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ABSTRACT
Ensuring the reliability of the software deployed on net-
worked wireless sensors is a difficult problem: unsafe,
low-level, interrupt-driven code runs without memory
protection in dynamic environments. To aid the mat-
ter, we describe a software analysis tool for the debug-
ging and verification of TinyOS 2, MSP430 applications
at compile-time. While existing solutions act at runtime
to log, report and reboot from software errors such as
memory violations, our tool is the first to allow the pro-
grammer to verify a TinyOS application statically; given
assumptions about the behaviour of the node’s environ-
ment and assertions upon the state of the node itself,
the tool explores all possible program executions and
returns to the programmer an error trace leading to the
violation of an assertion, if any exists. Besides memory-
related errors (out-of-bounds arrays, null-pointer deref-
erences), we also support application-specific assertions,
including low-level assertions upon the state of the reg-
isters and peripherals.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Sensors ; D.4.5
[Operating Systems]: Reliability—Verification; D.2.4
[Software Engineering]: Software/Program Verifica-
tion—Model checking

Keywords
wireless sensor networks, TinyOS, reliability, debugging,
software verification, model checking, bounded model
checking, tos2cprover, CBMC, CProver
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1. INTRODUCTION
Reliable sensor software is difficult to program. Inter-

rupt-driven code runs on embedded operating systems
without user/kernel boundary, memory management or
protection, and the code follows a low-level program-
ming paradigm with unrestricted access to the micro-
controller’s mapped memory. Writing an accidentally
null pointer in a TinyOS [12] application running on a
TelosB, MSP430-based platform [19], i.e.

struct sensor_data {
nx_uint16_t seq_no;
nx_uint16_t data[10];

} *sensor_data; // pointer not initialized

// write into sensor_data->data[9]
read_sensor(sensirionSht11_temperature_read,

sensor_data->data[9]);

writes the output register P1OUT of peripheral port P1
(mapped starting at address 0x0020), potentially modi-
fying the operation of those modules controlled through
the P1OUT bits [21]. Likewise, an out-of-bounds array
access on the stack may corrupt not only adjacent stack
memory, but also other sections of the memory map.

With software errors this destructive, the program-
mer’s difficult task lies with ensuring that no such vio-
lations remain in the code by deployment time, or that
they can be recovered from. The task is complicated
if the sensor node is due to function in a dynamic,
error-prone network: the programmer has to both ac-
count for any context switch from the kernel thread to
an incoming interrupt handler, and for any—including
corrupted—incoming data e.g., received on the radio
interface. The advent of the TOSThreads [13] API
for programming applications with abstracted block-
ing threads (instead of nesC [10] interrupt handlers)
only partially aids the situation: the bulk of the code
deployed on a mote will still have been initially pro-
grammed in interrupt-driven nesC.

Three trends of research are answering the problem of
programming reliable sensor applications: One develops
tools for runtime monitoring and recovering from error,
e.g., Safe TinyOS [9] and Neutron [5]; A second, includ-



ing the present work, aims at error detection at compile-
time; The third parts with the well-used, existing sen-
sor languages and operating systems, and develops new
high-level, strongly typed languages and programming
tools for sensors, such as Virgil [22], to eliminate some
of the programmer’s responsibilities.

We focus on compile-time debugging for the main-
stream TinyOS operating system, and motivate this fo-
cus by noting that, thus far, the task of locating pro-
gramming errors in a sensor application traditionally
takes the form of debugging by deployment, in which
case staring at a set of blinking LEDs allows little vis-
ibility into the fault’s cause. Runtime recovery tools
aid the debugging process by providing the error’s loca-
tion (and in the best of cases, the program trace which
has led there). With such tools, however, error detec-
tion is at its most expensive: for each detected error,
the deployed application has to suffer through i.e., a
node’s reboot, the standard error-correcting measure.
Furthermore, software faults may even persist though
reboots, or the deployment environment which triggers
them may be difficult to guess or reproduce.

In turn, we provide the first method to allow the pro-
grammer to debug a TinyOS application without de-
ploying it. In the same way an application is usually
simulated pre-deployment to show that it adheres to
an expected functionality (e.g., in a real-code simula-
tor such as TOSSIM [18]), we allow TinyOS code to be
instrumented with assertions which should hold when-
ever they are reached, and input the resulting code into
a fully-automated verification toolchain which returns
a program trace leading to a violation of an assertion,
if any such violation exists.

The difference between simulation and verification is
that between may and must : a program’s simulation un-
winds only one of all possible program traces, and thus
may or may not make visible a desired property of the
program; a program’s verification, on the other hand,
will unwind all possible program executions, translates
the resulting state machine and any assertions into for-
mal, mathematical models (e.g., Boolean formulas), and
checks whether the conjunction of the program’s for-
mula and a assertion’s negated formula is satisfiable—in
which case, there exists a trace on which the assertion
is violated.

