
Branching-Time Model-Checking of Probabilistic
Pushdown Automata

Tomáš Brázdila,1, Václav Brožeka, Vojtěch Forejtb,a, Antonı́n Kučeraa,1

aFaculty of Informatics, Masaryk University, Czech Republic
bDepartment of Computer Science, University of Oxford, UK

Abstract

In this paper we study the model-checking problem for probabilistic pushdown
automata (pPDA) and branching-time probabilistic logics PCTL and PCTL∗. We
show that model-checking pPDA against general PCTL formulae is undecidable,
but we yield positive decidability results for the qualitative fragments of PCTL and
PCTL∗. For these fragments, we also give a complete complexity classification.

1. Introduction

Markov chains are widely used as a formal model for discrete systems with
random behaviour. The properties of such systems can be expressed in suit-
able temporal logics such as LTL, PCTL, or PCTL∗. The corresponding model-
checking problem has so far been studied mainly for finite-state Markov chains
(see, e.g., [3, 24]). Model-checking of various classes of infinite-state Markov
chains has been taken into consideration only recently. The most prominent
classes include chains generated by probabilistic lossy channel systems (see, e.g.,
[2, 4, 26]) and recursive probabilistic systems encoded either by probabilistic
pushdown automata [13, 15] or an expressively equivalent model of recursive
Markov chains [19, 20, 23]. In this paper, we concentrate on model-checking
probabilistic pushdown automata (pPDA) against branching-time probabilistic
logics PCTL and PCTL∗.

Intuitively, a pPDA consists of a finite set of stack symbols, a finite set of
control states, and finitely many transition rules of the form pX

x→ qα where p, q
are control states, X is a stack symbol, α is a (possibly empty) string of stack

1Tomáš Brázdil and Antonı́n Kučera are supported by the Czech Science Foundation, project
No. P202/10/1469.

Preprint submitted to Elsevier June 4, 2013

symbols and x ∈ (0, 1] is a rational probability. Configurations of pPDA are of
the form pβ where p is a control state and β is a string of stack symbols, i.e., β
represents the current stack content where the first symbol of β is on the top of
the stack. Each pPDA induces an infinite-state Markov chain whose states are
configurations and transitions are induced by transition rules. More precisely, a
rule pX x→ qα is applicable to every configuration of the form pXβ and induces
a transition pXβ x→ qαβ.

The logics PCTL and PCTL∗ are probabilistic variants of the well-known
branching-time logics CTL and CTL∗, respectively. The only difference is that
the universal and existential path quantifiers of CTL and CTL∗ are replaced with
the probabilistic operator P∼x(·), where ∼ ∈ {≤,≥, <,>,=} is a comparison
and x ∈ [0, 1] a rational probability bound. Intuitively, the formulaP∼x(ϕ), where
ϕ is a path formula, says that the probability of all runs satisfying ϕ is ∼-related
to %. The qualitative fragments of PCTL and PCTL∗, denoted by qPCTL and
qPCTL∗, consist of all formulae where the probability bound % only takes the val-
ues 0 or 1. Typical properties expressible by qualitative formulae include “the
program terminates with probability one”, “every request is eventually serviced
with probability one”, etc. Qualitative properties of finite-state Markov-chains are
stable in the sense that they are not influenced by precise values of transition prob-
abilities (it is only important which transitions have positive/zero probability). In
infinite-state Markov chains, the validity of qualitative properties may change by
modifying the values of transition probabilities, but they are still more stable than
general quantitative properties.

In our analysis, we put a special attention to the subclass of stateless pPDA
(denoted by pBPA), and we also distinguish between the combined complexity,
where an instance is given both by a pPDA configuration and a branching-time for-
mula, and program complexity, where the formula is fixed. The study of program
complexity is motivated by the fact that formulae in practical model-checking in-
stances are typically small.

Our contribution
The summary of our results about the model-checking problem for

pPDA/pBPA and (qualitative) PCTL/PCTL∗ formulae is given in Fig. 1. The last
two lines classify the program complexity for an arbitrary (but fixed) formula.

Technically, this paper is based mainly on conference papers [9, 13], but some
of the proofs are completely new or substantially revised. More detailed com-
ments are given below.

2

pBPA pPDA
PCTL ? undecidable (fixed formula)
PCTL∗ undecidable (fixed formula) undecidable (fixed formula)
qPCTL EXPTIME-complete EXPTIME-complete
qPCTL∗ 2-EXPTIME-complete 2-EXPTIME-complete
qPCTL (p.c.) P EXPTIME-complete
qPCTL∗ (p.c.) P EXPTIME-complete

Figure 1: The summary of results.

• The undecidability of the model-checking problem for pPDA and PCTL has
been originally obtained by reduction from the halting problem for Minsky
machines [13]. In this paper, we give a simpler proof by reduction from the
Post correspondence problem, using the idea of encoding words into prob-
abilities originally presented in [13]. The undecidability proof for pBPA
and PCTL∗ is obtained as a slight modification of the construction used for
pPDA and PCTL. However, we have not managed to extend this technique
to pBPA and PCTL, and this decidability question is left open.

• The 2-EXPTIME and EXPTIME upper bounds on model-checking pPDA
against qPCTL∗ and qPCTL are due to [9], but the original proofs have been
completely rewritten in this paper. We rely heavily on the results of [23] for
LTL model-checking of recursive Markov chains (note that path formulae
of PCTL∗ correspond to LTL formulae). We show how to compute regular
sets of configurations that almost surely satisfy a given path formula with
regular valuations of atomic propositions. From this we obtain a model
checking algorithm for qPCTL∗.

• The 2-EXPTIME and EXPTIME lower bounds on model-checking pPDA
against qPCTL∗ and qPCTL are based on standard techniques from non-
probabilistic model-checking [5, 29] and we include them mainly for the
sake of completeness.

Related work
The model-checking problem for pPDA was first studied in [15] (see also

[17]), where it was shown that quantitative reachability for pPDA is in EXP-
TIME, and the model-checking problem for pPDA against qPCTL and determin-
istic Büchi specifications is decidable. The equivalent model of Recursive Markov

3

Chains (RMCs) was studied independently in [20] (see also [22]), and one of the
main results of this work is a polynomial-time algorithm for the qualitative reach-
ability problem for single exit RMCs (which are equivalent to pBPA). The study
of pPDA was continued by considering the expected accumulated reward and its
variance [16], discounted properties [7], model-checking linear-time properties
[19, 23], etc. We refer to [6, 12] for a more comprehensive overview.

More loosely related to this work are papers on recursive Markov decision
processes and stochastic games (see, e.g., [8, 10, 11, 21]). In particular, in [21] it
is shown that the controller synthesis problem for qualitative LTL and recursive
Markov decision processes is undecidable. On the other hand, in [10] it is demon-
strated that the model-checking problem for BPA decision processes and qPCTL
is in EXPTIME.

2. Preliminaries

We assume familiarity with basic notions of probability theory and automata
theory such as σ-field, probability space, finite automaton, etc. We also use the
standard notation for writing regular expressions.

Definition 2.1. A (discrete) Markov chain is a triple M = (S,→,Prob) where S
is a finite or countably infinite set of states, → ⊆ S × S is a transition relation
such that for every s ∈ S there is t ∈ S with s→ t, and Prob is a function which
to each transition (s, t) assigns its probability Prob(s, t) ∈ (0, 1] so that for every
s ∈ S we have that

∑
s→t Prob(s, t) = 1.

We write s x→ t to indicate that s → t and Prob(s, t) = x. A path in M is a
finite or infinite sequence w = s0s1 . . . of states such that si → si+1 for every i. A
run is an infinite path. We use Run to denote the set of all runs inM , and Run(w)
to denote the set of all runs that start with a given finite path w. For a given run w,
we use w(i) to denote the state si of w, and wi to denote the run sisi+1 . . . (note
that w0 = w). A state t is reachable from a state s if there is a finite path starting
in s and ending in t.

To every s ∈ S we associate the probability space (Run(s),F ,P) where F
is the σ-field generated by all basic cylinders Run(w) where w is a finite path
initiated in s, and P : F → [0, 1] is the unique probability measure (see [27, 28])
such that P(Run(w)) = Πm

i=1xi where w = s0, . . . , sm and si−1
xi→ si for every

1 ≤ i ≤ m (the empty product is equal to 1).

4

2.1. Branching-Time Temporal Logics
We start with a definition of the temporal logic PCTL∗. The syntax of PCTL∗

state and path formulae Φ and ϕ, resp., is given by the following abstract syntax
equations.

Φ ::= a | ¬Φ | Φ1 ∧ Φ2 | P∼%ϕ
ϕ ::= Φ | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 U ϕ2

Here a ranges over a countably infinite set Ap of atomic propositions, % ∈ [0, 1]
is a rational constant, and ∼ ∈ {≤, <,≥, >,=}.

We use standard abbreviations tt (always true), ∨ (or) and⇒ (implication),
and we also define ♦ϕ ≡ tt U ϕ and �ϕ ≡ ¬♦¬ϕ. If the probabilistic operator
P∼x(·) is applied to a formula of the form Xϕ or ϕ1 U ϕ2, we further simplify our
notation by writing X∼%ϕ and ϕ1 U ∼%ϕ2 instead of P∼x(Xϕ) and P∼x(ϕ1 U ϕ2),
respectively. The size of a given PCTL∗ formula τ is denoted by |τ | (we assume
that τ is represented as a tree and that the probability bounds in the probabilistic
operator are encoded as fractions of binary numbers). We also use Cl(τ) to denote
the set of all subformulae of τ .

The logic PCTL is a fragment of PCTL∗ where path formulae are given by the
equation ϕ ::= XΦ | Φ1 U Φ2. The qualitative fragments of PCTL and PCTL∗,
denoted by qPCTL and qPCTL∗, resp., are obtained by restricting the allowed
operator/number combinations in P∼%ϕ subformulae to ‘=0’ and ‘=1’ (we do not
include ‘<1’, ‘>0’ because these are definable from ‘=0’, ‘=1’, and negation).
Finally, a path formula ϕ is an LTL formula if all of its state subformulae are
atomic propositions.

