other players, since we
know that there is a common belief in equilibrium we can simply define ui in
terms of the strategies alone, that is, as a function of the probabilities that each
player j takes each of its actions. Additionally, for simplicity, we allow each
player’s utility to be defined in terms of all the player’s strategies, including the
players’ own choices of actions.

Example 1. To illustrate NFPGs, let us consider the confidence game from [13],
which comprises three players. Player 1 submits a proposal, which is randomly
assigned with equal probability to player 2 or 3. They can then chose to ei-
ther accept or reject this proposal. We abbreviate these actions to ai and ri,
respectively, for player i = 2, 3. Player 1 has no actions to take.

The game has belief-dependent utilities, involving both first-order and second-
order beliefs. We will write pa for the probability that a player i chooses action
a in their (mixed) strategy, pa for the expectation of another player j ̸= i as to
the probability pa , i.e., the first-order belief for player j, and pa for the expected
value of pa from the perspective of another player, i.e., the second-order belief.

Player 1 wants the proposal to be accepted, but their satisfaction about
acceptance is influenced by their belief about how likely this is to happen: being
more optimistic means they are happier about an acceptance, but also much
unhappier in the case of a rejection. Player 2 is influenced by how confident
player 1 is about acceptance, and is more likely to accept the proposal if they
believe player 1 is more confident. Player 3 always prefers rejection.

These notions are encoded in the players’ utility functions as follows, where
we follow [13] but show extra details of the derivation. Let us denote the probabil-
ity that player 1’s proposal is accepted as pacc . We have pacc = (1/2)·(pa2

+pa3
)
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since players 2 and 3 are assigned the proposal with equal probability. Similarly,
pacc = (1/2)·(pa2

+ pa3
) is player 1’s belief as to the likelihood of acceptance,

and pacc = (1/2)·(pa2 + pa3 ) equals player 2’s belief about pacc .
Player 1 has a utility of 1 in case of acceptance, plus a further utility based

on their degree of optimism, i.e., in terms of belief of acceptance, of 2 · pacc .
Conversely, if rejected, their utility is −8 · pacc . Player 2 prefers to accept when
pacc > 1

6 so, when assigned the proposal, receives a utility of 6 ·pacc for accepting
and 1 for rejecting. Player 3 has a utility of 1 if they are assigned the proposal
and reject it, otherwise 0.

Recall from above that, in equilibrium, players’ beliefs must match a shared
view of reality, so pai

= pai
= pai

for i = 2, 3. We therefore express the utility
functions for players as expressions in terms of just pai

. Since player 1 does not
choose an action and players 2 and 3 each can choose between two actions, we
can write player i’s utility function as a 2×2 matrix Zi. For each pair of actions
of players 2 and 3, the value combines the utility arising when each of player 2
and 3 are assigned the proposal, weighted by probability 1/2:

Z1 =

( a3 r3

a2 1 + pa2
+ pa3

1/2− (3/2)·(pa2
+ pa3

)

r2 1/2− (3/2)·(pa2
+ pa3

) −4·(pa2
+ pa3

)

)

Z2 =

( a3 r3

a2 (3/2)·(pa2
+pa3

) (3/2)·(pa2
+pa3

)

r2 1/2 1/2

)
Z3 =

( a3 r3

a2 0 1/2

r2 0 1/2

)
When determining PE for the confidence game, we can ignore player 1 since it has
no actions. In an equilibrium, suboptimal actions cannot be played with positive
probability. We can therefore compute a solution by encoding the problem with
the following set of constraints:(

(3/2)·((pa2
+ pa3

)·pa3
+ (pa2

+ pa3
)·pr3 ) ⩾ (1/2)·(pa3

+ pr3 )
)
∨ (pa2

= 0) (3)(
(1/2)·(pa3

+ pr3 ) ⩾ (3/2)·((pa2
+ pa3

)·pa3
+ (pa2

+ pa3
)·pr3 )

)
∨ (pr2 = 0) (4)(

0 ⩾ (1/2)·(pa2
+ pr2 )

)
∨ (pa3

= 0) (5)(
(1/2)·(pa2

+ pr2 ) ⩾ 0
)
∨ (pr3 = 0) (6)

For example, (3) must hold because either the action a2 is optimal for player 2,
i.e., the utility obtained by player 2 when action a2 is chosen is greater than or
equal to that when action r2 is chosen under the optimal strategy of player 3, or
the action a2 is chosen with probability 0. Any assignment that satisfies all four
constraints is an equilibrium. Given that pa2

+ pr2 = 1, the first clause of (5)
cannot be satisfied and thus we must have pa3 = 0. This is consistent with the
fact that a3 is dominated for player 3, i.e., action r3 always yields higher utility
than a3. If pa3

= 0, we have pr3 = 1, which means that the second clause of (6)
has to be false. The first clause of (6) is trivially satisfied. Constraints (3) and
(4) can then be reduced to:

(3·pa2 ⩾ 1) ∨ (pa2 = 0) (7)
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(1 ⩾ 3·pa2
) ∨ (pr2 = 0) (8)