Our toolchain closes the link between TinyOS soft-
ware and the state of the art in verification tools for
standard C. A programmer’s nesC or TOSThreads ap-
plication and the existing TinyOS code database—with
added assertions—are passed through the nesC com-
piler, nescc [10], and the platform-specific, monolithic
code resulted is inputted to tos2cprover, our source-
to-source transformation tool. In turn, tos2cprover
automatically gives standard C semantics to all of the

code’s platform-specific features, and instruments the
code with calls to interrupt handlers, thus mimicking
incoming interrupt requests (IRQs) from the hardware.
Consequently, the resulting C code serves as input to
CBMC [6], a software verification tool for ANSI C; CBMC
finally instruments the code with another set of asser-
tions guarding against standard memory violations and
exceptions, and boundedly unwinds the program’s loops,
reporting assertions’ violations occuring within the un-
winding limit.

The difficulty of our verification method is two-fold.
First, giving high-level C semantics to low-level micro-
controller flavours of C requires detailed knowledge of
the microcontroller’s workings. Second and more impor-
tantly, the verification procedure only scales if the size
of the program’s state-space is minimized; to this end,
(i) partial order reduction is used when instrumenting
the application with calls to IRQ handlers, to reduce the
number of calls to be considered, and (ii) the amount of
unwinding is carefully set only large enough to exhibit
the required assertion violations.

As formal verification is generally not complete for
infinite-state programs (i.e., cannot unwind and verify
the entire state-space), we intend our automated verifi-
cation toolchain (presented in Section 3) not to replace,
but to complement runtime methods: we show (in Sec-
tion 4) that important bugs can be automatically lo-
calized with our bounded verification technique before
deployment time, thus reducing the frequency of the ex-
pensive runtime recovery procedures. The scalability of
the method and its time costs are also given in Section 4.

2. BACKGROUND

2.1 TinyOS
TinyOS (in the form of its two major releases, TinyOS

1 [12] and 2 [17]) is the mainstream operating system for
wireless sensor network devices. NesC [10] components,
including the programmer’s application, are wired to-
gether to form an OS-wide program; nesC is designed
under the expectation that a final, inlined code will be
generated from components by whole-program compil-
ers, a fact which allows for better code generation and
analysis.

All lengthy commands in TinyOS (e.g., the sending of
a packet on the radio) are non-blocking; their comple-
tion is signalled by an event (some of which are triggered
by a hardware interrupt), whose handler should be brief,
instead posting tasks to the system’s task queue for fur-
ther execution. All threads of control in a TinyOS ap-
plication are thus rooted in either an event handler or a
task, in a two-level concurrency model: event handlers
run with highest priority and preempt the lower-priority
tasks, which execute most of the program logic. Tasks



run to completion, however, and synchronous code is
that which is only reachable from tasks; asynchronous
code is reachable from at least one event handler. When-
ever program variables are accessible to both synchronous
and asynchronous code, a potential data race ensues.

TOSThreads [13] is TinyOS 2.x’s recent thread li-
brary. It preserves the system’s existing concurrency
model, and adds a lowest third priority level for the
new, application threads. The threads are now allowed
blocking system calls, which execute as regular TinyOS
tasks, and which unblock the application thread when
completed. As such, TOSThreads provide the tradi-
tional, POSIX-threads-like programming paradigm for
TinyOS, can be programmed in either nesC or C, and
come complete with synchronization methods.

2.2 Sensor platforms
TinyOS serves a variety of hardware platforms. Te-

los [19] motes are based on the 16-bit Texas Instruments
MSP430 [21] microcontroller; Mica nodes are built around
Atmel’s AVR [3], and Intel’s 8051 [2] power e.g., MITes
nodes. nescc, the nesC compiler, wires, inlines and
translates the TinyOS components into platform-specific,
non-standard C; for an MSP430 platform, this language
is that of mspgcc [23], a port of the GNU tools to the
Texas Instruments MSP430 microcontrollers. What dis-
tinguishes the language from standard C is its exten-
sions for directly utilizing hardware: the fragment of
code

static volatile uint8_t r __asm ("0x0031");
r &= ~(1 << 6);

or in other words

*(volatile uint8_t *)49U &= ~(1 << 6);

clears a bit in the 8-bit peripheral register P5OUT at loca-
tion 0x0031, where the three LEDs are memory-mapped
on a MSP430 TelosB; this amounts to turning the yel-
low LED on. Similarly, a function declared with the
attributes

__attribute((wakeup)) __attribute((interrupt(14)))

declares that sig_ADC_VECTOR is an interrupt service
routine for interrupt line 14, and that it wakes the pro-
cessor from any low power state as the routine exits.

2.3 CBMC—A bounded model checker
The state of the art in software verification tools in-

cludes highly usable tools for the analysis of ANSI-C
programs; CBMC [6] (part of the CProver [15] tool suite
for the formal verification of both hardware designs—
e.g., programmed in Verilog—and software programs)
uses bounded model checking techniques [7] to verify
against the violation of assertions in ANSI-C code such
as that expected from safety-critical, embedded systems.