Now we define the semantics of PCTL∗. Let us fix a Markov chain
M = (S,→,Prob) and a valuation ν : Ap → 2S . State formulae are interpreted
over S, and path formulae are interpreted over Run. Hence, for a given s ∈ S and
w ∈ Run we define

s |=ν a iff s ∈ ν(a),
s |=ν ¬Φ iff s 6|=ν Φ,
s |=ν Φ1 ∧ Φ2 iff s |=ν Φ1 and s |=ν Φ2,
s |=ν P∼%ϕ iff P({w∈Run(s) | w|=νϕ}) ∼ %,

w |=ν Φ iff w(0) |=ν Φ,
w |=ν ¬ϕ iff w 6|=ν ϕ,
w |=ν ϕ1 ∧ ϕ2 iff w |=ν ϕ1 and w |=ν ϕ2,
w |=ν Xϕ iff w1 |=ν ϕ,
w |=ν ϕ1 U ϕ2 iff there is j ≥ 0 s.t. wj |=ν ϕ2 and wi |=ν ϕ1 for all 0 ≤ i < j.

5

For PCTL, the semantics of path formulae can be defined in a simplified (but
equivalent) way as follows:

w |=ν XΦ iff w(1) |=ν Φ,
w |=ν Φ1 U Φ2 iff there is j ≥ 0 s.t. w(j) |=ν Φ2 and w(i) |=ν Φ1 for all 0 ≤ i < j.

2.2. Probabilistic pushdown automata
Probabilistic pushdown automata [15] are a fully probabilistic variant of the

classical model deeply studied in automata theory (see, e.g., [25]). They are ex-
pressively equivalent to Recursive Markov Chains (RMC), and there are linear-
time translations between the two models [20].

Definition 2.2. A probabilistic pushdown automaton (pPDA) is a tuple ∆ =
(Q,Γ, δ,Prob) where Q is a finite set of control states, Γ is a finite stack al-
phabet, δ ⊆ Q × Γ × Q × Γ≤2 (where Γ≤2 = {α ∈ Γ∗, |α| ≤ 2}) is a set
of transition rules (we write pX → qα instead of (p,X, q, α) ∈ δ), and Prob
is a function which to each transition rule pX → qα assigns a rational proba-
bility Prob(pX → qα) ∈ (0, 1] so that for all p ∈ Q and X ∈ Γ we have that∑

pX→qα Prob(pX → qα) = 1.

We assume that for each pX ∈ Q× Γ there is at least one qα such that pX →
qα, and we write pX x→ qα to indicate that pX → qα and Prob(pX → qα) = x.
The set Q × Γ∗ of all configurations of ∆ is denoted by C(∆). The head of a
configuration pγ is either pX or p, depending on whether γ = Xα or γ = ε,
respectively (where ε denotes the empty word).

An important subclass of pPDA are stateless pPDA, where the set of con-
trol states is a singleton. For simplicity, the configurations of stateless pPDA are
written without the only control state (for example, we write just XY instead of
pXY). In the rest of this paper, the subclass of stateless pPDA is denoted by
pBPA2. The pBPA subclass exactly corresponds to 1-exit RMC [20].

To ∆ we associate a Markov chain M∆ where C(∆) is the set of states and the
transitions are determined as follows:

• pε 1→ pε for each p ∈ Q;

• pXβ x→ qαβ is a transition of M∆ iff pX x→ qα is a transition rule of ∆.

2The BPA acronym stands for “Basic Process Algebra” and it is used mainly for historical
reasons.

6

The logics PCTL and PCTL∗ can be interpreted over M∆ only after fixing
some valuation ν : Ap → 2C(∆). General valuations are not apt for algorith-
mic analysis, because one can easily encode undecidable problems for PDA into
suitable valuations. Therefore, we restrict our attention to regular valuations that
can be encoded by finite-state automata. More precisely, let A be a deterministic
finite-state automaton3 (DFA) over the alphabet Q ∪ Γ. The set of all configura-
tions encoded by A, denoted by C(A), consists of all pα ∈ C(∆) such that the
reverse of pα is in L(A). In other words, A reads the stack from bottom up. Note
that we do not require L(A) ⊆ Γ∗Q.

Definition 2.3. Let ∆ = (Q,Γ, δ,Prob) be a pPDA, and ν : Ap → 2C(∆) a
valuation. We say that ν is regular if for each a ∈ Ap there is a DFA Aa such
that ν(a) = C(Aa). Further, we say that ν is simple if for each a ∈ Ap there is a
subset of heads Ha ⊆ Q∪ (Q×Γ) such that pα ∈ ν(a) iff the head of pα is in Ha.

Obviously, every simple valuation is regular, and we formally consider simple
valuations as a special type of regular valuations (in particular, we use DFA to
encode simple valuations).

An instance of the model-checking problem for pPDA and PCTL/PCTL∗ is
given by a pPDA ∆, a configuration pα ∈ C(∆), a PCTL/PCTL∗ state formula Φ,
and a regular valuation ν. The question is whether pα |=ν Φ. The size of ∆ and Φ
is the length of corresponding binary encoding, where the (rational) probabilities
and probability constraints are encoded as fractions of binary numbers. The regu-
lar valuation ν is represented by a finite collection of all Aa such that a occurs in
Φ (see Definition 2.3), and the size of ν is the total size of all these DFA.

3. Undecidability of Quantitative Branching-time Model-checking

In this section we prove the undecidability results given in Fig. 1.

Theorem 3.1. There is a fixed PCTL formula Φ such that the model-checking
problem for pPDA and Φ is undecidable. Further, there is a fixed PCTL∗ formula
Ψ such that the model-checking problem for pBPA and Ψ is undecidable.

3For purposes of this paper, the transition function in DFA is formally defined as a total func-
tion. This is convenient in, e.g., Definition 4.7 where we simulate a tuple of DFA on-the-fly in the
stack, and the totality of transition functions in these DFA guarantees that the simulation cannot
get stuck.

7

Both parts of Theorem 1 are proved by reduction from (a slightly modi-
fied version of) the Post’s correspondence problem (PCP). An instance of PCP
consists of two sequences x1, . . . , xn and y1, . . . , yn of words over the alphabet
Σ = {A,B, •} such that all xi and yj have the same length m. The question is
whether there is a finite sequence i1, · · · , ik of indexes such that xi1 · · ·xik and
yi1 · · · yik are the same words after erasing all occurrences of “•”.

3.1. pPDA and PCTL model-checking
In this subsection we prove the first part of Theorem 3.1. Let x1, . . . , xn and

y1, . . . , yn be an instance of PCP, where all xi and yj have the same length m. We
construct a pPDA ∆ where

• the number of control states is O(m · n), and there are always three distin-
guished control states g, c, and t;

• the stack alphabet of ∆ is fixed and contains the symbols Z, Y , and nine
symbols of the form (z, z′) where z, z′ ∈ Σ.

Further, Φ ≡ ♦>0(cZ ∧ ♦=1/2 tY) where the atomic propositions cZ and tY
are valid in exactly all configurations with head cZ and tY , respectively. Our
construction ensures that the given PCP instance has a solution iff gZ |=ν Φ,
where ν is the simple valuation described above (from now on, we omit the ν
superscript in |=ν).

Now we describe the pPDA ∆ in greater detail. To simplify our presentation,
we specify only the “relevant” transition rules of ∆. Note that according to Def-
inition 2.2, there should be at least one transition rule for every pX ∈ Q × Γ,
even if no configuration with head pX is reachable from the initial configuration
gZ (which makes the rules for pX irrelevant). Formally, if we do not give any
explicit rule for pX in our construction below, we assume the only default rule
pX

1→ pX . We also use P(pα, ϕ) to denote the probability of all runs initiated in
pα satisfying the path formula ϕ.

From the initial configuration gZ, the pPDA ∆ tries to “guess” a solution
to our PCP instance by storing pairs of words (xi, yi) successively on the stack.
Since xi and yi have the same length m, this is implemented by pushing pairs of
letters from Σ. For example, if xi = AAB and yi = BA•, then the pair (xi, yi) is
stored as a sequence of three stack symbols (A,B), (A,A), (B, •), where (B, •)
is on the top of the stack. After storing a chosen pair of words, the automaton can
either go on with guessing another pair of words, or enter a checking configuration
by changing the control state from g to c and pushing the symbol Z on the top of

8

the stack. The transition probabilities do not matter here, and hence we assume
they are distributed uniformly. This “guessing phase” is formalized below. Since
transition probabilities are distributed uniformly, we do not write them explicitly.
The symbol “|” separates alternatives.

gX → g1
1X | · · · | g1

nX,

gjiX → gj+1
i (xi(j), yi(j))X,

gm+1
i X → cZX | gX

Here 1 ≤ ` ≤ n, 1 ≤ j ≤ m, xi(j) and yi(j) denote the jth letters in xi and
yi, respectively, and X ranges over the stack alphabet. The following lemma is
immediate.

Lemma 3.2. A configuration of the form cZα is reachable from gZ iff α ≡
(z1, z

′
1) · · · (z`, z′`)Z and there is a sequence i1, . . . , ik such that z` · · · z1 =

xi1 · · ·xik and z′` · · · z′1 = yi1 · · · yik .