We then obtain satisfying assignments by setting pa2
= 1/3 and pr2 = 2/3, pa2

=
1 and pr2 = 0 or pa2

= 0 and pr2 = 1 with utility vectors u = (u1, u2, u3) equal
to (−8/9, 1/2, 1/2), (−1, 3/2, 1/2) and (0, 1/2, 1/2), respectively. The proposal
has the highest chance of being accepted in the second equilibrium, when player
1 is most confident. However, as player 3 is certain to reject, that is also the
worst equilibrium for player 1, who is bound to be disappointed. The last two
equilibria are social welfare optimal with a combined utility of 1. ■

3 Equilibria Computation for Psychological Games

We now propose methods for analysing NFPGs in order to determine their PEs
and corresponding values. The approach builds upon techniques for the non-
psychological setting, i.e., finding NEs for NFGs. For the case of two-player
NFGs (bimatrix games), we can use well known approaches such as the Lemke-
Howson [28] algorithm or mixed-integer programming based on regret min-
imisation [32]. For NFGs with more than two players, algorithms include the
Govindan-Wilson [14] or Simplicial Subdivision [27], as well as search methods
based on support enumeration [30].

We take the support enumeration approach for NFPGs, by adapting the
method of [24], which has been used to find social welfare optimal NEs for
NFGs in a similar fashion. This approach exhaustively inspects sub-regions of
the strategy profile space, based on the idea that searching for NEs within a
specific support (see Definition 3) of a strategy profile is computationally easier.
It relies on encoding the computation of a (social welfare optimal) NE as a
non-linear programming (NLP) problem.

The NLP encoding leverages conditions for a strategy profile to characterise
an NE, presented as a lemma in [24], and based on the notion of feasibility
program introduced in [9,30]. The lemma states that a strategy profile of an NFG
is an NE if and only if any player switching to a single action in the support
of the profile yields the same utility for the player, and switching to an action
outside the support can only decrease its utility. We adapt that lemma here to
characterise a PE of an NFPG. This result follows directly from Definition 8 and,
in particular, the fact that in equilibrium the belief profile needs to correspond
to the strategies being played.

Lemma 1. A pair (b, σ) comprising a belief profile b and a strategy profile
σ=(σ1, . . . , σn) of NP = (N,A, u) is a PE if and only if (1) and the following
conditions are satisfied:

∀i ∈ N. ∀ai ∈ Ai. σi(ai) > 0 → ui(b, σ−i[ηai
]) = ui(b, σ) (9)

∀i ∈ N. ∀ai ∈ Ai. σi(ai) = 0 → ui(b, σ−i[ηai
]) ⩽ ui(b, σ) (10)

where ηai is the pure strategy that picks action ai with probability 1.
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We now extend the NLP encoding of the computation of an NE presented
in [24] to the case of an NFPG NP = (N,A, u). Since this encoding uses a
support enumeration approach, we need to determine the social welfare optimal
PE amongst strategy profiles from a fixed support Q = Q1× · · ·×Qn ⊆ A, i.e.,
for a given set of actions of each player. We first choose a pivot action qpi ∈ Qi,
which can be any action inQi, for each player i. The problem is then to maximise:∑

i∈N

(∑
q∈Q ui(b

⋆, q) ·
(∏

j∈N pqj

))
(11)

subject to:

∑
c∈Q−i(q

p
i )

ui(b
⋆, c) ·

( ∏
j∈N−i

pcj

)
−

∑
c∈Q−i(qi)

ui(b
⋆, c) ·

( ∏
j∈N−i

pcj

)
= 0 (12)

∑
c∈Q−i(q

p
i )

ui(b
⋆, c) ·

( ∏
j∈N−i

pcj

)
−

∑
c∈Q−i(ai)

ui(b
⋆, c) ·

( ∏
j∈N−i

pcj

)
⩾ 0 (13)∑

qi∈Qi

pqi = 1 and pqi > 0 (14)

for all i ∈ N , qi ∈ Qi\{qpi } and ai ∈ Ai\Qi whereQ−i(ci) = Q1× · · ·×Qi−1×{ci}
×Qi+1× · · ·×Qn, N−i = N\{i} and b⋆ ∈ B.

The variables pqi represent the probabilities of players choosing different ac-
tions, i.e. the probability player i selects action qi ∈ Qi. If a satisfying assignment
is found, we have a social welfare optimal PE given by the belief and strategy
profiles pair (b⋆, σ⋆), where, for ai ∈ Ai, σ

⋆
i (ai) = pqi if ai = qi and qi ∈ Qi, and

0 otherwise. Following condition (1) of Definition 8, we have b⋆ = β(σ⋆).
Constraints (12) and (13) enforce that the solution corresponds to a PE,

encoding constraints (9) and (10), respectively, of Lemma 1 when restricting
to pivot actions. This restriction is sufficient as (9) requires all actions in the
support to yield the same utility. The objective function in (11) corresponds to
the sum of the individual utilities of the players when they play according to the
profile corresponding to the solution. By maximising it, we require the solution
to be social welfare optimal. As it is possible to have more than one equilibrium
for which the sum of utilities is optimal, we specify additional lower priority
objectives to maximise individual payoffs following an increasing sequence of
indices i, and thus output a payoff vector with a consistent ordering.