These programs are—more so than high-level applications—
a challenge to debug, due to the extensive use of point-
ers, pointer arithmetic, and bit-wise operators.

To derive an accurate mathematical representation of
an input program, CBMC first translates the code into
goto-cc [15], a simpler, intermediate representation of
ANSI-C, for which (i) all side-effect assignments are bro-
ken into equivalent statements by introducing auxiliary
variables, (ii) all loops and recursive function calls are
unwound by a user-provided number of times, by du-
plicating the loop body, (iii) function calls are inlined,
and (iv) static analysis techniques optimize the code by
constant propagation. The resulting program is then
transformed (using a pointer analysis in the process)
into static single assignment form (SSA), a standard in-
termediate representation in which every variable is split
into “versions”, i.e., a new variable is invented for each
assignment to the original, as exemplified in Fig. 1; fre-
quently used for compiler optimizations, the technique
simplifies the analysis of the variables’ definition and
use.

Figure 1: CBMC program transformation into a
mathematical model

The procedure then precisely represents ANSI-C data
types, pointers, structures and arrays to the bit level
(with the word-width adjustable, i.e., to 16 bits, by
a command-line option), instruments them with with
assertions checking e.g., array bounds and arithmetic
exceptions, and finally produces two boolean proposi-
tional formulas: C for the program itself, and P for
the asserted expression, as in Fig. 1. P is then veri-
fied by converting C ∧¬P into conjunctive normal form
(CNF) and then passing it to a SAT solver such as Min-
iSAT [20]. If this conjuncted formula is satisfiable, there
exists a violation of the assertion, and CBMC returns
to the programmer a program trace leading to the vi-
olation, as a debugging tool would do; otherwise, the
assertion holds.

In verifying an ANSI-C program by bounded unwind-
ing, CBMC proves a partial guarantee of program prop-
erties (i.e., that bugs are absent for a certain amount of
unwinding), is highly automated and scales reasonably
well.



  uint16_t temp;
{
#line 109 
static inline void McuSleepC$McuSleep$sleep(void )

assertion instrumentationassertion instrumentation

  temp = McuSleepC$msp430PowerBits[McuSleepC$powerState] | 0x0008;

  if (McuSleepC$dirty) {
#line 111 

# 104 "/Users/doina/tinyos−2.x/tos/chips/msp430/McuSleepC.nc" 

(application−based) (memory violations, exceptions)

   __asm volatile ("" :  :  : "memory");
  __nesc_disable_interrupt();
}

   __asm volatile ("bis  %0, r2" :  : "m"(temp));

    }
      McuSleepC$computePowerState();   temp = McuSleepC_msp430PowerBits[McuSleepC_powerState] | 0x0008;

{
  uint16_t temp;
  if(McuSleepC_dirty)
  {
    McuSleepC_computePowerState();
  }

  _R2 |= temp;

dereferences

inline static void McuSleepC_McuSleep_sleep( void )  

  __nesc_disable_interrupt();
}

  sig_ADC_VECTOR();illegal−address

tos2cprover

cprover

nescc

(mspgcc)

assertion violations
with program trace

cprover

configurations, wiring
nesC/C modules, MCU−specific

C/asm

(source transformation,

CProver−readable
standard C

IRQ instrumentation)
analysis, and

Figure 2: The verification toolchain

3. STATIC TINYOS SOFTWARE SAFETY
In TinyOS, software bugs stem from both the legacy

nesC component base (the lowest levels of which are
platform-dependant), and the programmer application’s
components. By a safe TinyOS program, we understand
that which exhibits no memory violations, and whose
programmer-inserted assertions hold.

To achieve a homogeneous verification scheme for both
legacy and newly programmed TinyOS code, we cre-
ated an automated toolchain of program transforma-
tion and verification as depicted in Fig. 2. In order to
be able to treat both nesC components and the C/nesC
TOSThreads identically, an initial run of TinyOS’s nescc
compiler is used to generate an inlined, platform-specific,
low-level C program; instead of employing the plat-
form’s own compiler to further build this into a binary
deployable on a mote, the program is passed to our own
tool, tos2cprover, which has a double task:

• In a source-to-source transformation step, it gives
ANSI-C meaning to all low-level, hardware-managing
extensions, and instruments the code so as to mim-
ick the hardware’s functionality: whenever a regis-
ter’s value is filled in from the hardware, the pro-
gram is augmented so as to provide such values.

• Then, tos2cprover reads the functions’ attributes
and determines which functions would be called
as IRQ handlers in the event of a hardware inter-
rupt, then instruments the resulting program so
that IRQ handlers are called whenever hardware
interrupts are allowed. A reachability analysis step
is used to minimize the occurence of such calls.

Following these transformation and instrumentation
steps, the result is a high-level, standard C program
which precisely (yet minimally) preserves the function-
ality of the initial platform-specific program and its hard-
ware.