The crucial part of the construction is the next phase which verifies that the
guess was correct, i.e., that the words stored in the first and the second component
of stack symbols are the same when “•” is disregarded. For this we use the follow-
ing transition rules (again, the transition probabilities are distributed uniformly):

cZ → fε | sε, f(A, z)→ tY | fε, s(z, A)→ rY | sε, tY → tY,
f(B, z)→ rY | fε, s(z, B)→ tY | sε, rY → rY
f(•, z)→ fε, s(z, •)→ sε,
fZ → tY | rY, sZ → tY | rY,

Here z ranges over Σ. We claim that a checking configuration satisfies the formula
♦=1/2 tY iff the previous guess was correct. To get some intuition, let us evaluate
the probability of reaching a configuration with the head tY for, e.g., a configura-
tion cZ(A,A)(A, •)(•, A)(B,B)Z. First, the symbol Z is erased from the top of
the stack and the control state is changed to either f or s, which intuitively means
that we are going to read the letters stored either in the first or in the second com-
ponent of stack symbols, respectively. Then, the stack symbols are popped one
by one according to the above transition rules. One can easily confirm that the
probability of reaching a configuration with the head tY is equal to

1

2

((
1 · 1

2
+ 1 · 1

22
+ 0 · 1

23
+ 1 · 1

24

)
+

(
0 · 1

2
+ 0 · 1

22
+ 1 · 1

23
+ 1 · 1

24

))

9

which can be written in binary as follows: 1
2
(0.1101 + 0.0011). The first three

digits after the binary point in 0.1101 and 0.0011 reflect the structure of the words
AA•B and A•AB stored in the stack, and the last 1 is due to the Z at the very
bottom. Note that the role of A in the two words is dual—in the first case, it gen-
erates 1’s, and in the second case it generates 0’s (similarly for B). The symbol
• is just popped from the stack with probability one, which does not influence
the probability of reaching a configuration satisfying tY . Note that the probabil-
ities 0.1101 and 0.0011 are “complementary” and their sum is equal to 1. This
“complementarity” breaks down iff the words stored in the first and the second
component of stack symbols are not the same, in which case the sum is different
from 1. Now we formalize this intuition.

Definition 3.3. For every α ∈ Σ∗, we define the numbers Fnum(α) and Snum(α)
inductively as follows:

• Fnum(ε) = Snum(ε) = 1
2
;

• Fnum(Xα) =


Fnum(α) if X = •,
1
2
· Fnum(α) if X = B,

1
2

+ 1
2
· Fnum(α) if X = A;

• Snum(Xα) =


Snum(α) if X = •,
1
2
· Snum(α) if X = A,

1
2

+ 1
2
· Snum(α) if X = B.

Given α, β ∈ Σ∗, we write α $ β iff α and β are the same words after erasing all
occurrences of “•”in α and β.

A proof of the following lemma is straightforward and uses simple properties
of binary numbers.

Lemma 3.4. For all α, β ∈ Σ∗ we have that α $ β iff Fnum(α)+Snum(β) = 1.

Now observe that for a checking configuration cZα, where α =
(z1, z

′
1) · · · (z`, z′`)Z, we have that

P(cZα,♦ tY) =
1

2
· (Fnum(z1 · · · z`) + Snum(z′1 · · · z′`)) .

By applying Lemma 3.2 and 3.4, we obtain that gZ |= ♦>0(cZ ∧♦=1/2 tY) iff the
PCP instance has a solution.

10

Remark 3.5. There is nothing really special about the constraint =1
2

in the for-
mula Φ. In fact, we could use any rational x strictly between 0 and 1 by making
the following change to ∆. If x < 1

2
, we replace the transitions cZ 0.5→ fε and

cZ
0.5→ sε with transitions cZ 1−2x→ rY , cZ x→ fε, and cZ x→ sε, getting

P(cZα,♦ tY) = x · (Fnum(z1 · · · z`) + Snum(z′1 · · · z′`)) .

If x > 1
2
, we replace the same transitions with cZ

2x−1→ tY , cZ 1−x→ fε, and

cZ
1−x→ sε, which yields

P(cZα,♦ tY) = (2x− 1) + (1− x) · (Fnum(z1 · · · z`) + Snum(z′1 · · · z′`)) .

In both cases, we have that P(cZα,♦ tY) = x iff Fnum(z1 · · · z`) +
Snum(z′1 · · · z′`) = 1.

3.2. pBPA and PCTL∗ model-checking
As in the previous subsection, consider a PCP instance x1, . . . , xn and

y1, . . . , yn, where the length of all xi and yj is m. We construct a pBPA ∆ with a
distinguished stack symbolZ and a PCTL∗ formula of the formC∧P=1/2(ϕ1∨ϕ2)
such that Z satisfies the formula iff the PCP instance has a solution. The stack
alphabet of ∆ contains the symbols Z, Z ′ C, F , S, Gj

i for 1 ≤ i ≤ n and
1 ≤ j ≤ m + 1, and X(z,z′) and (z, z′) for all z, z′ ∈ Σ. The subformulae ϕ1 and
ϕ2 look as follows:

• ϕ1 ≡
(
¬S ∧

∧
z∈Σ ¬X(B,z)

)
U
(∨

z∈Σ X(A,z)

)
,

• ϕ2 ≡
(
¬F ∧

∧
z∈Σ ¬X(z,A)

)
U
(∨

z∈Σ X(z,B)

)
.

The atomic propositions C, F , S, and X(z,z′), where z, z′ ∈ Σ, are valid in exactly
all configurations with the respective head.

Similarly to the pPDA constructed in the previous subsection, the pBPA ∆
works in two phases. In the first phase, ∆ tries to guess a solution to the PCP
instance by storing pairs of words (xi, yi) in the stack. This is achieved by the
following rules (all transition rule probabilities are again distributed uniformly):

Z → G1
1Z
′ | · · · | G1

nZ
′,

Gj
i → Gj+1

i (xi(j), yi(j)),
Gm+1
i → C | G1

1 | · · · | G1
n.

Here 1 ≤ i ≤ n and 1 ≤ j ≤ m. The next lemma says that the above rules work
as expected (a proof is trivial).

11

Lemma 3.6. A configuration of the form Cα is reachable from Z iff α ≡
(z1, z

′
1) · · · (z`, z′`)Z ′ where z1, . . . , z`, z

′
1, . . . , z

′
` ∈ Σ and there is a sequence

i1, . . . , ik such that z` · · · z1 = xi1 · · ·xik and z′` · · · z′1 = yi1 · · · yik .

The second phase (verifying the guess) differs slightly from the one given in
Section 3.1. For pPDA, we could use control states to distinguish between the
runs that “read” the first and the second component of stack symbols. This does
not work for pBPA, and the runs are distinguished by the subformulae ϕ1 and ϕ2

given above. We also need to add the following transition rules to ∆, where z and
z′ range over Σ:

C → F | S, (z, z′) → X(z,z′) | ε,
V → ε, Z ′ → X(A,B) | X(B,A),

V̂ → ε, X(z,z′) → ε

Let us first re-examine the simple example of Section 3.1. Consider a con-
figuration Cα where α = (A,A)(A, •)(•, A)(B,B)Z ′. Then P(Cα, ϕ1) is the

probability of all runs that start with the transition Cα
1/2→ Fα and then reach

a configuration with the head X(A, ·) (here · is an arbitrary symbol) without any
prior visit to a configuration with the headX(B, ·). In our example, this probability
is equal to

1

2

(
1 · 1

2
+ 1 · 1

22
+ 0 · 1

23
+ 1 · 1

24

)
Similarly, P(Cα, ϕ2) is the probability of all runs starting with Cα

1/2→ Sα that
reach a configuration with the head X(·,B) without any prior visit to a configura-
tion with the head X(·,A). In our example, P(Cα, ϕ2) is equal to

1

2

(
0 · 1

2
+ 0 · 1

22
+ 1 · 1

23
+ 1 · 1

24

)
Clearly, P(Cα, ϕ1 ∨ ϕ2) = P(Cα, ϕ1) + P(Cα, ϕ2). In our example, this yields

1

2

((
1 · 1

2
+ 1 · 1

22
+ 0 · 1

23
+ 1 · 1

24

)
+

(
0 · 1

2
+ 0 · 1

22
+ 1 · 1

23
+ 1 · 1

24

))
which is equal to one half because the probabilities are “complementary”. Sim-
ilarly to the case of pPDA and PCTL, this complementarity breaks down iff the

12

first and the second component of stack symbols in α are not the same, in which
case the probability P(Cα, ϕ1 ∨ ϕ2) is different from 1

2
. More precisely,

P(C(z1, z
′
1) · · · (z`, z′`)Z ′, ϕ1 ∨ ϕ2) =

1

2
(Fnum(z1 · · · z`) + Snum(z′1 · · · z′`)) .

Due to Lemma 3.4, we have that C(z1, z
′
1) · · · (z`, z′`)Z ′ |= P=1/2(ϕ1 ∨ ϕ2)

iff z1 · · · z` $ z′1 · · · z′`. From this and Lemma 3.6 we obtain that
Z |=ν ♦>0(C ∧ P=1/2(ϕ1 ∨ ϕ2)) iff the PCP instance has a solution.

4. Upper Complexity Bounds for Qualitative Model-checking

In this section we prove the upper complexity bounds given in Fig. 1. That is,
we aim at proving the following theorem:

Theorem 4.1. The model-checking problem for pPDA and the logics qPCTL and
qPCTL∗ is in EXPTIME and 2-EXPTIME, respectively. For an arbitrary fixed
qPCTL∗ formula Φ, the model-checking problem for pPDA and pBPA against Φ
is in EXPTIME and P, respectively.

For the rest of this section, we fix a pPDA ∆ = (Q,Γ,→,Prob). Given a
qPCTL∗ formula Ψ and a valuation ν, we denote by C(Ψ, ν) the set of all config-
urations pα of ∆ satisfying pα |=ν Ψ.

The core of our qPCTL∗ model-checking algorithm is a global model-
checking procedure for qualitative LTL. We show that for every formula of the
form P=1(ϕ), where ϕ is an LTL formula, the set of all configurations satisfy-
ing P=1(ϕ) can be encoded by an effectively constructible DFA. Here we employ
the local LTL model-checking algorithm of [23] which decides whether almost
all runs initiated in a given configuration pα satisfy a given LTL formula. The
global qualitative LTL model-checking procedure is then used to solve the model-
checking problem for a qPCTL∗ formula Φ. For every state subformula Ψ of Φ,
the algorithm computes a DFA AΨ such that C(AΨ) = C(Ψ, ν). It starts with the
innermost subformulae (i.e., atomic propositions) and then proceeds consistently
with the natural structural ordering over the subformulae. Thus, we eventually
obtain a DFA AΦ such that C(AΦ) = C(Φ, ν). Theorem 4.1 follows by analyzing
the complexity of this algorithm. For the reader’s convenience, in Section 4.2 we
provide an example of the execution of the algorithm on a simple instance.