Example 2. Consider the two-player NFPG whose utility functions are given by
the matrices in Figure 1 (left). Player 1 has no choice (we write A1 = {⊥}) and
player 2 chooses an action from A2 = {a2, b2}. Player 2 is indifferent (their utility
is always 0), whereas player 1’s utility depends on (their expectation about) the
probability pa2

of a2 being played. Therefore, player 1’s expected utility (which
is also the total expected utility) is a function depending only on pa2

:

u1(pa2 ) = −400

81
·pa2

2 +
40

9
·pa2

Since the only player with a choice is indifferent between their own actions, the
constraints in (12) and (13) are trivially satisfied for all supports as long as (14) is
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Z1 =
( a2 b2

⊥ − 400
81

·pa2+ 40
9

0

)

Z2 =
( a2 b2

⊥ 0 0

)
0 0.2 0.4 0.6 0.8 1

−0.5

−0.25

0

0.25

0.5

0.75

1

pa2

u
ti
li
ty

Fig. 1: Player utilities (left) and total expected utility (right) for Example 2.

also satisfied, and thus any strategy profile (with an accompanying belief profile)
is an equilibrium. Figure 1 (right) plots the total expected utility. This shows
that, in order to achieve the maximum value of 1, player 2 has to randomise,
picking actions a2 and b2 with probabilities 0.45 and 0.55, respectively. ■

The above example illustrates a contrast with (non-psychological) NFGs, and
gives an indication of why computing optimal equilibria for NFPGs is more
computationally challenging. For NFGs, it suffices to consider pure strategies
only when finding optimal equilibria with a single active player. This can be
exploited [25], avoiding the need to solve an optimisation problem for a given
support. For NFPGs, the non-linearity in the function for expected utility means
that pure strategies no longer suffice for an indifferent player.

4 Psychological Concurrent Stochastic Games

We next consider concurrent stochastic games (CSGs) [33], which are multi-
stage games played over graphs where, at each state, players make simultaneous
choices that cause the game’s state to be probabilistically updated. We present
a psychological variant of CSGs, in which, similarly to NFPGs, a player’s utility
(reward accumulated over a finite horizon) can depend on its belief as to the
strategies to be played as well as the actions that players select. We outline a
procedure to compute equilibria for a class of such games, which restricts the
nature of the players’ beliefs. As in previous work for CSGs [23], we consider
subgame perfect equilibria, which are equilibria at every state of a CSG.

Definition 9 (Concurrent stochastic game). A concurrent stochastic multi-
player game (CSG) is a tuple C = (N,S, s̄, A,∆, δ) where:

– N = {1, . . . , n} is a finite set of players;
– S is a finite set of states and s̄ ∈ S is the initial state;
– A = (A1∪{⊥})× · · ·×(An∪{⊥}) where Ai is a finite set of actions available

to player i ∈ N , Ai ∩Aj = ∅ for i ̸= j ∈ N and ⊥ is an idle action disjoint
from the set ∪n

i=1Ai;
– ∆ : S → 2∪

n
i=1Ai is an action assignment function;

– δ : (S×A) → Dist(S) is a probabilistic transition function.
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We assume without loss of generality that, for any i, j ∈ N , i ̸= j, Ai ∩ Aj = ∅.
A given CSG C starts in the initial state s̄ and, when in state s, each player i ∈ N

selects an action from its available actions Ai(s)
def
= ∆(s) ∩Ai if this set is non-

empty, and from {⊥} otherwise. Assuming each player i selects action ai, the next
state of the game is determined according to the distribution δ(s, (a1, . . . , an)). A

path of C is a sequence π = s0
α0−→ s1

α1−→ · · · where sk ∈ S, αk = (ak1 , . . . , a
k
n) ∈

A, aki ∈ Ai(sk) for i ∈ N and δ(sk, αk)(sk+1) > 0 for all k ⩾ 0. We denote by
π(i) the (i+1)th state of π, π[i] the action associated with the (i+1)th transition
and, if π is finite, last(π) the final state. Let FPaths and IPaths denote the sets
of finite and infinite paths that start in the initial state, respectively.

A strategy for a player in C resolves the player’s choices in each state. These
choices can depend on the execution history and can be randomised, i.e., are
of the form σi : FPaths → Dist(Ai) such that if σi(π)(ai) > 0, then ai ∈
Ai(last(π)). As for NFGs, a strategy profile for C is a tuple σ = (σ1, . . . , σn) of
strategies for all players. For a given strategy profile σ, a probability measure
ProbσC over the infinite paths of C can then be defined in the standard way [20].

Psychological CSGs. In order to introduce a psychological variant of CSGs,
we incorporate a notion of beliefs, and then use them to define rewards. Let BA

i

denote, as defined in Section 2, the set of (collectively coherent, higher-order)
beliefs for player i, where first-order beliefs are over the set of actions A. A belief
bi for player is of the form bi : S → BA

i . It is state-based, in that it provides a
separate belief for each state s of the CSG, and local, in that these beliefs give the
player’s expectations regarding the actions to be played in s, not about a more
global notion of the player’s strategy. A belief profile is a tuple b = (b1, ..., bn).