3.1 Tos2CProver: source-to-source transfor-
mation

Table 1 exemplifies the source transformations exe-
cuted by tos2cprover on a TelosB, MSP430 program.
While mspgcc code implicitly assumes an underlying
memory map in which low, constant addresses have a
semantics (e.g., writing at 0x0031 programs the LEDs),
this memory is replaced with a header file defining global
replacement variables; e.g., _P5OUT is now the 8-bit out-
put register for peripheral port 5. All subsequent deref-
erences of address 0x0031 are replaced into accesses to
_P5OUT1. As a note, the Status Register _R2 has the
General Interrupt Enable (GIE) as bit 4; if GIE is set,
interrupts are enabled.

Then, mspgcc’s assembly extensions are straightfor-
wardly translated into standard C, as is all other non-
standard language (e.g., identifier names are standard-
ized by replacing dollar signs with underscores, struct
and union designated initializers are expanded).

3.2 Tos2CProver: IRQ instrumentation
The nescc-generated program inputted to tos2cprover

doesn’t explicitly call any IRQ handlers; in deployments,
the calls are made from the hardware. Instead, it de-
fines the functions and marks them as interrupt service
routines; e.g., in the case of a TelosB-based Sense, two
types of hardware interrupts are expected: one from
the user timer, TimerB, and another from the 12-bit
Analog-to-Digital Converter, ADC:

void sig_TIMERB1_VECTOR(void)
__attribute((wakeup)) __attribute((interrupt(24)));
void sig_ADC_VECTOR(void)
__attribute((wakeup)) __attribute((interrupt(14)));

Thus, asynchronous code in Sense is that which is rooted
(i.e., reachable from) either of the two IRQ handlers,
1Note that the variables we introduce are names in accor-
dance to the MSP430 documentation [21], but are preceded
by an underscore, to avoid name clashes with existing pro-
gram variables.



Table 1: tos2cprover: source-to-source transformation examples for MSP430 code.

MSP430-specific program feature Example tos2cprover transformation

MCU registers and memory map Standard C global variables
unsigned short _R2; /* Status Reg */
unsigned char _P5OUT; /* 0x0031 P5 */
unsigned short _ADC12CTL0; /* 0x01A0 ADC12 */
unsigned short _ADC12MEM[16]; /* 0x0140 ADC12 */

Fixed-address dereference Global variable access
*(uint8_t*)49U &= ~(0x01 << 6); _P5OUT &= ~(0x01 << 6);

Fixedly allocated variables Global variable access
uint16_t HplAdc12P$ADC12CTL0 __asm ("0x01A0");
HplAdc12P$ADC12CTL0 |= 0x0010; _ADC12CTL0 |= 0x0010;

Assembly instructions C instructions
__asm volatile ("eint"); _R2 &= 0x0008;
__asm volatile ("bis %0, r2" : : "m"(temp)); _R2 |= temp;

while synchronous code is rooted (and only reachable
from) the main function. The size of the asynchronous
code is substantial: take e.g. Sense, in which out of
the 520 reachable functions in the program, 166 are
reachable from the ADC interrupt handler and 185 from
the TIMERB0 handler; 386 (both synchronous and asyn-
chronous functions) are reachable from main.

To simulate the presence of interrupts, tos2cprover
needs to instrument the program with explicit, atomic
calls to the handlers of the expected hardware inter-
rupts, i.e., sig_ADC_VECTOR(), with each call guarded
by a check of the GIE bit, and each call made atomic
by disabling and enabling interrupts (as TinyOS events
always run to completion):

/* IRQ INSTRUMENTATION */
if (int_enabled()) { /* if (_R2 & 0x0008) */
disable_int(); /* _R2 &= ~0x0008; */
sig_ADC_VECTOR();
enable_int(); /* _R2 |= 0x0008; */

}

A correct, yet naive, approach is to instrument the pro-
gram by refactoring it to use threads, and running the
IRQ handlers as separate threads in parallel with a main
thread (or, equivalently, adding calls as every second
statement in all main-reachable code). However, each
instrumented IRQ call amounts to the duplication of all
code rooted in the call. We employ two fully-automated
minimization procedures to reduce the number of these
instrumentations, as follows.

The first is a partial order reduction technique [8], a
general method to reduce the number of interleavings
between threads by exploiting the fact that a number
of different interleavings have the same end effect to
the main thread, and thus need only be checked once.
E.g. for the standard TinyOS main (selected lines; the
comments are ours):

int main (void)
{

// interrupts are disabled to start with
1: RealMainP_Scheduler_init();
2: RealMainP_PlatformInit_init();
3: RealMainP_SoftwareInit_init();

// and finally enabled
4: __nesc_enable_interrupt();

5: RealMainP_Scheduler_taskLoop();
}

adding our guarded IRQ calls before any of the lines
1-4 will not describe a realistic interrupt scenario, as
our int_enabled() guard will always evaluate to false,
and the IRQ handler itself will never be run. Similarly,
unless a statement contains a potential data race (i.e.,
data is accessed asynchronously—a classical example in
TinyOS being the task queue, uint8_t SchedulerBa-
sicP_m_next[SchedulerBasicP_NUM_TASKS], as events
post tasks), an IRQ call before the statement has the
same effect as one after the statement.