We start by formulating the result about global LTL model-checking precisely.

13

Lemma 4.2. Let ϕ be an LTL formula, and let a1, . . . , an be the atomic proposi-
tions occurring in ϕ. Let ν be a regular valuation, and let Ai be a DFA satisfying
C(Ai) = ν(ai) for all 1 ≤ i ≤ n. Furthermore, let K =

∏n
i=1 |Ki| where Ki is

the set of states of Ai. Then there is a DFA A with 2|Q|·2
|ϕ| ·K states computable

in
2|∆|

O(1)·2O(|ϕ|) ·KO(1)

time such that C(P=1ϕ, ν) = C(A). Moreover, if ∆ is a pBPA, thenA has 22|ϕ| ·K
states and it is computable in 22O(|ϕ|) · (|∆| ·K)O(1) time.

A proof of Lemma 4.2 is postponed to Section 4.1. Now we show how to
complete the proof of Theorem 4.1 using Lemma 4.2.

Let us fix a qPCTL∗ formula Φ and a regular valuation ν. Since P=0(ϕ) is
equivalent to P=1(¬ϕ), we may safely assume that no subformula of Φ takes the
form P=0(ϕ). For every qPCTL∗ path formula ϕ, we define the set St(ϕ) of all
“maximal” state subformulae of ϕ inductively as follows: If ϕ is a state formula,
then St(ϕ) = {ϕ}. Otherwise, we put

St(ϕ) =

{
St(ϕ1) if ϕ ≡ ¬ϕ1 or ϕ ≡ Xϕ1;

St(ϕ1) ∪ St(ϕ2) if ϕ ≡ ϕ1 ∧ ϕ2 or ϕ ≡ ϕ1 U ϕ2.

Our algorithm starts by computing a special form of the syntax tree for Φ
where the nodes are labeled by state subformulae of Φ. More precisely, for every
qPCTL∗ state formula Ψ we define the associated Tree(Ψ) inductively as follows:

• Tree(a) is a tree with only one node (the root) labeled by a;

• Tree(Ψ∧Ξ) is a tree whose root is labeled by Ψ∧Ξ and its only successors
are the roots of Tree(Ψ) and Tree(Ξ);

• Tree(¬Ψ) is a tree whose root is labeled by ¬Ψ and its only successor is
the root of Tree(Ψ);

• Tree(P=1ϕ) is a tree whose root is labeled by P=1ϕ and its successors are
the roots of all Tree(Ψ) where Ψ ∈ St(ϕ).

Then, the algorithm computes for each node u of Tree(Φ) a DFA Au such that
C(Au) = C(Ψu, ν), where Ψu is the label of u. This is achieved by processing
Tree(Φ) from its leaves to the root as follows:

• If u is a leaf labeled by a ∈ Ap, then Au = Aa.

14

• If u is labeled by Ψ ∧ Ξ, then u has two successors s and t labeled by Ψ
and Ξ, respectively. By applying a standard product construction (see, e.g.,
[25]) to As and At, we yield a DFA Au such that C(Au) = C(As) ∩ C(At).
Clearly, C(Au) = C(Ψ ∧ Ξ, ν).

• If u is labeled by ¬Ψ, then Au is obtained just by complementing the au-
tomaton As, where s is the only successor of u.

• If u is labeled by P=1ϕ, then we first construct an LTL formula ϕ̂ by re-
placing each occurrence of every formula Ψ ∈ St(ϕ) with a fresh atomic
proposition bΨ, and extend the valuation ν into a (regular) valuation ν̂ by
stipulating ν̂(bΨ) = C(As), where s is the unique successor of u labeled
by Ψ. By applying Lemma 4.2, we obtain a DFA Au satisfying

C(Au) = C(P=1ϕ̂, ν̂) = C(P=1ϕ, ν).

Note that C(Φ, ν) = C(Ar) where r is the root of Tree(Φ).

Complexity analysis. For every node u of Tree(Φ), let Tree(Φ, u) be the sub-
tree of Tree(Φ) rooted by u. We use L(u) to denote the number of leaves in
Tree(Φ, u), and P (u) to denote the number of nodes labeled by a formula of the
form P=1ϕ in Tree(Φ, u). We also use |A| to denote the maximal |Aa| where a
occurs in Φ, and |θ| to denote the maximal |ξ̂| where P=1ξ is a subformula of Φ.
(Recall that ξ̂ is the LTL formula obtained from ξ by substituting each occurrence
of every Ψ ∈ St(ξ) with a fresh atomic proposition bΨ.)

A straightforward induction on the height of Tree(Φ, u) reveals thatAu has at
most

2P (u)·|Q|·2|θ| · |A|L(u)

states and it is computable in time

2P (u)·|∆|O(1)·2O(|θ|) · |A|O(L(u)).

Let r be the root of Tree(Φ). Since |θ|, P (r), L(r) ≤ |Φ|, the automaton Ar is
computable in time

2|Φ|·|∆|
O(1)·2O(|Φ|) · |A|O(|Φ|).

Hence, the model-checking problem for pPDA and qPCTL∗ is in 2-EXPTIME,
but for an arbitrary fixed formula Φ, the problem is in EXPTIME.

15

If ∆ is a BPA, then |Q| = 1 and hence Au has at most

2P (u)·2|θ| · |A|L(u)

states. By applying the “pBPA part” of Lemma 4.2, one can further show that Au
is computable in time

2P (u)·2O(|θ|) · |∆|O(1) · |A|O(L(u)).

Hence, the model-checking problem for pBPA and qPCTL∗ is solvable in time

2|Φ|·2
O(|Φ|) · |∆|O(1) · |A|O(|Φ|).

In particular, the problem is in P for an arbitrary fixed qPCTL∗ formula Φ.
For qPCTL, every (sub)formula of the form P=1ϕ satisfies that ϕ is either

XΦ1, Φ1 U Φ2, ¬ (XΦ1), or ¬ (Φ1 U Φ2). Hence, we have that |θ| is O(1), and
the complexity bounds given above imply that the model-checking problem for
pPDA and qPCTL is in EXPTIME.

4.1. A Proof of Lemma 4.2
For the rest of this section, we fix a pPDA ∆ = (Q,Γ, δ,Prob). We start by

proving an analogy of Lemma 4.2 for simple valuations (see Lemma 4.4 below),
using the local LTL model-checking algorithm of [23]. Then, we show how to
reduce the global model-checking problem for regular valuations to the one for
simple valuations. Here we use a standard technique of simulating a tuple of DFA
on-the-fly in the stack (see, e.g., [18]).

To achieve the desired complexity bounds, the solution for simple valuations
is decomposed into two steps. First, we compute all non-terminating heads, i.e.,
the set S∆ of all configurations pX ∈ C(∆) such that the probability of reaching a
configuration with an empty stack from pX is strictly less than one. By applying
the results of [17, 22], the set S∆ is computable in polynomial space for general
pPDA, and in polynomial time for pBPA. Then, we solve the model-checking
problem itself. Here we use the local LTL model-checking algorithm of [23]
which runs in time polynomial in the number of stack symbols, assuming that the
set of non-terminating heads has already been computed. More precisely, we rely
on the following theorem:

Theorem 4.3 ([23]). Assume that ν is simple and the set S∆ has already been
computed. Let pX ∈ Q × Γ and let ϕ be an LTL formula. Then the problem of
whether pX |=ν P=1ϕ is decidable in time 2O(|ϕ|) · |∆|O(1).

16

Now we generalize Theorem 4.3 to a global model-checking algorithm.

Lemma 4.4. Assume that ν is simple and the set S∆ has already been computed.
Let ϕ be an LTL formula. Then a DFA B satisfying C(P=1ϕ, ν) = C(B) is com-
putable in time 2|Q|·2

O(|ϕ|) · |∆|O(1) and has 2|Q|·2
|ϕ|

states.

Proof. We begin by introducing some notation adopted from [23]. Recall that
Cl(ϕ) denotes the set of all subformulae of ϕ. To every run w of ∆ we assign its
type type(w) ⊆ Cl(ϕ) such that ψ ∈ type(w) iff w |=ν ψ. A type t is admissible
for pα ∈ C(∆) if

P ({w ∈ Run(pα) | type(w) = t}) > 0 .

The set of states of B is 2Q×2Cl(ϕ) . After reading the reverse of a word α ∈
Γ∗, the automaton B enters a state P such that (p, t) ∈ P iff t is admissible
for pα. If the automaton B reads p ∈ Q (being in such a state P), it enters an
accepting state iff all (p, t) ∈ P satisfy ϕ ∈ t. Obviously, the latter is equivalent
to pα |=ν P=1(ϕ).

In order to define the transition function of B, we need the following simple
observation about types (a proof is immediate and hence omitted):

Lemma 4.5. Given a configuration pα and a runw of type t such that pα→ w(0),
the type t′ of the run pα,w is uniquely determined by pα and t as follows: For
every ψ ∈ Cl(ϕ) we have that ψ ∈ t′ iff one of the following is true:

• ψ ∈ Ap and pα ∈ ν(ψ);

• ψ = ψ1 ∧ ψ2 and ψ1 ∈ t′ and ψ2 ∈ t′;

• ψ = ¬ψ′ and ψ′ 6∈ t′;

• ψ = Xψ′ and ψ′ ∈ t;

• ψ = ψ1 U ψ2 and either ψ2 ∈ t′, or ψ1 ∈ t′ and ψ ∈ t.

Denote by type(pα, t) the type t′ determined by pα and t. This extends induc-
tively to paths, so given a finite path v, we denote by type(v, t) the type determined
by v and t, i.e., the type of a run of the form v,w′ where w′ has the type t. In the
rest of this proof we also use the following notation. Given a finite path v of length
at least one, we denote by ṽ the path obtained from v by removing the last con-
figuration. Further, we say that a run w initiated in a configuration pXα ∈ C(∆)

17

(where X ∈ Γ) is clean if w does not visit any configuration of the form qα where
q ∈ Q. That is, the stack height along a clean run never decreases below its initial
level. The set of all clean runs initiated in pXα is denoted by Clean(pXα).