A reward structure for player i takes the form ri = (rAi , r
S
i ), where rAi : (S ×

BA
i ×A) → Q is an action reward function (which maps a state, belief and action

tuple to a rational value that is accumulated when the action tuple is selected in
the state, assuming a given local belief for player i in that state) and rSi : S → Q
is a state reward function (which maps each state to a rational value that is
accumulated when the state is passed through).

The utility (or objective) for a player i in CSG C can be defined by a random
variable Xi : IPaths → R mapping infinite paths to reals. We denote by Eσ

C(Xi)
the expected value of player i’s utility under σ, with respect to the probabil-
ity measure ProbσC. Given utilities X1, . . . , Xn for all the players of C, we can
then define (social welfare) psychological Nash equilibria, as for NFPGs. We will
restrict our attention to utilities that correspond to finite-horizon objectives,
which may be used to investigate, for instance, the expected reward accumu-
lated over k steps. Such utilities can be expressed by a finite bound k ∈ N and
reward structure ri = (rAi , r

S
i ), with corresponding random variable:

Xi(π) =
∑k−1

j=0

(
rAi (π(j), bi(π(j)), π[j]) + rSi (π(j))

)
.

Psychological equilibria computation. In both [13] and [5], the authors
point out the limitations of applying backward induction to computing equilibria
for extensive (multi-stage) psychological games and show why that approach
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cannot be applied to the general case. While a full discussion is outside the
scope of this paper, it suffices to imagine a game in which a player’s utility in
a given state depends on the beliefs they have about actions performed in the
preceding state. A backward induction algorithm can, however, be applied under
the assumption that psychological utilities at any given state have to be over
local strategies, that is, concerning the actions taken at that same state and
coherent with an equilibrium solution for the NFPG in that state. We note that
a more general approach has been proposed in [5], which we leave as future work.

Using the above restriction, we devise a backward induction algorithm that
builds, at each iteration, an NFPG for every state s in C according to the reward
structure in s and the values computed for its successors in the previous itera-
tion (initially 0 for all states). We then compute equilibria values and strategies
by solving the corresponding NLPs following the definitions in Section 3. We
compute equilibria which are locally social welfare optimal. Other criteria, e.g.,
social cost [25] or social fair [26] equilibria, which minimise the overall sum or
the difference between the highest and lowest utilities, respectively, could also
be applied. In the latter case, however, additional constraints would have to be
added to the NLP in Section 3, which would significantly increase the complex-
ity of the problem due to the need to numerically encode logical implications.
Finding all equilibria for a CSG is generally intractable, as the number may be
exponential even with respect to the size of the normal form game at each state.

5 Case Studies and Experimental Results

We have built a prototype implementation to model and solve psychological
games, and used it to investigate the applicability and performance of our ap-
proach on a selection of normal form and multi-stage psychological games. We
first consider two-player instances of the ultimatum and reciprocity games of [6],
which exemplify how psychological games can also be used in the computation
of fairness equilibria, as well as how psychological utilities can influence the
strategies of the players. We then present two- and multi-player normal form
games modelling traffic interactions between pedestrians, cyclists and vehicles,
one of which is then extended to a psychological CSG, used to investigate how
information on past decisions can influence players’ strategies.

Implementation. We build on top of the PRISM-games model checker [23],
extending its existing modelling language for CSGs (in which normal form games
can also be encoded as simple instances). The key difference is that in PG models
the specification of reward structures needs to incorporate a player’s beliefs about
the other players’ strategies. Since we currently only allow for beliefs in CSGs
over local strategies (see Section 4), rewards for a state can only make reference
to (the probability of) actions played in that state. Figure 2 shows a reward
structure definition in our extension of the PRISM-game modelling language for
the ultimatum game example (see Section 5.1, below). For simplicity, in this
syntax, we just use the name of the action to denote the probability of choosing
it, e.g., reject denotes what we refer to elsewhere as preject.
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1 // Constants
2 const double theta1; // Player 1’s reciprocity sensitivity
3 const double theta2; // Player 2’s reciprocity sensitivity
4 // Rewards for player 1
5 rewards "r1"
6 [fair ,reject] true : 5+ theta1 *( -4.5)*(2+0.5* reject );
7 [fair ,accept] true : 5+ theta1 *(4.5)*(2+0.5* reject );
8 [greedy ,reject] true : 0+ theta1 *( -4.5)*( -2 -0.5* reject );
9 [greedy ,accept] true : 9+ theta1 *(4.5)*( -2 -0.5* reject );

10 endrewards
11 // Rewards for player 2
12 rewards "r2"
13 [fair ,reject] true : 5+ theta2 *( -4.5)*(2+0.5* reject );
14 [fair ,accept] true : 5+ theta2 *(4.5)*(2+0.5* reject );
15 [greedy ,reject] true : 0+ theta2 *( -4.5)*( -2 -0.5* reject );
16 [greedy ,accept] true : 1+ theta2 *(4.5)*( -2 -0.5* reject );
17 endrewards

Fig. 2: Reward structures for the ultimatum game, modelled in PRISM-games.