More formally, at this minimization stage tos2cprover
calculates the set of global program variables which are
accessed asynchronously, and instruments the program
with the following reduced set of IRQ calls:

• A call for e.g. sig_ADC_VECTOR() appears before
each statement containing a read of a variable raced
between the ADC interrupt and main. This is sound,
but overapproximated: the statement may execute
in an atomic context, in which case the call isn’t
reachable.

• A call also appears (i) before the beginning of those
atomic sections where a data race may happen, or
(ii) in the MCU’s interruptable sleep.

This first minimization step leaves e.g., in the case of



Sense, a total number of 91 IRQ calls between the two
types of IRQs.

A second, stronger analysis step is then used to mini-
mize this result; to remove the overapproximation above,
tos2cprover runs CBMC to check for the reachability
of each of the 91 instrumentations: the verification of
an assert(0); inserted in the body of the interrupt
routine fails when the assertion is reachable. This step
leaves Sense with a manageable, minimum set of 8 IRQ
calls.

3.3 Instrumentation with assertions, nondeter-
minism and assumptions

Our toolchain verifies, for each inputted program, two
types of assertions. For both the existing TinyOS code
base and any new applications, assertions can be man-
ually inserted by the programmer and are preserved as
such in the transformed program source. These application-
based assertions can be either hardware-aware, e.g.

assert(_P5OUT & 0x0008);

or high-level, (e.g., asserting upon the value of a variable
local to a component).

Furthermore, CBMC automatically inserts memory-
violation assertions guarding both bounds of all array
accesses, null-pointer dereferences, and other exceptions
such as arithmetic division by zero. As function Sched-
ulerBasicP_pushTask(uint8_t id)writes upon the task
queue:

SchedulerBasicP_m_next[SchedulerBasicP_m_tail]=id;

with id unsigned, CBMC will generate the upper-bound
assertion:

Claim SchedulerBasicP_pushTask.1:
array ‘SchedulerBasicP_m_next’ upper bound
(unsigned int)SchedulerBasicP_m_tail < 8

For Sense, 132 memory-violation assertions are thus gen-
erated2. Advantageously, this generation is completely
automatic, with CBMC analysing an array’s declaration
to find the index bounds; SafeTinyOS [9], for example,
has programmers explicitly type-annotate arrays with
access bounds.

Finally, a decision needs to be taken in regard to the
contents of those registers and buffers whose values are
filled in by the hardware and not the software. For
example, reading the current time in a TinyOS appli-
cation takes the form of reading the user timer’s count
register, _TBR (mapped at address 0x0190), which holds
the number of clock periods elapsed since the last timer
interrupt, and which is automatically incremented from
2The names of functions, variables and assertion identifiers
in all our code examples are those generated by nescc: the
original nesc function or variable name is preceded by a list
of nesc component names, which helps in recovering the C
code’s correspondent in the original nesc code.

the hardware at every clock period. In another example,
the 8-bit _U0RXBUF buffer (mapped at 0x0076) holds the
latest byte received from the network. A similar discus-
sion holds for setting TOS_NODE_ID, the variable which
holds the node’s address, and which is programmed at
deployment time.

Clearly, the actual values in such registers drive the
program’s further behaviour. We set their values in ei-
ther of two ways:

• The register envolved is assigned a nondeterminis-
tic (i.e., any) value, and the verification procedure
explores all the ensuing possibilities.

• The register is assumed to have a particular value,
or to have any value within a small, particular set.

3.4 CBMC and program unwinding
As a final step in our toolchain, the transformed pro-

gram annotated with assertions is passed to CBMC con-
figured for 16-bit words, and each claim is verified at a
time, for scalability. The runs need to have specified an
unwinding depth; this can be either the identical for all
loops and recursions, or—ideally—selectively refined for
each. Some of the loops are obviously of fixed iterations;
e.g., out of the 16 loops from Sense, the loop:

do {
*resultBuffer++ =
Msp430Adc12ImplP_HplAdc12_getMem(i);

}
while(++i < length);

is always bounded at 16 iterations (the size of the ADC12
conversion memory)3. Other loops, on the other hand,
are clearly unbounded, such as the main OS scheduler
loop in function SchedulerBasicP_Scheduler_taskLoop.
For our benchmarks in the following, we make a vi-
sual inspection of the program’s loops (as reported by
CBMC), determine bounds for the loops which are clearly
bounded, and experiment with unwinding depths for the
rest. For the purpose of determining the reachability of
instrumented IRQ calls (described in Section 3.2), we
set the depth for the unbounded loops to the minimum,
1.

4. THE BENEFITS AND COSTS OF VERI-
FICATION

For our tests, we settle on the existing applications in
the apps directory from TinyOS’s source tree; we pick
applications which wire TelosB components of different
functionality, as summarized in Table 2.