Now we formally define the automaton B = (K,Σ, γ, P0, F) where

• K = 2Q×2Cl(ϕ) is the set of states.

• Σ = Γ ∪Q is the input alphabet.

• The transition function γ is defined as follows (note that γ is total):

– For all P ∈ K and X ∈ Γ, the set γ(P,X) consists of all (p, t) ∈
Q× 2Cl(ϕ) such that at least one of the following conditions holds:

(A) P({w ∈ Clean(pX) | type(w) = t}) > 0.
(B) There is (q, t′) ∈ P and a path v from pX to qε such that

type(ṽ, t′) = t.

– For all P ∈ K and p ∈ Q, the set γ(P, p) is either empty or equal
to Q × 2Cl(ϕ), depending on whether ϕ ∈ t for all (p, t) ∈ P or not,
respectively (in the latter case, we could use an arbitrary non-empty
subset of Q× 2Cl(ϕ)).

• The initial state P0 ⊆ Q×2Cl(ϕ) consists of all pairs (p, t) where p ∈ Q and
t is the unique type of the run (pε)ω.

• F = {∅} is the set of accepting states.

The automaton B is constructed so that after reading the reverse of α ∈ Γ∗, a state
P in entered such that (q, t) ∈ P iff t is admissible for qα. To get some intuition
on how B works, assume that the above condition holds for a given α ∈ Γ∗, and
consider admissible types for pXα, whereX ∈ Γ. First, a type t can be admissible
for pXα because there is a set R ⊆ Clean(pXα) such that P(R) > 0 and all runs
in R have the type t (note that since ν is simple, α is irrelevant). This is captured
by Condition (A) above. The second option, captured by Condition (B) above, is
that there is a path v from pXα to qα such that the stack is never decreased to α
along ṽ, and there is a set R of runs of the form ṽw such that P(R) > 0 and all
runs in R are of type t. Then, there must be a subset of runs R′ ⊆ Run(qα) such
that P(R′) > 0 and all runs in R′ are of type t′ where type(ṽ, t′) = t.

Now we give a full correctness proof which formalizes the above intuition.

18

Lemma 4.6. For every configuration pα we have that pα |=ν P=1(ϕ) iff pα ∈
C(B).

Proof. Assume that after reading the reverse of α ∈ Γ∗ the automaton B reaches
a state P . It suffices to prove that (p, t) ∈ P iff t is admissible for pα. The rest
follows immediately from the definition of B. We proceed by induction on the
length of α. If α = ε, there is only one run initiated in pε and our lemma follows
directly from the definition of P0. Now assume that α = Xβ. Let t be a type, and
let Rt be the set of all runs of type t initiated in pα. Given q ∈ Q, we denote by
Rt
q the set of all runs in Rt that visit qβ and no configuration preceding this visit

has stack content β. The set Rt r ∪q∈QRt
q is denoted by Rt

Clean . We distinguish
two possibilities:

• P(Rt
Clean) > 0. Observe that for every runw ∈ Rt

Clean there is an associated
run of Clean(pX) obtained by removing the suffix β from every configura-
tion of w. Clearly, these two runs have the same type (here we need that ν
is simple). By applying Condition (A), we can conclude that t is admissible
for pXβ iff (p, t) ∈ P .

• P(Rt
Clean) = 0. Let (p, t) ∈ P , and let P ′ be the state of B entered after

reading the reverse of β. By Condition (B), there is (q, t′) ∈ P ′ and a path v
from pX to qε such that t = type(ṽ, t′). By induction hypothesis, the type
t′ is admissible for qβ, i.e., there is a set of runs Rt′ ⊆ Run(qβ) of type
t′ such that P(Rt′) > 0. Due to Lemma 4.5, for all w ∈ Rt′ we have that
type(ṽw) = type(ṽ, t′) = t which implies that ṽw ∈ Rt, and thus

P(Rt) ≥ P({ṽw | w ∈ Rt′}) = P(Run(v)) · P(Rt′) > 0

Hence, t is admissible for pXβ.

Now suppose that t is admissible for pXβ, i.e., P(Rt) > 0. As
P(Rt

Clean) = 0 and P(Rt) = P(Rt
Clean ∪

⋃
q R

t
q), there must be q ∈ Q

such that P(Rt
q) > 0. Given a type t′ and a path v from pXβ to qβ such

that ṽ does not visit any configuration with stack content β, we denote by
Rv,t′ the set of all runs of the form ṽw where w has the type t′. At least one
of the sets Rv,t′ must have a positive probability, and hence t′ is admissible
for qβ. By induction hypothesis, (q, t′) ∈ P ′. By applying Lemma 4.5,
type(ṽ, t′) = t and thus (p, t) ∈ P by Condition (B).

To finish the proof of Lemma 4.4, we need to analyze the complexity of
deciding Conditions (A) and (B). Condition (A), i.e., the question whether

19

P({w ∈ Clean(pX) | type(w) = t}) > 0, is equivalent to the question whether
pX 6|=ν P=1θ where θ is the following LTL formula:(∨

ψ∈t

¬ψ

)
∨

 ∨
ξ∈Cl(ϕ)rt

ξ

 ∨(∨
q∈Q

♦[qε]

)
Here [qε] is an atomic proposition which holds only in the configuration qε. Thus,
we can apply Theorem 4.3 and conclude that Condition (A) is decidable in 2O(|ϕ|) ·
|∆|O(1) time.

Condition (B) is reducible to the reachability problem for non-probabilistic
PDA as follows: We construct a PDA ∆′ where

• the set of control states is the same as in ∆;

• the stack alphabet consists of all symbols (t,X, t′) where X ∈ Γ and t, t′

are types;

• the transitions are defined as follows:

– p(t,X, t′) → q(s, Y, s′)(s′, Z, t′) iff pX → qY Z, t = type(pX, s),
and s′ is an arbitrary type,

– p(t,X, t′)→ q(s, Y, t′) iff pX → qY and t = type(pX, s),
– p(t,X, t′)→ qε iff pX → qε and t = type(pX, t′).

There might be a head p(t,X, t′) to which none of the above conditions
applies, and in this case we put p(t,X, t′)→ p(t,X, t′).

It follows directly from definitions that there is a path v from pX to qε such that
type(ṽ, t′) = t iff there is a path from p(t,X, t′) to qε. The latter can be decided
in time polynomial in |∆′|, and hence in time 2O(|ϕ|) · |∆|O(1).

Hence, B is indeed computable in time

2|Q|·2
O(|ϕ|) · |∆|O(1)

and it has 2|Q|·2
|ϕ| states.

Now we have all the tools needed to prove Lemma 4.2. So, let ϕ be an LTL
formula with atomic propositions a1, . . . , an, and let ν be a regular valuation such
that ν(ai) = C(Ai) for all 1 ≤ i ≤ n, where Ai = (Ki,Γ ∪ Q, γi, q0

i , Fi) is a
DFA. We show that ν can be effectively transformed into a simple valuation by
simulating the DFA A1, . . . ,An on-the-fly in the stack of ∆. This technique is
similar to the one used in [15, 18].

20

Definition 4.7. We define a pPDA ∆[A1, . . . ,An] = (Q,Γ′, δ′,Prob ′) where Γ′ =
Γ×

∏n
i=1 Ki, and the rules of ∆[A1, . . . ,An] are determined as follows:

1. p(X,~s) x→ qε iff pX x→ qε;
2. p(X,~s) x→ q(Y,~s) iff pX x→ qY ;
3. p(X,~s) x→ q(Y,~t)(Z,~s) iff pX x→ qY Z and γi(~s(i), Z) = ~t(i) for all

1 ≤ i ≤ n;

Intuitively, the pPDA ∆[A1, . . . ,An] behaves exactly like ∆ but it also
simulates the execution of A1, . . . ,An on-the-fly in its stack. Observe that
not every configuration of ∆[A1, . . . ,An] corresponds to a correct simula-
tion of A1, . . . ,An. We say that a configuration p(X1, ~s1) · · · (Xk, ~sk) of
∆[A1, . . . ,An] is consistent if ~sk = (q0

1, . . . , q
0
n) and for all 1 < j ≤ k and

1 ≤ i ≤ n we have that ~sj−1(i) = γi(~sj(i), Xj). A configuration with an
empty stack is also consistent. Given pX1 · · ·Xn, we denote by K(pX1 · · ·Xn)
the unique consistent configuration of the form p(X1, ~s1) · · · (Xn, ~sn).

Lemma 4.8. Given a consistent configuration p(X1, ~s1) · · · (Xk, ~sk), the configu-
ration pX1 · · ·Xk is in C(Ai) iff Ai initiated in ~s1(i) accepts the word X1p.

Proof. For the “⇒” part, observe that Ai accepts Xk · · ·X1p by going through
the states ~sk(i), . . . , ~s1(i), t, t′, where t and t′ are the states in which Ai ends after
reading Xk · · ·X1 and Xk · · ·X1p, respectively, and t′ is accepting. It follows
that when initiated in ~s1(i), Ai accepts the word X1p. The other direction is also
immediate.

Hence, the membership of pX1 · · ·Xk into C(Ai) can be determined just by
inspecting the head p(X1, ~s1) of the corresponding consistent configuration. Let
ν ′ : Ap → 2C(∆[A1,...,An]) be a simple valuation such that for every ai, where
1 ≤ i ≤ n, the set of heads Hai (see Definition 2.3) is determined as follows:

• For every p(X1, ~s1) ∈ Q× Γ′, we have that p(X1, ~s1) ∈ Hai iff Ai initiated
in ~s1(i) accepts the word X1p;

• for every p ∈ Q, we have that p ∈ Hai iff pε ∈ C(Ai).

Now it is easy to prove that

pα |=ν P=1ϕ iff K(pα) |=ν′ P=1ϕ

21

By Lemma 4.4, there is an effectively computable DFA B = (K,Γ ×∏n
i=1 Ki, γ, F) encoding all configurations pα ∈ C(∆[A1, . . . ,Ak]) such that

pα |=ν′ P=1ϕ. Note that the size of K is in 2|Q|·2
|ϕ| .