As for regular CSGs, our extension of PRISM-games constructs and stores
PG models using the tool’s Java-based ‘explicit’ engine. In contrast to CSGs,
reward structures for PG models are represented by symbolic expressions over
variables representing action choice probabilities and cannot be evaluated prior
to model checking. We use Gurobi [15] to solve the NLPs described in Section 3
for finding equilibria values of NFPGs at each state.

Efficiency and Scalability. Computing equilibria values and strategies can be
a complex task, even for the simpler case of finding an arbitrary (non-optimal)
equilibrium of a two-player normal form game. Finding optimal equilibria of
multi-player games is considerably harder, given the increased number of sup-
ports and the non-linearity of the constraints. The addition of psychological
utilities complicates the computation further, as there are no natural restric-
tions on how these utilities may vary given the players’ strategies and beliefs. At
the state level, when looking for an optimal equilibrium, we are required to solve
an NLP for each support. Given the total number of supports is exponential in
the number of actions, i.e., equals

∏n
i=1(2

|Ai|−1), computing optimal values via
enumeration can only be efficient for small games.

5.1 Reciprocity and Ultimatum Games

We considered instances of the reciprocity and ultimatum games from [6], which
are shown in Figure 3. In each case, player 1 chooses between making a fair (f)
or greedy (g) proposal, and player 2 decides to reject (r) or accept (a) it. The
rectangular boxes show the corresponding utilities of players 1 and 2, with player
1’s utility being above that of player 2. We present the games, as in [6], in
extensive form, with the players’ decisions taken sequentially, but will treat them
as simultaneous moves in a single NFPG. Otherwise, beliefs would no longer be
local since player 2’s utility would depend on an earlier decision by player 1.
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fair greedy
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(b) Ultimatum game

Fig. 3: Reciprocity and ultimatum games in extensive form. The utilities for play-
ers 1 and 2 are given in the top and bottom rows of each leaf node, respectively.

In both games, player i attempts to maximise the expectation of a utility
function that depends on the chosen actions (α) and belief (b) and has the form:

ui(α, b) = λi(α) + θi·κij(α, b)·κji(α, b)

where λi is a material utility function (these are the utilities shown in Figure 3),
κij reflects player i’s kindness to player j (expected material payoff, which ranges
from negative to positive) and θi ∈ R⩾0 is player i’s reciprocity sensitivity. This
type of game was originally studied in the context of fairness equilibria [31], in
order to model and investigate scenarios in which agents are willing to sacrifice
material utility to help or punish others depending on how they think they are
being treated.

The concept of kindness was introduced in [31] as a way to measure this type
of feeling, and is calculated as the difference between the utility that player i
believes player j will receive (given player i’s choice) minus the average of the
minimum and maximum utilities player i believes player j could get for i’s other
choices. For instance, in the reciprocity game, if player 1 chooses fair, κ12 equals
5−1/2·(5+(9·pr +1·(1−pr )) = 2−4·pr . As before, we use pr for the probability
of player 2 choosing action r and pr for player 1’s belief as to this value.

Reciprocating kindness is expressed by the matching of signs of κij and κji.
Thus, if, by adopting a particular strategy, player i is perceived to be unkind
to player j, κij will be negative, which will in return motivate player j to be
unkind to player i so that the product of κij and κji is positive. A similar logic
applies to when players are perceived to be kind.

As explained earlier in Example 1, when writing the matrices for players’
utility values, we can assume that pr = pr in equilibrium and just express them
as functions of the probability pr . For the reciprocity game we thus have:

Zreciprocity
1 =

( r a

f 5+θ1·(−4)·(2−4·pr ) 5+θ1·(4)·(2−4·pr )
g 1+θ1·(−4)·(4·pr−2) 9+θ1·(4)·(4·pr−2)

)

Zreciprocity
2 =

( r a

f 5+θ2·(−4)·(2−4·pr ) 5+θ2·(4)·(2−4·pr )
g 9+θ2·(−4)·(4·pr − 2) 1+θ2·(4)·(4·pr−2)

)
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Fig. 4: Possible social welfare PEs for the reciprocity (top) and ultimatum (bot-
tom) games for a range of reciprocity sensitivities θ1, θ2. We show the strategy
(probabilities pg , pa of choosing greedy , accept) and values (utilities u1 and u2).

and for the ultimatum game:

Zultimatum
1 =

( r a

f 5+θ1·(−9/2)·(2+pr/2) 5+θ1·(9/2)·(2 + pr/2)

g 0+θ1·(−9/2)·(−2−pr/2) 9+θ1·(9/2)·(−2−pr/2)

)

Zultimatum
2 =

( r a

f 5+θ2·(−9/2)·(2+pr/2) 5+θ2·(9/2)·(2+pr/2)

g 0+θ2·(−9/2)·(−2−pr/2) 1+θ2·(9/2)·(−2−pr/2)

)

Figure 4 presents the strategies and utility values for SWNEs that we generated
for the reciprocity and ultimatum games using different values of θ1 and θ2.
Although the games are very similar in structure (there is an equal amount
of material utility that can be split by the two players in different ways), it
is possible to see how the reciprocity sensitivity affects their behaviours and
overall utilities. For instance, in the ultimatum game, when θ1 = θ2 = 0 the
players are strictly concerned with their material utilities and (greedy , accept) is
an acceptable SWNE as the sum of utilities is 10. It is possible to see though
that, as θ2 increases, player 1 is less likely to play greedy as the split becomes
less fair for player 2, who could then retaliate by playing reject.