We detail the size and complexity of the test cases in
terms of (i) the lines of code in the cleanly reformatted
3A few loops are bounded, but not worthy of exploring, and
are thus commented out. An example is the initial clock
calibration, which busy waits for thousands of clock periods.



Table 2: TelosB-based test cases

Blink Sense TestDissemination

functionality timer sensor, timer CC2420 radio, timer
lines of code, number of loops 3340, 8 7181, 16 13388, 31
memory-violation assertions 35 132 747

expected interrupts TIMERB0 TIMERB0, ADC TIMERB0, PORT1, PORT2, UART0RX,
UART0TX

reachable functions total: 248,
TIMERB0: 114

total: 520, TIMERB0:
185, ADC: 166

total: 1022, TIMERB0: 364, PORT1: 153,
PORT2: 25, UART0RX: 268, UART0TX: 16

potentially raced global
variables

TIMERB0: 6 TIMERB0: 7, ADC: 11 TIMERB0: 15, PORT1: 13, PORT2: 0,
UART0RX: 19, UART0TX: 0

IRQ instrumentations initial 21,
minimized to 4

initial 92,
minimized to 8

initial 422,
minimized to 30

program outputted by tos2cprover, (ii) the number
of unique loops for which CBMC needs to have con-
figured an unwinding depth, (iii) the number and type
of expected hardware interrupts, together with quali-
tative measures of the size of the code duplication in-
curred during the IRQ instrumentation phase. As a side
note, the program generated by nescc and inputted to
toscprover is not completely optimized; for our test
cases, this input program contained code of no end func-
tionality, such as that rooted in the IRQ handlers for the
non-user timer, TIMERA0/1; tos2cprover skips instru-
menting the program with such IRQ calls. On another
hand, for TestDissemination we preserved the code for
the UART0RX/TX interrupts, and instrumented the pro-
gram with the respective calls: UART functionality may
not be wired through to the top application component,
but supports the CC2420 radio.

Finally, Table 2 gives the precise number of IRQ in-
strumentations calculated as in Section 3.2, and the
number of automatically generated, memory-violation
assertions; most of the assertions are array bounds checks,
with a number of null-pointer dereference checks.

In the remaining of this section, we give an overview
of our verification runs, discuss their scalability, advan-
tages and limitations.

4.1 Out-of-bounds array access, null-pointer
dereference, and application-based asser-
tions

We ran our MSP430 test cases through the verifica-
tion toolchain, having set to any value the contents of
the TimerB count register _TBR, the 16 ADC12 sensor
memory buffers _ADC12MEM[], and the transmit and re-
ceive buffers _U0TXBUF/_U0RXBUF.

Any verification run is parametrized by the following
measures:

• The number of IRQ calls added per code rooted
in a single iteration of the scheduler main loop.
While tos2cprover calculates the program points
at which an IRQ of a certain type can be called, a
verification run may include all, none, or any su-
perset of these calls. This is settled empirically on
a per-application basis: one TIMERB0 interrupt is
sufficient to explore the workings of Blink, and sim-
ilarly for ADC and Sense; for any network communi-
cation, on the other hand, an interrupt arrives for
any byte received, which induced us to allow more
UART0 transmit or receive interrupts per loop.

• The number of main loops which CBMC unwinds
in the SchedulerBasicP_Scheduler_taskLoopme-
thod. Given some understanding of the task loop
functionality, and the number of IRQ calls per loop,
we again settle the number empirically, per-application.

• The number of assertions checked in one verifi-
cation run; this number can be either one (and
CBMC is configured with the assertion’s identi-
fier) or all ; as checking one assertion at a time
scales better, we automatized our tool to iterate
through all of the program’s assertions.

All our verification runs of the memory violations in
the test cases from Table 2 came up negative, when
allowed two task loops and one IRQ per loop (in the
case of Blink and Sense) and up to eight loop and eight
IRQs per loop for TestDissemination. We then arti-
ficially triggered some positive runs in TestDissemina-
tion. First, we sent a null pointer to a requestData
call in the DisseminationEngineImplP module from
TinyOS’s network library (the comments are ours, and
long function names are wrapped on multiple lines):

static void
DisseminationEngineImplP_sendObject(uint16_t key)



{
void *object;
uint8_t objectSize = 0;
[..]
// send a zero instead of &objectSize
object = DisseminationEngineImplP_

DisseminationCache_requestData(key, 0);
}

Since the requestData method does no sanity check
on the pointer it receives:

inline static void *
DisseminatorP_0_DisseminationCache_requestData
(uint8_t *size)

{
*size = sizeof(DisseminatorP_0_t);
[..]