Now we aim at constructing a DFA A such that C(B) = K(C(A)). Note that
A then encodes all configurations of ∆ satisfying P=1ϕ because

pα |=ν P=1ϕ iff K(pα) |=ν′ P=1ϕ iff K(pα) ∈ C(B) iff pα ∈ C(A).

Intuitively, A is essentially the same as B, but it also simulates the execu-
tion of A1, . . . ,An on-the-fly. This means that if the automaton B goes through
the states q1, . . . , qk+1, q

′ when reading (X1, ~s1) . . . (Xk, ~sk)p, then the automa-
tonA goes through the states (q1, ~s1), . . . , (qk, ~sk), (qk+1, ~sk+1), (q′,~t) when read-
ing X1 . . . Xkp, where γi(~sk(i), Xk) = ~sk+1(i) and γi(~sk+1(i), p) = ~t(i) for all
1 ≤ i ≤ n.

Formally, we put A = (K ×
∏n

i=1 Ki,Γ ∪ Q, γ′, (q0, ~q0), F ′) where ~q0 =
(q0

1, . . . , q
0
n), F ′ = F ×

∏n
i=1Ki, and the transition function γ′ is defined as fol-

lows:

• For all X ∈ Γ and (s, ~s) ∈ K×
∏n

i=1 Ki, we have that γ′((s, ~s), X) = (t,~t)
iff γ(s, (X,~s)) = t and γi(~s(i), X) = ~t(i) for all 1 ≤ i ≤ n;

• for all p ∈ Q and (s, ~s) ∈ K ×
∏n

i=1Ki, we have that γ′((s, ~s), p) = (t,~t)
iff γ(s, p) = t and γi(~s(i), p) = ~t(i) for all 1 ≤ i ≤ n.

It is straightforward to show that C(B) = K(C(A)).
Let us analyze the complexity of the above procedure. First, note that if

the set S∆ is given, then the set S∆[A1,...,Ak] is computable in time polynomial
in ∆[A1, . . . ,Ak] (it is easy to see that pX terminates with probability one iff
p(X,~s) terminates with probability one for all ~s). Since S∆ can be computed in
exponential/polynomial time for pPDA/pBPA, we obtain that S∆[A1,...,Ak] is com-
putable in 2|∆|

O(1) · (
∏n

i=1 |Ki|)O(1) time for pPDA and in (|∆| ·
∏n

i=1 |Ki|)O(1)

time for pBPA. By Lemma 4.4, the automaton B satisfying C(Φ, ν) = C(B) is
computable in time polynomial in |K ′| · |∆| · n ·

∏n
i=1 |Ki| where |K ′| = 2|Q|·2

|ϕ| .
Hence, the overall time complexity is 2|∆|

O(1)·2O(|ϕ|) · (
∏n

i=1 |Ki|)O(1) for pPDA
and 22O(|ϕ|) · (|∆| ·

∏n
i=1 |Ki|)O(1) for pBPA.

4.2. Example of the execution of the algorithm
To conclude this section, let us show how the algorithm is executed on a simple

pPDA ∆ = ({p, q}, {X, Y }, δ,Prob), where δ is given below and the transition

22

probabilities are distributed uniformly.

pX → pY X | pX qX → qXX
pY → qY qY → qY Y | qε

Let Φ = (P=1♦a) ∧ b, and let ν be a valuation such that

• ν(a) consists of all configurations with an even number of X’s stored in the
stack,

• ν(b) is the set of all configurations with X on the top of the stack.

We want to determine whether pX |=ν Φ. The algorithm starts by computing
Tree(Φ) which looks as follows:

(P=1♦a) ∧ b

P=1♦a b

a

Then, the above tree is processed bottom-up. We start by assigning the following
DFA Aa to the leaf a.

s0 s1s2

s3

X
Y

p, q

p, q,X, Y

X
Y

p, q,X, Y p, q

We proceed with the nodeP=1♦a of Tree(Φ). Using ∆ andAa, we construct a
pPDA ∆[Aa] = ({p, q}, {X, Y }× {s0, s1}, δ′,Prob ′) described in Definition 4.7.
In particular, δ′ contains the following rules (here, i ∈ {0, 1}, j ∈ {2, 3}, and
Z ∈ {X, Y }):

p(X, si)→ p(Y, s1−i)(X, si) | p(X, si) q(X, si)→ q(X, s1−i)(X, si)
p(Y, si)→ q(Y, si) q(Y, si)→ q(Y, si)(Y, si) | qε
p(X, sj)→ p(Y, s3)(X, sj) | p(X, sj) q(X, sj)→ q(X, s3)(X, sj)
p(Y, sj)→ q(Y, sj) q(Y, sj)→ q(Y, s3)(Y, sj) | qε

23

Next, we construct a simple valuation ν ′ where the set Ha (see Definition 2.3) is
given by

Ha = {p(X, s1), q(X, s1), p(Y, s0), q(Y, s0), p, q}.

The purpose of the construction of ∆[Aa] and ν ′ is to “simplify” the regular valu-
ation to a simple valuation. Indeed, our proofs give us that pX |=ν P=1♦a (here
ν(a) is given by the automaton Aa) iff p(X, s0) |=ν′ P=1♦a (here ν ′(a) is given
by the set of heads Ha).

Now, we apply the construction given in the proof of Lemma 4.4 and obtain
the following DFA B, where t1 = {♦a, a} and t2 = {♦a}. For simplicity, only
the states and transitions contributing to L(B) are drawn.

{(p, t1), (q, t1)} {(p, t2), (q, t2)} ∅
(X, s0), (Y, s1)

(X, s1), (Y, s0)

(X, s1), (Y, s0)

{(X, s0), (Y, s1)}

p, q

p, q

When the automaton B reads a set of stack symbols of ∆[Aa], it “stores” in its
state the relevant formulae that will be satisfied if a particular control state of
∆[Aa] is read as the next symbol. For example, after reading (X, s1)(X, s0) the
automaton ends in a state containing (p, {♦a}), which means that p(X, s0)(X, s1)
satisfies P=1♦a, but does not satisfy a.

We are now ready to finish the analysis of the node P=1♦a of Tree(Φ). From
the automaton B that accepts the (reverse of) configurations of ∆[Aa] which sat-
isfyP=1♦a under ν ′ we construct an automaton accepting the (reverse of) configu-
rations of ∆ which satisfy P=1♦a under ν. We employ the construction described
at page 22 and obtain the following DFA A (we again draw only the relevant part
of A and use t1 and t2 as before):

({(p, t1), (q, t1)}, s0) ({(p, t2), (q, t2)}, s1) ∅
X

Y

X

Y

p, q

p, q

24

Here the intuition is that thanks to the correspondence between configurations
of ∆ and consistent configurations of ∆[Aa], the automaton A can mimic the
behaviour of B while also simulating the computation of Aa.

For the leaf b of Tree(Φ) we have the following automaton Ab:

s′0 s′1 s′2

s′3

X
Y

Y

X

p, q,X, Y

p, q

p, q p, q,X, Y

We would now apply a standard product construction to get a DFA AΦ which
accepts the language L(A)∩L(Ab), and then we would verify that the automaton
AΦ accepts the word Xp, and so pX |=ν Φ. We omit this part here as it is trivial.

5. Lower Complexity Bounds for Qualitative Model-checking

In this section we prove the lower complexity bounds for qPCTL and qPCTL∗

model-checking given in Fig. 1. These results are mostly obtained by simple
modifications of the existing results for non-probabilistic PDA. In particular, the
EXPTIME-hardness proof for model-checking non-probabilistic PDA and CTL∗

presented in [5] carries over to the probabilistic setting almost immediately. The
proof uses a reduction from the acceptance problem for polynomially bounded al-
ternating Turing machines, and can be adapted to pPDA and qPCTL∗ just by using
uniform probability distributions in the constructed PDA and by substituting the
A and E path quantifiers with P=1 and P>0 in the constructed CTL∗ formula Φ,
respectively. Although the semantics of A and E is somewhat different from the
semantics of P=1 and P>0, respectively, the substitution works in the expected
way. This is because

• every occurrence of the universal path quantifierA in Φ is in subformulae of
the formAXψ orA�ψ where ψ is a Boolean combination of state formulae
(note that the semantics of AXψ and A�ψ is essentially the same as the
semantics of P=1Xψ and P=1�ψ, respectively);

25

• every occurrence of the existential path quantifier E in Φ is in subformulae
of the form Eϕ, where ϕ has the following abstract syntax:

ϕ ::= Φ | ¬Φ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xϕ | ♦ϕ

Here Φ ranges over state formulae. Note that if a run satisfies such a ϕ, then
it has a finite prefix w such that any run prefixed by w satisfies ϕ. Thanks to
this property, the semantics of Eϕ is essentially the same as the semantics
of P>0ϕ.

It follows that the program complexity of model-checking pPDA and qPCTL∗ is
EXPTIME-complete.

Similar arguments can be used to prove EXPTIME-hardness of the model-
checking problem for pPDA and qPCTL (by modifying the construction of [29])
and 2-EXPTIME-hardness of the model-checking problem for pPDA and
qPCTL∗ (by modifying another construction of [5]). However, we show that all
of these results can be actually strengthened even to BPA and hence also to pBPA.
This observation is essentially due to Richard Mayr4. We present just the main
ideas behind this modification (in a self-contained form) without giving full tech-
nical details.

We start by proving EXPTIME-hardness of the model-checking problem for
pBPA and qPCTL (Theorem 5.1). Then, we indicate how to modify this proof
to obtain 2-EXPTIME-hardness of the model-checking problem for pBPA and
qPCTL∗ (Theorem 5.2).

Theorem 5.1. The model-checking problem for pBPA and qPCTL is EXPTIME-
hard.

Proof Sketch. This proof is a modification of the construction presented in
[29] which uses a reduction from the acceptance problem of linearly bounded
alternating Turing machines. An alternating Turing machine T is a tuple
(C,Υ, γ, qI , qA, qR, λ), where C is a finite set of control states, Υ is a finite tape
alphabet, γ is a transition function, λ is a function that partitions the set of states
C into existential and universal states, and qI , qA, qR are the initial, accepting, and
rejecting states, respectively. The transition function of T assigns to each pair
(q,X) ∈ C×Υ an ordered pair of moves, where a move is a triple (q′, Y,D) such
that q′ ∈ C is the next state, Y is the symbol which rewrites X on the tape, and

4Private communication, July 2004.