We can also notice that, when θ1 = θ2 = 1, the equilibrium for the reciprocity
and ultimatum games is (fair , accept) which, despite leading to material utilities
of (5, 5) in both games, accounts for different overall utilities for the players. In
the former, the utility for each player is equal to ui(fair, accept) = 5 + 1·4·(2 −
4·pr ) = 13, and for the latter it corresponds to ui(fair, accept) = 5 + 1·9/2·(2 +
pr/2) = 14.
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Fig. 5: An illustration for the pedestrian crossing scenario.

5.2 Traffic Games

We now report on a selection of case studies inspired by game-theoretic models of
traffic and road user behaviour. We start with a simple one-shot game between a
vehicle and a pedestrian in a road crossing scenario, and how their expectations
can incentivise safe behaviour. Next we introduce a psychological variant of the
Bayesian game presented in [29], which examined how cyclists would interact
differently with autonomous and regular vehicles. Finally, we extend the road
crossing scenario into a CSG and investigate the impact of combining information
on past decisions with local expectations in a multi-stage, probabilistic model.

Pedestrian crossing. We consider a scenario where a pedestrian is deciding
whether to cross a road near oncoming traffic, illustrated in Figure 5. We assume
that the car has a right of way and can reduce (r) or maintain (m) its speed,
while the pedestrian may choose to cross (c) or wait (w). A psychological game
can be constructed by including incentives set to discourage behaviour based
on what they expect the other will do. We assume the pedestrian would be
(illegally) jaywalking if they decided to cross, and so give them a negative reward
proportional to the probability pc of that action being taken (multiplied by a
constant µ), to model the pedestrian’s fear of being caught and incurring a
penalty. This parameterisation results in the following utility matrices for the
vehicle and the pedestrian:

Zvehicle =

( w c

r 1−pw 1+pc
m 1+pw 1−pc

)
Zpedestrian =

( w c

r 1−pr 1+pr−µ·pc
m 1+pm 1−pm−µ·pc

)
Figure 6 shows equilibria strategy profiles and utilities of this game for different
values of µ (a more detailed version can be found in Figure 12, Appendix A).
The colours for the points in the bottom and top plots for each value of µ
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Fig. 6: Equilibria strategies and utilities for the vehicle (top) and pedestrian
(bottom) in the pedestrian crossing scenario, for different values of µ.
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Fig. 7: Original cyclist vs. vehicle game. In [29], the left and right games are
played with probabilities p and 1 − p, respectively. The utilities for the cyclist
(1) and the vehicle (2) are given in the top and bottom rows of each leaf node.

serve to match the profiles and utilities of the pedestrian and the vehicle for
different equilibria. While it is possible to see that there is always an equilibrium
(displayed in red) in which the vehicle maintains its speed and the pedestrian
waits, for smaller values of µ we also have an equilibrium strategy profile in which
both agents make random choices. For example, in the equilibrium shown in blue
for µ = 2, the vehicle randomly chooses between reducing and maintaining its
speed with probabilities 3/4 and 1/4 respectively, while the pedestrian crosses
or not with probability 1/2, potentially leading to unsafe behaviour. As the
pedestrian’s uneasiness about crossing grows, i.e., as µ increases, the strategy
profiles in which they cross with positive probability disappear, with the only
remaining profile for µ = 5 being the one in which they wait.

Cyclist vs. vehicle. Next, we model a cyclist and a vehicle, where the latter is
either autonomous or driven by a human, at a road junction. A similar scenario
was considered in [29], but modelled as a Bayesian game to investigate how
increasing the share of autonomous vehicles affects the rate of collisions. Figure 7
shows the game in extensive form. The actions for the cyclist are yield (y), walk
(w) and cycle (c), and the actions for the vehicle are go (g) and stop (s).

The utilities of the players reflect preferences over potential collisions, in
accordance with traffic rules and an assumption on the part of the cyclist that an
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α unature ucyclist uvehicle

(a, y, g) 0 5·pa 7

(a, y, s) 0 3·pa 10

(a,w, g) 0 −400·pa -500

(a,w, s) 0 15·pa -15

(a, c, g) 0 −500·pa -300

(a, c, s) 0 20·pa 15

α unature ucyclist uvehicle

(h, y, g) 0 8·ph 15

(h, y, s) 0 6·ph 1

(h,w, g) 0 −400·ph -400

(h,w, s) 0 15·ph 7

(h, c, g) 0 −500·ph -200

(h, c, s) 0 20·ph 7

Table 1: Psychological cyclist vs. vehicle game in normal form. Nature chooses
between autonomous vehicle (a) or human driver (h).