}

the assertion then generated by CBMC to check the
sanity of the pointer:

Claim DisseminatorP_0_DisseminationCache_requestData.1:
line 7503 function
DisseminatorP_0_DisseminationCache_requestData

dereference failure: NULL pointer
!(SAME-OBJECT(size, NULL))

fails. Second, as a means to make visible such incor-
rect parameter passing even when sanity checks are in
place, we cause a large objectSize being passed to the
send call:

static void
DisseminationEngineImplP_sendObject(uint16_t key)

{
void *object;
uint8_t objectSize = 0;

// we cause this to set objectSize to a large value
object = DisseminationEngineImplP_

DisseminationCache_requestData
(key, &objectSize);

// which is then sent to a send call
DisseminationEngineImplP_AMSend_send(
AM_BROADCAST_ADDR,
&DisseminationEngineImplP_m_buf,
sizeof(dissemination_message_t) + objectSize);

}

We then introduce an assert(0) to strengthen the
sanity check in the implementation of send:

static error_t CC2420ActiveMessageP_AMSend_send(
[..] uint8_t len)

{
if(len >

CC2420ActiveMessageP_Packet_maxPayloadLength())
{
assert(0);
return ESIZE;

}
}

Whenever ESIZE would be returned, the assertion is
now also reachable and reports failure, and a program
trace to track the location of the faulty call.

4.2 Constant-address dereference
A potential, secondary source of errors in embedded

software is that of dereferencing constant memory ad-
dresses. While null pointers can still be erroneous (as
exemplified by Section 4.1), dereferencing constant, low
pointers is generally expected from embedded code. To
enforce a degree of safety when dereferencing constants
is envolved, we state that all dereferencing of constants
must be limited to constants from those memory-map
sections which pertain to peripheral control (I/O loca-
tions), and not to other sections.

To this end, in the process of program transforma-
tion, tos2cprover reports to the programmer the list
of encountered memory dereferences, and translates the
constant address implicated to its section in the memory
map, e.g., for the line:

*(volatile uint8_t *)49U ^= 0x01 << 6;

we report

-> DEREF at 49/0x31 in the 8-bit Peripheral Module
in *(volatile uint8_t *)(49U)

and for a fixedly allocated variable:

static volatile uint8_t r __asm ("0x0019");
r |= 1 << 1;

we report

-> DEREF at 25/0x19 in the 8-bit Peripheral Module
with fixed-address variable r

In some cases (particularly for dereferences of address
0x0), an inspection of this report is advisable to sort
any null pointers from legitimate peripheral access. A
similar approach is taken by SafeTinyOS [9], which has
programmers explicitly mark legal dereferences of con-
stants with a trusted type, and thus make null-pointer
derefences visible.

4.3 Verification time
The cost of showing that a TinyOS application is safe

lies partially in (i) inspecting the program’s loops to
settle on an unwinding bound for each, (ii) inspecting
the list of expected hardware interrupts to decide on the
number of IRQ instrumentations necessary, and (iii) in-
specting the report on dereferencing contant addresses.
Mostly, however, the cost lies with the verification time:
the time it takes the model checker to unwind the pro-
gram (i.e., the program unwinding time), and generate
its mathematical formula and have this verified by the
SAT solver (i.e., the decision procedure runtime).

Fig. 3 exemplifies the verification times for a resp-
resentative subset of memory-violation assertions from
Sense. The x axis is labeled with identifiers of asser-
tions: e.g., SchedulerBasicP_pushTask.1 is the first
assertion generated regarding code in function Sched-
ulerBasicP_pushTask. When more than two assertions



Figure 3: Verification times for selected memory-violation assertions in Sense
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are generated for a single function, we note that veri-
fication times are similar for all these assertions, and
only depict the first and the last. Two verification runs
are given for each assertion (each run in terms of both
program unwinding time and of decision procedure run-
time); both runs are configured with one IRQ call per
task loop; the first run unwinds the task loop once, and
the second twice.

We note that most assertions are verified in a speedy
manner, using close to zero time in the decision pro-
cedure, and a constant time for program unwinding.
There are, however, notable exceptions for which the
verification time explodes—we used these time-consuming
runs to bound CBMC’s unwinding depth: for e.g. Test-
Dissemination, some five-task-loop verification runs took
up to 55 minutes.

5. RELATED WORK

5.1 Runtime error protection
Most existing solutions against software errors in sen-

sor operating systems act at runtime: the code is in-
strumented such that a statement which is semantically

unsafe under its current execution context is detected
before it is executed, and one or another diagnosis or
recovery measure is taken (which usually consists in re-
porting the error and rebooting, as summarized in Ta-
ble 3). While a necessary solution to ensure safe execu-
tion in all execution contexts, runtime error detection
is necessarily followed by the expensive redeployment of
already-deployed sensor software, and could instead be
preceded by static error detection to save on redeploy-
ment efforts.

Safe TinyOS [9] detects memory and type violations
in deployed, running code, and transfers control to a
fault handler, which either reboots or powers down after
sending a concise failure report to its base station. The
failure report identifies the error type and its source code
location (but doesn’t give an execution trace clarifying
the context which caused the error); the failure report
is used to debug the code post-deployment. While the
method allows the safe execution of existing TinyOS
code, with little programmer effort and runtime over-
head, debugging every error encountered envolves the
software’s redeployment.