26

D ∈ {L,R} specifies the direction in which the head moves. Configurations of T
can be written in the form vqw, where q ∈ C is the current state of T , vw ∈ Υ∗ is
the content of the non-empty part of the tape, and the head is positioned over the
first letter of w. A configuration is accepting (or rejecting) if its state is qA (or qR)
and terminal if it is either accepting or rejecting. At the beginning, an input word
is written on the tape, the head stays on the leftmost symbol, and the machine is
in the initial state qI . In every step, the machine reads the symbol under the head
and moves according to the transition function γ. If the current state is existential,
the machine chooses one of the two alternatives. Otherwise, if the current state
is universal, the machine continues with both alternatives. The machine stops if
either qA or qR is reached. This induces a computation tree of T over the input
word. (More precisely, nodes of the tree are labeled with configurations, the root
is labeled with the initial configuration, leaves are labeled with terminal configu-
rations, inner nodes with non-terminal configurations, successors of an inner node
labeled with a configuration c are labeled by one step successors of c in the com-
putation, i.e., existential nodes have one successor and universal nodes have two
successors.) The machine accepts the input word iff there is a computation tree
for which all its leaves are labeled with accepting configurations.

Let T = (C,Υ, γ, qI , qA, qR, λ) be an alternating Turing machine using n tape
cells on input of size n, and let c be an initial configuration. We construct a pBPA
system ∆, a simple valuation ν, and a qPCTL formula Φ such that G |=ν Φ for a
distinguished stack symbol G of ∆ iff T has an accepting computation from c.

Intuitively, the pBPA ∆ simulates a depth-first search for an accepting com-
putation tree on its stack. The formula Φ is used to ensure that the simulation is
correct. Formally, we define ∆ = (Γ∆, δ∆,Prob∆) where Γ∆ contains all sym-
bols ofC∪Υ, distinguished symbolsE,L,R,G,M,A, F , and additional symbols
which we don’t define formally and whose role will be explained later. Intuitively,
E stands for an existential move, L and R stand for the left and the right elements
of a universal move, respectively. The G,M,A, F are special control symbols
used for checking whether the simulation is correct. The transition function δ∆

contains the following rules (the probability function Prob∆ is not significant, we
only require that it assigns a positive probability to each transition).

G → Mc′L | Mc′E | A R → ε F → ε
M → G | F A → ε q → ε
L → Mc′R | F E → ε X → ε

Here c′ stands for a configuration of T (a string of (Υ ∪ C)n+1), X ∈ Υ, and

27

q ∈ C. We define Φ ≡ P>0
(
(¬M)U (M ∧ ΦComp)) where

ΦComp ≡ Init ∧P>0
((
¬F ∧ (A⇒ Accept) ∧ (M ⇒ Move)

)
U ε
)

where the formulae Init , Move and Accept , asserting correctness of the simula-
tion, are described below.

The simulation works as follows: It begins in the configuration G and starts
guessing a computation tree of T . Each of the configurations is guessed in n
steps, because we need |∆| to be polynomial in the size of T (hence, the rules
G → Mc′L,G → Mc′E,L → Mc′R are in fact abbreviations for a family of
rules that guess a new configuration symbol by symbol, and this is where we use
the additional stack symbols). The formula Init checks that the first configuration
guessed is the initial configuration c. Each time a new configuration is guessed, the
run of ∆ has to pass through a configuration withM on the top of the stack and the
correctness is checked by the formula Move. When an accepting configuration is
guessed (by putting A on the stack), and checked (by the formula Accept), all the
symbols up to L are erased from the stack, and guessing of the right branch of the
corresponding universal move is started. This continues until the stack becomes
empty.

It remains to define the formulae Init , Accept and Move checking correctness
of the simulation performed by ∆. We put

Init ≡ P>0X
(
F ∧

n+1∧
i=1

(P>0X)iXi

)
where Xi is the i-th symbol of c, and

Accept ≡ P>0 (¬(E ∨ L ∨R)U qA)

Move ≡ P>0X
(
F ∧

∨
t∈γ Trans t

)
The Trans t formulae check consistency of symbols in consecutive configurations
according to the transition function γ. They can be constructed using subformulae
of the form

(P>0X)i+n+2X ⇒ (P>0X)iY (1)

which say that the i-th symbol of the current configuration (i.e., the one on the
top of the stack) is Y if the i-th symbol of the previous configuration is X . We
omit the construction of Trans t from this sketch; the underlying principles are the
same as in the construction presented in [29].

28

We obtain that if T has an accepting computation from T , then the depth-first
search performed on the corresponding computation tree determines a run of ∆
initiated in G which ends with the empty stack and on which the formula

¬F ∧ (A⇒ Accept) ∧ (M ⇒ Move)

is satisfied in every configuration, and Init is satisfied in the first configuration
which has M on the top of the stack. Conversely, if G |=ν Φ, then there is a run
of ∆ ending in ε which uniquely determines an accepting computation tree. Thus,
we obtain that G |=ν Φ iff T has an accepting computation from c.

Theorem 5.2. The model-checking problem for pBPA and qPCTL∗ is
2-EXPTIME-hard.

Proof. Our proof is similar to the one presented in [5]. It proceeds by reduction
from the acceptance problem for exponentially space bounded alternating Turing
machines, which is known to be 2-EXPTIME-complete [14]. We indicate how to
modify the construction used in the proof of Theorem 5.1 to obtain 2-EXPTIME-
hardness of the model-checking problem for pBPA and qPCTL∗, using the ideas
of [5].

As in the proof of Theorem 5.1, we consider an alternating Turing ma-
chine T = (C,Υ, γ, qI , qA, qR, λ). This time, however, we assume that T uses
at most n = 2m tape symbols for an input word of length m. The initial config-
uration is a word c of size n = 2m starting with the input word and padded by
2m −m empty-space symbols. For a given T and an input word of length m, we
construct a pBPA ∆, a simple valuation ν, and a qPCTL∗ formula Φ such that
G |=ν Φ for a distinguished stack symbol G iff T has an accepting computation
from the initial configuration c.

The main obstacle in adapting the construction used in the proof of Theo-
rem 5.1 is that configurations are now of exponential length. Hence, the formulae
verifying the correctness of one computational step constructed in the style of (1)
would require exponentially manyX operators. Similarly as in [5], this problem is
overcome by using an extended representation of configurations of T . A configu-
ration of the form Y1Y2 . . . Yk is now represented by the string Y1[1]Y2[2] . . . Yk[k]
where each [i] is a binary representation of i. We assume that the length of [i] is ex-
actlym, i.e., [i] is the standard binary representation of i filled with an appropriate
number of 0’s from the left.

Now, we define a pBPA ∆ = (Γ, δ,Prob) where Γ contains the symbols of
C ∪ Υ, fresh symbols E,L,R,G,M,A, F, 0, 1, V, U , and some auxiliary count-
ing symbols. The meaning of E,L,R,G,M,A, F is the same as in the proof of

29

Theorem 5.1. The symbols 0 and 1 are used to encode the binary strings [i] (see
above), and the purpose of V and U is explained later. Transition rules of ∆ are
similar as in the proof of Theorem 5.1 except that the configurations are guessed
in the new format, and the symbols of C ∪ Υ rewrite either to V or U before the
size of the stack is decreased. Thus, we obtain the following:

G → Mc′L | Mc′E | A X → V | U
M → G | F Y → ε
L → Mc′R | F

Here X ∈ C ∪ Υ, Y ∈ {R,A,E, F, V, U, 0, 1} and c′ is a string of the form
((C ∪Υ) · {0, 1}m)+ containing precisely one letter from C. Obviously, such
strings can be generated by polynomially many rules using polynomially many
auxiliary counting symbols, and hence we can safely use the symbolic rules
G→Mc′L | Mc′E and L→Mc′R.

The formula Φ is of a similar form as before, i.e.,

Φ ≡ P>0

(
Init ∧

((
¬F ∧ (A⇒ Accept) ∧ (M ⇒ Move)

)
U ε
))

where Accept is also the same as before, i.e.,

Accept ≡ P>0 (¬(E ∨ L ∨R)U qA) .

However, the formulae Init and Move are slightly different. We define

Move ≡ P>0X

(
F ∧ Count ∧

∨
t∈γ

Trans t

)

Here, the formula Count checks the consistency of the [i] indexes, and Trans t
checks whether the topmost configuration is a t-successor of the previous config-
uration (here t ∈ γ is a transition of T).

The simulation is initiated in G, and proceeds by guessing a computation tree
of T . Every configuration is guessed as a string of the form ((C ∪Υ) · {0, 1}m)+.
As before, each time a new configuration is guessed, the run of ∆ has to pass
through a configuration with M on the top of the stack and the correctness is
checked by the formula Move (here Count checks whether the string on the top
of the stack is a correct encoding of a configuration). The formula Init checks
that the first guessed configuration is the initial configuration. When an accepting

30

configuration is pushed on the stack and checked (by the formula Accept), all the
symbols up to L are erased from the stack, and guessing of the right branch of the
corresponding universal move is started. This continues until the stack becomes
empty.

Now we define the new formulae more precisely. The formula Init is defined
as follows:

Init ≡ (¬M)U
(
M ∧ P>0X

(
F ∧ (

m∧
i=1

ϕi) ∧ ϕempty

))
where ϕi checks that [i] is followed by the i-th symbol of the initial configu-
ration c, and ϕempty checks that all symbols after the m-th symbol of the en-
coded configuration are empty-space symbols. These conditions can clearly be
expressed in qPCTL∗.