0

0.5
1 0 0.5 1

0

5

10

15

20

py pc

u
ti
li
ty

cyclist

0

0.5
1 0 0.5 1

0

5

10

15

pg ps

u
ti
li
ty

vehicle

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pa

p
h

nature

=

= =

Fig. 8: Strategies and utilities for the cyclist vs. vehicle game.

autonomous vehicle (AV) would be programmed to be as risk averse as possible,
while human drivers are often (unintentionally) distracted. So, for example, the
penalty for an AV not stopping while the cyclist crosses the road is higher than
for a human-driven vehicle (300 vs. 200). In the original game, it is assumed
that a virtual nature player chooses the type of the vehicle according to a prior
distribution. Here, we consider nature to be an active albeit indifferent player
picking autonomous (a) or human (h), and we set the utilities for the cyclist
to be the original utilities multiplied by their expectation of the vehicle being
driven autonomously (pa) or by a human (ph), as detailed in Table 1.

Figure 8 shows results for this variant (a more detailed version is in Figure 11
of Appendix A). In addition to the equilibria computed in [29] (indicated in blue,
orange3, magenta and brown), two new equilibria (indicated in green and red) are
present for the psychological variant, in which nature randomly chooses between
an autonomous vehicle and one with a human driver with probabilities pa =
14/17 and ph = 3/17. Considering the original model from [29] and combining
the utilities of the two original games (Figure 7(a) and (b)) into one normal
form game by multiplying the corresponding utilities by p or 1 − p, we obtain
the bimatrix game as follows:

Zcyclist =


g s

y −3·p+8 −3·p+6
w −400 15
c −500 20

 Zvehicle =


g s

y −8·p+15 9·p+1
w −100·p−400 14·p+7
c −100·p−200 8·p+7


3 The utility and strategy for the cyclist are the same as for the one in magenta.
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s0 ⟨0, 0, 0⟩

s1⟨1, 0, 0⟩ s2⟨1, 0, 1⟩ s3 ⟨1, 1, 0⟩ s4 ⟨1, 1, 1⟩

(w, r)

(1−γ)·(1−γ)
γ·(1−γ) γ·(1−γ) γ·γ

Fig. 9: Transitions for actions (w, r) from the initial state of the CSG for the
multi-stage pedestrian crossing example. States are of the form ⟨j, cr, cw⟩, for
step count j and variables cr, cw.

We observe that, if the cyclist decides to yield, the vehicle would only play go
with positive probability if −8·p+ 15 ⩾ 9·p+ 1, which gives p ⩽ 14/17. For any
value of p above that threshold, the game has only one equilibrium in (cycle,
stop), with utilities (20, 8·p+ 7). The analysis in [29] suggests that the number
of collisions, i.e., the outcome where the cyclist chooses cycle and the vehicle
chooses go, drops as the proportion of AVs increases. Indeed, if we only have
AVs circulating, the only equilibrium (magenta) is (cycle, stop). However, by
modelling this scenario as a three-player game with nature as an active player,
we see in Figure 8 (and in more detail in Figure 11 of Appendix A), for a mix of
AVs and human-driven vehicles, where AVs correspond to approximately 82% of
the fleet, that the equilibrium strategy (green and red) for the cyclist is actually
to yield. Furthermore, the vehicles can follow two different strategies: one in
which they would go with probability 1 and another in which they stop with
probability approximately 0.97 (shown in red and green, respectively). Finally,
the model in [29] assumes that the cyclists can always differentiate between an
AV and a human-driven vehicle, which is not realistic. In contrast, our model
allows for the possibility of specifying psychological payoffs, meaning the actions
taken by the cyclist can vary according to their beliefs about the type of the
vehicle, paving the way for more sophisticated models of similar scenarios.

Multi-stage pedestrian crossing. Finally, we consider a probabilistic, multi-
stage version of the earlier pedestrian crossing game, modelled as a CSG with
psychological utilities. The state of the CSG has a variable j counting the num-
ber of times the one-shot pedestrian game has been repeated. We also add two
discrete integer-valued variables cr, cw ∈ {0, 1, . . . , 10} in order to carry infor-
mation forward about the actions taken by both agents. The variables cr and
cw are initialised to 0 and go up (or down) by 1 when the vehicle reduces (or
maintains) its speed, and the pedestrian decides to wait (or cross), respectively.

To account for the fact that these observations can be imperfectly made by
the players, cr and cw are updated probabilistically according to an attention
coefficient γ ∈ [0, 1], and so their values can also remain the same with proba-
bility 1− γ, as illustrated in Figure 9. The information on past decisions carried
by the values of the two variables is then weighted with the local expectations
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Fig. 10: Utility (left) and probability averages (right) over sampled equilibria for
different path lengths in the multi-stage pedestrian crossing example.

at each state by modifying the reward matrices in following manner:

Zvehicle =

( w c

r 1−(1/2)·(pw+cw/10) (3/2)+(1/2)·(pc−cw/10)

m 1+(1/2)·(pw+cw/10) (1/2)−(1/2)·(pc−cw/10)

)

Zpedestrian =

( w c

r 1−(1/2)·(pr+cr/10) 1+(1/2)·(pr+cr/10)−µ·pc
m (3/2)+(1/2)·(pm−cr/10) (1/2)−(1/2)·(pm−cr/10)−µ·pc