A drawback of Safe TinyOS’s Deputy code instru-



Table 3: Runtime diagnosis and recovery solutions to software errors

Scheme OS Scope of errors Measure

Safe TinyOS,
Neutron

TinyOS out-of-bounds array access, invalid-pointer
dereference, integer-to-pointer cast

report error location, reboot;
Neutron: with state preservation

Interface contracts TinyOS pre-/postconditions for nesC interface use LED-signal error location

NodeMD MantisOS stack overflow, deadlock, livelock, application
assertions

report execution trace, remote
queries

menter is the fact that, unlike our automatic instrumen-
tation with assertions, SafeTinyOS programmers must
explicitly type-annotate e.g., a void *payload array
with access bounds COUNT(len). The resulting program
is first translated into C by the nesC compiler, and then
by Deputy into a program instrumented with calls to a
failure routine if(i >= len) deputy_fail(). State-
ments accessing a fixed address such as 0x0031 (clas-
sic memory violations on desktop systems, but stan-
dard in TinyOS) also need manual trusted cast annota-
tions, TC(). Like SafeTinyOS though (and unlike earlier
SafeTinyOS versions), we do not change the C data rep-
resentation in the verification process.

Neutron [5] adds a welcome update to Safe TinyOS,
for applications coded in TinyOS’s TosThreads API: in-
stead of rebooting the node as a corrective measure to
a memory violation, Neutron groups the application’s
threads into recovery groups, and selectively restarts the
threads in certain recovery units. Furthermore, it allows
the preservation of the values held in“precious”memory
locations between thread restarts.

The interface contracts [1] write specification-like type
annotations which define the“correct”use of TinyOS 1.x
nesC component interfaces, just as Safe TinyOS anno-
tates memory for safe use. In cases when the semantics
of the interface dictates it being stateful, the contract is
expressed in terms of the state of the interface: for the
interface command Timer.start(), the contract states
as precondition the fact that the timer’s state must be
IDLE, and as a postcondition that the state of the timer
changes (i.e., to ONE_SHOT) if the command’s return
value is SUCCESS. In other cases, the interface is stateless
and the pre- and postconditions are imposed upon the
command’s arguments, which can themselves become
stateful. This detects incorrect ordering of interface
commands at runtime, e.g., a SendMsg.send() with a
message buffer for which no SendMsg.sendDone() event
was received to complete a previous send.

NodeMD [16] detects runtime errors in MantisOS mul-
tithreaded, synchronous code. AVR-based applications
are instrumented to check the stack pointer SP for over-
flows at function-call time, and for the violation of appli-
cation-specific assertions. The checks for deadlock and

livelock involve an artificially added timer to check that
each thread goes through its duty cycle.

5.2 Compile-time error detection and simula-
tion

A degree of compile-time verification is reported by [4].
While its scope is limited to TOSThreads applications
written in C, it avoids some of the costs of system-
wide verification by writing models for the interfaces to
system calls (in the style of the runtime interface con-
tracts [1]). Calling amRadioReceive(&msg, ...) from
the application is modelled so that it preserves its orig-
inal behaviour: the call returns any of a set of error
codes, and msg receives (possibly nondeterministic) data.
Then, the method verifies the programmer’s application
on its own; the errors it focuses on are those pertaining
to interface use, and application-specific assertions.

FSMGen [14] takes another approach to error detec-
tion in TinyOS programs: it statically analyzes the pro-
gram and derives automatically a finite-state machine to
describe the high-level application logic, thus aiding the
programmer’s understanding of the application code.

TinyOS’s own nesC compiler has a basic built-in data-
race detector, which warns when a global variable is
updated from non-atomic asynchronous code without
having been explicitly tagged with norace. While writ-
ing atomic asynchronous code is good practice for nesC,
failure to do so only potentially causes a race, as pro-
grammers may have used other syncronization idioms
(i.e., guards on variables). A suitable context model for
race checking [11] then gave an algorithm for the elimi-
nation of such false positives.

A weaker case of static error detection is simulation.
While it does not prove any guarantee on the program’s
behaviour, simulation allows for error detection and is
particularly realistic in the case of e.g., TOSSIM [18],
which accurately simulates TinyOS applications from
their own implementation.

6. CONCLUSIONS AND FUTUREWORK
Our work on statically checking safety violations at

compile-time is motivated by a general idea that—while
an inherently unsafe language like C is the inevitable



choice to program embedded systems in—measures must
be taken to increase the safety of such programs to a cer-
tain, guaranteed, standard. While static verification can
never be complete for an infinite-state program, even a
low depth of program unwinding can expose memory-
violation bugs which would have otherwise made a sen-
sor node fail in the field, post-deployment.

We see our future work as two-fold. First, since our
current test cases covered only a small subset of the
existing TinyOS code base, we intend to extend our
tool and verification tests to (i) other MSP430-specific
or higher-level components, (ii) the AVR platform, and
(iii) TinyOS applications which are currently deployed
in pervasive healthcare applications, where software safety
is at its most important. Second, we will look towards a
compositional means of verifying TinyOS code, so that
the verification of assertions which are local to a com-
ponent may be reused between applications.
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