A configuration of the form FX1v1X2v2 . . . Xnvnβ, where vi ∈ {0, 1}m and
Xi ∈ C ∪ Υ, satisfies the formula Count iff every vi is equal to [i]. The formula
Count can be constructed using subformulae of the following form (where X ∈
C ∪Υ and k is between 1 and m):

(U ∨ V) ∧
k−1∧
j=1

((
X j 0⇒ Xm+2+j 0

)
∧
(
X j1⇒ Xm+2+j 1

))
∧(

X k 1 ∧
m∧

i=k+1

X i 0

)
⇒ Xm+2

(
X k 0 ∧

m∧
i=k+1

X i 1

)

Intuitively, the formula says that if the binary representation of a number at some
unspecified position is of the form v10m−k−1, then the binary representation of
the number just below is of the form v01m−k−1, i.e., the two strings encode two
consecutive numbers.

A configuration of the form Fc′Dc′′β, where D ∈ {L,R,E}, satisfies the for-
mula Trans t iff the current configuration of T , encoded by c′, is a t-successor of
the previous configuration of T , encoded by c′′. This is achieved in the standard
way, i.e., by checking that each triple of three consecutive symbols in the config-
uration encoded by c′′ is compatible (w.r.t. the move t) with the triple of three
consecutive symbols at the corresponding position in the configuration encoded
by c′. This condition can be verified using subformulae that are true in configu-
rations of the form Fc′β′ iff all runs initiated in Fc′β′ that satisfy the conditions
A-D given below also satisfy the condition (E) that the six symbols X̄1, X̄2, X̄3,

31

X̂1, X̂2, X̂3 of C ∪Υ satisfying the following are compatible w.r.t. t: X̄1 is visited
immediately before entering the first configuration with V on the top of the stack,
and X̄2 and X̄3 are visited immediately after that; X̂1 is visited immediately be-
fore entering the second configuration with V on the top of the stack, and X̂2 and
X̂3 are visited immediately after that. The conditions A-D say the following:

(A) Every symbol is removed as soon as possible from the top of the stack (in
particular, L rewrites to F).

(B) At least two symbols from L,R,E are visited, i.e. the configuration Fc′β′

is of the form Fc′Dc′′β, where D ∈ {L,R,E}, and c ∈ (C ∪Υ)∗.

(C) The run visits precisely two configurations with V on the top of the stack:
the first such configuration is visited when removing the symbols of c′ (i.e.,
the encoding of the current configuration of T) and the second one is vis-
ited when removing the symbols of c′′ (i.e., the encoding of the previous
configuration of T).

(D) The binary number visited right after a configuration with V on the top of
the stack is the same in both cases, and is lower than n− 1

The conditions A–D are clearly expressible using some path PCTL∗ formulae ϕA,
ϕB, ϕC and ϕD. The condition E can be expressed using a formula ϕE which is a
disjunction (over all compatible tuples X̄1, X̄2, X̄3, X̂1, X̂2, X̂3) of the formulae

(
(¬V)U ϕ̄(X̄1, X̄2, X̄3)

)
∧
(

(¬V)U
(
V ∧ X

(
(¬V)U ϕ̄(X̂1, X̂2, X̂3)

)))
where

ϕ̄(X1, X2, X3) ≡ (XV) ∧X1 ∧ (Xm+2X2) ∧ (X 2·m+4X3)

We then put
Trans t ≡ (ϕA ∧ ϕB ∧ ϕC ∧ ϕD)⇒ ϕE

Let us now explain the intuition behind Trans t. Thanks to the formula Count and
the condition B, we can suppose that the configuration Fc′β′ is of the form

FX1[1]X2[2] . . . Xn[n]DX ′1[1]X ′2[2] . . . X ′n[n]β,

and it is our goal to check that the symbols Xi, Xi+1, Xi+2, X
′
i, X

′
i+1, X

′
i+2 are

compatible for every 1 ≤ i ≤ n − 2. If a run initiated in Fc′β′ satisfies the

32

conditions A–D above, then there is i such that the following two configurations
are visited before visiting the configuration β:

Xi[i]Xi+1[i+1] . . . Xn[n]DX ′1[1]X ′2[2] . . . X ′n[n]β
X ′i[i]X

′
i+1[i+1] . . . X ′n[n]β

and the suffix of the run initiated in the first and second configurations above sat-
isfies ϕ(Xi, Xi+1, Xi+2) and ϕ(X ′i, X

′
i+1, X

′
i+2), respectively. The opposite also

holds, i.e. for every i there is a run satisfying A–D such that the above two con-
figurations are visited. Hence, it indeed suffices to concentrate on these runs and
check that the symbols adjacent to the two occurrences of V are compatible. The
symbols U and V here are used to “mark” positions in a run to be checked. When
elements of C ∪ Υ are removed from the stack, they are either overwritten to V
(a mark is set), or to U (no mark is set). Due to the probabilistic nature of the
pBPA we have no way of controlling where the marks are set, but we can use the
conditions A–D to restrict to runs where marks were set correctly, and on these
runs we use the condition E to enforce the compatibility of the symbols. This
technical step is needed, because we need to compare parts of the stack which
are separated by exponential number of symbols, and so we cannot hard-code the
comparison using multiple occurrences of the X operator as we did in the proof
of Theorem 5.1.

As in the previous proof we omit the technical details of the construction,
because the underlying principles are the same as in [5].

6. Conclusions

We presented tight decidability and complexity results for model-checking
probabilistic pushdown automata against branching-time probabilistic logics
PCTL, PCTL∗, and their qualitative fragments. The only problem left open is the
decidability of the model-checking problem for stateless probabilistic pushdown
automata and the logic PCTL.

References

References

[1] Proceedings of STACS 2005, volume 3404 of Lecture Notes in Computer
Science. Springer, 2005.

33

[2] P.A. Abdulla, C. Baier, S.P. Iyer, and B. Jonsson. Reasoning about proba-
bilistic channel systems. In Proceedings of CONCUR 2000, volume 1877 of
Lecture Notes in Computer Science, pages 320–330. Springer, 2000.

[3] C. Baier. On the Algorithmic Verification of Probabilistic Systems. Habilita-
tion, Universität Mannheim, 1998.

[4] C. Baier and B. Engelen. Establishing qualitative properties for proba-
bilistic lossy channel systems: an algorithmic approach. In Proceedings
of 5th International AMAST Workshop on Real-Time and Probabilistic Sys-
tems (ARTS’99), volume 1601 of Lecture Notes in Computer Science, pages
34–52. Springer, 1999.

[5] L. Bozzelli. Complexity results on branching-time pushdown model check-
ing. Theoretical Computer Science, 379(1–2):286–297, 2007.

[6] T. Brázdil. Verification of Probabilistic Recursive Sequential Programs. PhD
thesis, Masaryk University, Faculty of Informatics, 2007.

[7] T. Brázdil, V. Brožek, J. Holeček, and A. Kučera. Discounted properties
of probabilistic pushdown automata. In Proceedings of LPAR 2008, volume
5330 of Lecture Notes in Computer Science, pages 230–242. Springer, 2008.

[8] T. Brázdil, V. Brožek, K. Etessami, A. Kučera, and D. Wojtczak. One-
counter Markov decision processes. In Proceedings of SODA 2010, pages
863–874. SIAM, 2010.

[9] T. Brázdil, V. Brožek, and V. Forejt. Branching-time model-checking of
probabilistic pushdown automata. Electronic Notes in Theoretical Computer
Science, 239:73–83, 2009.

[10] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Reachability in recursive
Markov decision processes. Information and Computation, 206(5):520–537,
2008.

[11] T. Brázdil, V. Brožek, A. Kučera, and J. Obdržálek. Qualitative reachabil-
ity in stochastic BPA games. In Proceedings of STACS 2009, volume 3 of
Leibniz International Proceedings in Informatics, pages 207–218. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2009.

34

[12] T. Brázdil, J. Esparza, S. Kiefer, and A. Kučera. Analyzing proba-
bilistic pushdown automata. Formal Methods in System Design. DOI
10.1007/s10703-012-0166-0.

[13] T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of temporal
properties of probabilistic pushdown automata. In Proceedings of STACS
2005 [1], pages 145–157.

[14] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, 1981.

[15] J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown
automata. In Proceedings of LICS 2004, pages 12–21. IEEE Computer So-
ciety Press, 2004.

[16] J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic
pushdown automata: Expectations and variances. In Proceedings of LICS
2005, pages 117–126. IEEE Computer Society Press, 2005.

[17] J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown
automata. Logical Methods in Computer Science, 2(1:2):1–31, 2006.

[18] J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with reg-
ular valuations for pushdown systems. Information and Computation,
186(2):355–376, 2003.

[19] K. Etessami and M. Yannakakis. Algorithmic verification of recursive prob-
abilistic systems. In Proceedings of TACAS 2005, volume 3440 of Lecture
Notes in Computer Science, pages 253–270. Springer, 2005.

[20] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic gram-
mars, and monotone systems of nonlinear equations. In Proceedings of
STACS 2005 [1], pages 340–352.

[21] K. Etessami and M. Yannakakis. Recursive Markov decision processes and
recursive stochastic games. In Proceedings of ICALP 2005, volume 3580 of
Lecture Notes in Computer Science, pages 891–903. Springer, 2005.

[22] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic gram-
mars, and monotone systems of nonlinear equations. Journal of the Associ-
ation for Computing Machinery, 56, 2009.

35

[23] K. Etessami and M. Yannakakis. Model checking of recursive probabilistic
systems. ACM Transactions on Computational Logic, 13, 2012.

[24] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6:512–535, 1994.

[25] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[26] S.P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In Pro-
ceedings of TAPSOFT’97, volume 1214 of Lecture Notes in Computer Sci-
ence, pages 667–681. Springer, 1997.

[27] J. G. Kemeny and J. L. Snell. Finite Markov Chains: With a New Appendix
”Generalization of a Fundamental Matrix”. Springer, first edition, 1983.

[28] J. G. Kemeny, J. L. Snell, A. W. Knapp, and D.S. Griffeath. Denumerable
Markov Chains. Springer, second edition, 1976.

[29] I. Walukiewicz. Model checking CTL properties of pushdown systems. In
Proceedings of FST&TCS’2000, volume 1974 of Lecture Notes in Computer
Science, pages 127–138. Springer, 2000.

36