)

Figure 10 shows expected utility values and crossing probability averages for
different values of γ, paths of length k and µ = 1. In a similar fashion to the
one-shot example, we do not focus exclusively on the social welfare solution and
there could be multiple equilibria for the NFPGs built at each state. However, for
extensive or multi-stage games, it is impractical to compute all possible equilibria
unless the number of states is fairly small. This is particularly true when there
is probabilistic branching, as the number of equilibria (and hence the number of
NLPs to be solved) may grow very rapidly. For this reason, the probability values
reported in Figure 10 (right) are averages over equilibria selected uniformly at
random at each state. For each path length and γ, 10 experiments were run and
the utility averages for the initial state are displayed in Figure 10 (left).

As the value of γ grows, it is possible to notice a trend in which the pedes-
trian’s behaviour is safer, with the average probability of a crossing decreasing
(top right). This is also reflected in higher utility for the pedestrian (top left),
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γ ∈ k States Transitions Time(s) k States Transitions Time(s)

[0, 0]
5

6 21 0.76
8

9 33 1.33
(0, 1) 91 701 5.97 285 2,806 25.7
[1, 1] 91 256 4.82 285 897 23.1

[0, 0]
6

7 25 0.83
9

10 37 1.73
(0, 1) 140 1,198 9.12 385 3,981 39.6
[1, 1] 140 413 8.45 385 1,240 35.1

[0, 0]
7

8 29 1.06
10

11 41 2.09
(0, 1) 204 1,889 15.9 506 5,446 58.7
[1, 1] 204 624 14.5 506 1,661 51.9

Table 2: Statistics for the (CSG) multi-stage pedestrian crossing case study.

particularly when considering longer paths. For the vehicle, the utility aver-
ages (bottom left) remain fairly stable but we can also see that the likelihood
of it reducing its speed (bottom right) decreases. This behaviour is desirable,
considering it happens in coordination with decreasing probability values of a
pedestrian crossing and the fact that the vehicle should have a right of way.

To provide an indication of model sizes that we are able to analyse, Table 2
shows how the number of CSG states and transitions, and the average computa-
tion time, vary for different values of k and intervals of γ (note that the number
of transitions and states is the same for any value of γ ∈ (0, 1), see Figure 9).

6 Conclusions

We have presented techniques that expand the scope of modelling and verifica-
tion for game-theoretic probabilistic models. Starting with psychological normal
form games, we proposed an NLP encoding that allows us to compute optimal
equilibria for individual supports and, through support enumeration, an overall
optimal equilibrium for a given NFPG. We then considered CSGs whose states
can be expressed as NFPGs, and developed an algorithm to compute equilib-
ria for such CSGs under some restrictions on the type of the players’ beliefs.
Finally, we reported on a prototype implementation and showcased novel auto-
mated analysis, made possible through our method, for a range of case studies.

Verification of psychological games is still a largely unexplored topic and
there is ample room for expansion in theory, practice and applications to prob-
lems in computer science. Equilibria computation is a hard problem in general,
and algorithms for psychological equilibria suffer from some of the same com-
putational drawbacks as those for Nash or correlated equilibria, in addition to
presenting new challenges of their own. The main current limitation is having to
rely on enumeration for computing an optimal solution, which could be some-
what mitigated by parallelisation and filtering supports as a precomputation
step. Future work includes investigating dynamic psychological games [5], which
have the advantage of allowing belief updates but pose new modelling and com-
putational challenges, and considering aspects of coordination and robustness
via correlated [1] and trembling-hand [21] variants.
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A Appendix

Below, we include larger, more detailed figures for the cyclist vs. vehicle and
pedestrian crossing case studies presented in Section 5.2.

0

0.5

1 0 0.5 1

0

5

10

15

20

(3.6, 1, 0)
(2.3, 1, 0)

(6.1, 0.94, 0.063)

(20, 0, 1)(20, 0, 1)

(8, 1, 0)

py
pc

u
ti
li
ty

cyclist

0

0.5

1 0 0.5 1

0

5

10

15

(8.4, 1, 0)

(8.4, 0.032, 0.97)

(1.4, 0.027, 0.97)

(7, 0, 1)

(15, 0, 1)

(15, 1, 0)

pg
ps

u
ti
li
ty

vehicle

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(0.82, 0.18)(0.82, 0.18)

(0, 1)(0, 1)

(1, 0)

(0, 1)

pa

p
h

nature

=

= =

Fig. 11: Equilibria strategies and utilities for the cyclist vs. vehicle game. Co-
ordinates for the cyclist, vehicle and nature players correspond to (u, py , pc),
(u, pg , ps) and (pa , ph), respectively (where u is the utility). For the cyclist, the
utilities and strategies are the same in the orange and magenta equilibria.
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Fig. 12: Equilibria strategies and utilities for the pedestrian crossing game for
different values of µ. The top plot for each value of µ corresponds to the pedes-
trian and the plot below to the vehicle. Point coordinates values are (u, pm , pr )
for the vehicle and (u, pc , pw ) for the pedestrian (where u is the utility).
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